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ABSTRACT:
Diffuse Large B cell lymphomas (DLBCL) are the most prevalent of the non-Hodgkin 
lymphomas and are currently initially treated fairly successfully, but frequently 
relapse as refractory disease, resulting in poor salvage therapy options and short 
survival. The greatest challenge in improving survival of DLBCL patients is overcoming 
chemo-resistance, whose basis is poorly understood. Among the potential mediators 
of DLBCL chemo-resistance is the thioredxoin (Trx) family, primarily because Trx 
family members play critical roles in the regulation of cellular redox homeostasis, and 
recent studies have indicated that dysregulated redox homeostasis also plays a key 
role in chemoresistance. In this study, we showed that most of the DLBCL-derived cell 
lines and primary DLBCL cells express higher basal levels of Trx-1 than normal B cells 
and that Trx-1 expression level is associated with decreased patients survival. Our 
functional studies showed that inhibition of Trx-1 by small interfering RNA or a Trx-1 
inhibitor (PX-12) inhibited DLBCL cell growth, clonogenicity, and also sensitized DLBCL 
cells to doxorubicin-induced cell growth inhibition in vitro. These results indicate 
that Trx-1 plays a key role in cell growth and survival, as well as chemoresistance, 
and is a potential target to overcome drug resistance in relapsed/refractory DLBCL.

INTRODUCTION

Non-Hodgkin lymphoma (NHL) is the fifth most 
common cancer in the United States, and its incidence 
continues to increase. NHL affects all ethnic, racial, and 
gender groups approximately equally. Diffuse large B-cell 
lymphoma (DLBCL) is the most common type of NHL, 
with ~30,000 new cases per year in the US. DLBCL is 
initially chemoresponsive, with an overall response 
(complete response or partial response) rate of ~80% 
to frontline R-CHOP (rituximab, cyclophosphamide, 
doxorubicin, vincristine, and prednisone) chemo-
immunotherapy. However, DLBCL frequently recurs (in 
~40-50% of patients; usually within 2-3 years, depending 
on patient risk factors) as relapsed/refractory (r/r), 
incurable DLBCL with poor survival rates after current, 
inadequate salvage therapy regimens.[1]

“High-impact” studies in DLBCL should use 

novel therapeutic approaches to target the current large, 
heterogeneous, but poorly characterized population of 
patients with r/r DLBCL. The development of resistance 
to DLBCL therapy is currently the most challenging 
impediment to effective DLBCL therapy; the rapid 
development of multidrug resistance to structurally and 
functionally unrelated cancer drugs results in the early 
demise of nearly half of DLBCL patients.[2] Although 
progress in reversal of multidrug resistance, to result in 
effective therapy, has been slow and often disappointing in 
recent years,[3] new approaches to this daunting problem 
are essential for the ever-increasing numbers of patients 
with r/r DLBCL. The elucidation of molecular pathways 
and tumor-encoded genes whose expression contributes to 
the intrinsic resistance and the rapid growth of DLBCL 
cells could yield immediate clinical benefits and reveal 
new therapeutic targets for effective control and treatment 
of r/r DLBCL.



Oncotarget 2012; 3:  314-326315www.impactjournals.com/oncotarget

The thioredoxin (Trx) system is a major antioxidant 
system that is integral to maintaining the intracellular 
redox state. It contains thioredoxin-1 (Trx-1, TXN), a 
low-molecular-weight (10–12-kDa) cellular redox protein 
found in the nucleus and cytoplasm. Trx-1 regulates the 
activity of various enzymes, including those that function 
to counteract oxidative stress within the cell.[4] In 

addition, intracellular Trx-1 exerts most of its antioxidant 
properties by scavenging of reactive oxygen species.  
Moreover, intracellular Trx-1 acts as a co-factor for several 
enzymes and plays an important role in the regulation of 
redox-sensitive transcription factors.[5] Trx-1 is a proto-
oncogene that stimulates tumor growth and inhibits both 
spontaneous and drug-induced apoptosis.[6] Increased 

Figure 1: Trx-1 is highly expressed in DLBCL cell lines. (A) Whole-cell extracts (50 µg) purified from normal B cells (quiescent 
[GoB] and activated [ActB]) and DLBCL cell lines (GCB subtype: MS, DB, EJ, HF, JM [McA], MZ, PL, SU4 [SUDHL-4], SU6 [SUDHL-6], 
and WP; ABC subtype: HB, LR, LP, LY3 [OCI-LY3], and LY10 [OCI-LY10]) were used to analyze for Trx-1 and actin (loading control) 
protein expression by western blotting. (B) Purified mRNA from normal B cells (n = 4) and DLBCL cell lines (n = 16) was subjected 
to RT-PCR. Statistical analysis was performed using the Student t test. P < 0.05 indicates significance. (C) Microarray data analyses of 
Trx-1 mRNA expression in primary DLBCL and normal B cells. Stages: 1, B-lymphocyte; 2, centroblast; 3, memory B-lymphocyte; 
4, naïve pre-germinal center B-lymphocyte; 5, small cleaved follicular center cell; 6, DLBCL. The Student t test was conducted using 
the Oncomine software. The boxes represent the 25th through 75th percentiles, the horizontal lines represent the medians, the whiskers 
represent the 10th and 90th percentiles, and the asterisks represent the ends of the ranges. (D) Overall survival according to TXN expression 
level in Rosenwald’s study cohort.14 Gene expression data and patient data were downloaded from http://llmpp.nih.gov/DLBCL/. Survival 
information was available for only 240 patients. These patients were divided into “high” (n = 112) and “low” (n = 128) groups according 
to whether their TXN levels were above or below the median expression level of the whole cohort. Overall survival of each group was 
estimated with a Kaplan–Meier plot, and the groups were compared using the log-rank test.
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Trx-1 gene expression is also associated with increases in 
both hypoxia-induced factor 1α (HIF-1α) levels and HIF-
1 transactivation in cancer cells,[7] resulting in increased 
VEGF production and enhanced tumor angiogenesis.[8] In 
addition, overexpression of Trx-1 has been correlated with 
aggressive tumor growth, poorer prognosis, and decreased 
survival in patients with solid tumors.[9] Trx-1 appears 
to have an important role in maintaining the transformed 
phenotype of some human cancers as well as their 
resistance to chemotherapeutic drugs and is thus a rational 
target for cancer drug development. Trx was originally 
identified as an autocrine growth factor in transformed 
lymphoid cells.[10, 11] Increased Trx expression has been 
implicated in increased proliferation in various tumor 
types and model systems. However, there is a lack of 
supporting experimental evidence about the physiological 
and therapeutic significance of the Trx family in DLBCL. 
Recent preclinical in vitro data and clinical data in solid 
tumors strongly support the notion that the Trx system is 
of importance and that the development of drugs acting 
via the Trx system is a promising route, particularly for 
aggressive r/r DLBCL.

In this study, we showed that DLBCL tumors 
express higher basal levels of Trx-1 than normal B cells 
(by both western blotting and real-time PCR) and that 

Trx-1 expression level was significantly associated with 
decreased overall survival duration in DLBCL patients. 
Therefore, we hypothesize that Trx-1 plays an important 
role in the biology of DLBCL, particularly in regulating 
key growth/survival and chemoresistance mechanisms. 
The experimental design for this study was to characterize 
the expression of Trx-1, at both the mRNA and protein 
levels, in DLBCL and to thereby elucidate the functional 
significance of Trx-1 in the biology of DLBCL. Our results 
show that Trx-1 not only controls cell growth and survival 
but also regulates chemoresistance in the pathophysiology 
of DLBCL, and that targeting Trx-1 in DLBCL may have 
therapeutic significance.

RESULTS

Trx-1 is overexpressed in DLBCL

We first evaluated the expression of Trx-1 in 
DLBCL cells, both in cell lines and in primary tumor 
cells, compared with normal B lymphocytes. We found 
that Trx-1 protein is overexpressed in DLBCL cell lines, 
of both the activated B-cell-like (ABC) and germinal 
center B-cell-like (GCB) subtypes, compared with G0 
naïve (unstimulated) or activated B cells (Figure 1A). 
Quantitative RT-PCR confirmed that Trx-1 mRNA 
expression is significantly higher (P = .008) in DLBCL cell 
lines than in normal B cells (Figure 1B). We then analyzed 
the expression levels of Trx-1 in primary DLBCL cells 
using Oncomine (https://www.oncomine.org), a publicly 
available cDNA cancer microarray database. Analysis of 
a representative data set (from Basso et al)[12] indicated 
that Trx-1 mRNA levels were higher in primary DLBCL 

Figure 2: Immunohistochemical detection of Trx-1 
protein levels in human DLBCL and normal lymphoid 
tissues. Tissue sections from human DLBCL TMAs (TMA1 
and TMA2, consisting of 92 and 47 cases, respectively) were 
examined immunohistochemically using an anti-Trx-1 antibody. 
Representative photomicrographs of negative (A), weak (B), 
intermediate (C), and strong (D) Trx-1 staining in DLBCL 
tumor cells. Original magnification, 400×. Representative 
photomicrographs of Trx-1 staining in stromal cells with Trx-1-
negative tumor cells (E) or with Trx-1-positive tumor cells (F). 

Figure 3: Immunohistochemical detection of Trx-1 
protein levels in human normal lymphoid tissues. (A) 
Reactive tonsil (10×), (B) reactive tonsil (400×), (C) reactive 
lymph node (400×), (D) normal spleen (400×).
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cells than in normal B cells at different stages (Figure 
1C). We also analyzed the Trx-1 gene expression profile 
in other types of lymphoid malignancies, and the results 
indicated that other types of lymphoma also have high 
expression of Trx-1 mRNA (Figure S1). Further analysis 
of other lymphoma profiling data sets (from Rosenwald 
et al[13, 14] and Alizadeh et al[15]) also showed high 
expression of Trx-1 in DLBCL, particularly the ABC 
subtype (Figure S2). We then examined the clinical 
significance of Trx-1 overexpression in primary DLBCL 
cells by using gene expression microarray analysis of a 
240-sample data set with known clinical profiles.[13] 
Elevated Trx-1 expression was found to be significantly 
associated with decreased cumulative overall survival rate 
(P = .028; Figure 1D). These results suggest that Trx-1 
is overexpressed in DLBCL, indicating that Trx-1 likely 
plays a key role in the pathobiology of DLBCL.

TMA analysis of Trx-1 protein expression in 
DLBCL

Next, we performed immunohistochemical analysis 
of Trx-1 on TMAs of primary DLBCL and normal 
lymphoid tissues. Two TMAs comprising primary DLBCL 
were used: a commercially available TMA consisting of 92 
cases but with no clinical data (TMA1, US Biomax) and a 
TMA produced at MD Anderson Cancer Center consisting 
of 47 cases with clinical data (TMA2). Figure 2A-F shows 
representative cases from these TMAs with negative and 
positive Trx-1 staining. Trx-1 was found to be highly 
expressed not only in tumor cells (Figure 2D) but also in 
histiocytes in the surrounding tumor microenvironment 
with macrophage- or fibroblast-/dendritic-like morphology 
(Figure 2E-F). The pattern of Trx-1 expression in tumor 

cells and histiocytes was, in most cases, in both the 
cytoplasm and the nucleus. When we combined results 
from both TMAs, the percentage of cases with negative, 
weak/intermediate, and strong Trx-1 staining in tumor 
cells was 27%, 39%, and 34%, respectively (Tables 1 
and 2). The total percentage of cases with positive Trx-
1 staining in tumor cells was 73%. We found Trx-1-
positive histiocyte involvement in 29% of the cases with 
Trx-1-negative tumor cells, 52% of the cases with weak/
intermediate Trx-1 staining in tumor cells, and 43% of the 
cases with strong Trx-1 staining in tumor cells (Tables I 
and II). Trx-1-positive histiocyte involvement was 42%. 
In TMA2, there was no significant association was found 
between Trx-1 positivity/negativity and overall survival 
duration (data not shown). This lack of association may 
be due to the low number of cases available. However, 
we did find an association between Trx-1 expression level 
and relapse status: patients with strong Trx-1 expression 
were more likely to have experienced relapse (50%) than 
those with negative Trx-1 expression (31%)  (Table II). 
These relapsed cases were independent of Trx-1-positive 
histiocyte involvement (data not shown).  We also 
evaluated Trx-1 expression in normal lymphoid tissues. In 
contrast to tumor cells, Trx-1 expression was not present 
in lymphocytes of reactive tonsil (Figure 3A-B), reactive 
lymph node (Figure 3C), or normal spleen (Figure 3D); 
however, some macrophage-like cells outside of the cortex 
as well as inside the follicles did stain positive for Trx-1 
(Figure 3B). These results suggest that Trx-1 may play an 
intrinsic as well as an extrinsic (tumor microenvironment) 
role in the biology of DLBCL cells.

Table I-II: Immunohistochemical detection of Trx-1 protein levels in human DLBCL tissues.

DLBCL TMA2 Negative Weak/
Intermediate Strong Total

Positive

Tumor  cells 16/47
(34%)

21/47
(45%)

10/47
(21%)

31/47
(66%)

Histocytes Involvement 4/16
(25%)

10/21
(48%)

4/10
(40%)

18/47
(38%)

Cases Relapsed 5/16
(31%)

9/21
(43%)

5/10
(50%)

19/47
(40%)

DLBCL TMA1 Negative Weak/
Intermediate Strong Total TRX-1 

Positive

Tumor cells 22/92
(24%)

33/92
(36%)

37/92
(40%)

70/92
(76%)

Histocytes involvement 7/22
(32%)

18/33
(55%)

16/37
(43%)

41/92
(44%)
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Role of Trx-1 in cell growth and chemoresistance 
in DLBCL

To determine the biological significance of Trx-
1 in the growth and survival of DLBCL, we used Trx-1 
validated siRNA to knock down Trx-1 gene expression 
in two representative DLBCL cell lines, MS and OCI-
LY10 (Figure 4A). siRNA against Trx-1 resulted in the 
inhibition of DLBCL cell growth by 50% after 3 days of 
incubation (Figure 4B). As our data showed that there 
is an association between the Trx-1 expression level 
and relapse status in DLBCL patients, we evaluated the 
chemoresistance mechanism of Trx-1 in DLBCL cell 
lines. First, we tested whether ablating Trx-1 expression 
in DLBCL cells can sensitize these cells to Dox, a main 
ingredient in frontline CHOP chemotherapy. Our data 
show that inhibition of Trx-1 expression sensitized 
DLBCL cells to Dox in two representative DLBCL cell 
lines (Figure 4C), suggesting that Trx-1 may play a role 
in drug resistance. Next, we generated a Dox-resistant 
(DR) DLBCL cell line (McA-DR) from a parental cell 
line (McA) that was initially highly sensitive to Dox 
(Figure 5A), by continuously exposing cells to gradually 
increasing doses of Dox. The resistant phenotype has been 
retained for more than 6 months despite growth in drug-
free medium. We found that Trx-1 expression levels, both 
protein (Figure 5B) and mRNA (Figure 5C), were higher 

in the resistant cell line than in the parental cell line. In 
addition, we found that cells from the resistant cell line 
(McA-DR) formed cell clusters in culture medium and 
were more clonogenic in methylcellulose culture than the 
parental cell line (McA) (Figure 5D). Downregulation of 
Trx-1 by siRNA in the McA-DR cell line reversed the 
clonogenic activity (Figure 5E).

Effect of the Trx-1 inhibitor PX-12 in DLBCL 
cells

Additional experiments were performed to ascertain 
if pharmacologic agents targeting Trx-1 could recapitulate 
the effects of Trx-1 knock-down in DLBCL cells.  PX-12 
specifically inhibits Trx-1 by irreversibly thio-alkylating 
the Cys73 residue of Trx-1.[16, 17] PX-12 inhibition 
of Trx-1 has previously shown both excellent in vitro 
antitumor activity and promising in vivo antitumor activity 
in solid tumors.[18, 19] To test the efficacy of PX-12 in 
DLBCL cells, we exposed 18 DLBCL cell lines, including 
the Dox-resistant cell line McA-DR, to increasing 
concentrations (0–50 µM) of PX-12 and then analyzed 
cell proliferation using thymidine incorporation assays. 
The growth of all DLBCL cell lines was inhibited by PX-
12 in a dose-dependent manner (Figure 6A), and the half 
maximal inhibitory concentration (IC50) value for PX-12 
in each cell line was determined after testing a range of 

Figure 4: Inhibition of Trx-1 utilizing siRNA, inhibited DLBCL cell growth and sensitized DLBCL cells to Dox-induced 
growth inhibition in vitro. (A) DLBCL cells (MS and OCI-LY10) were transfected with a negative control (NC) or Trx-1 siRNA. At 
48 hours post-transfection, protein purified from transfected cells was subjected to western blotting for Trx-1 and actin. (B) DLBCL cells 
were transfected with a negative control (NC) siRNA or Trx-1 siRNA. Cells were counted using the trypan blue method at the indicated 
time point. (C) Cells from (B) were treated with increasing doses of Dox and were subjected to thymidine incorporation assays for 96 hours. 

NC     Trx-1      NC     Trx-1 siRNA
DLBCL-MS DLBCL-LY10

C

B

Trx-1

Actin
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concentrations (0–50 µM) (Figure S3). Interestingly, the 
Dox-resistant cell line, McA-DR, was more sensitive 
to PX-12 than the parental cell line McA (Figure 6B).  
However, the mRNA level of Trx-1 does not correlate 
with PX-12 sensitivity in DLBCL cell lines (Figure S3B).  
In McA-DR cells, PX-12 induced apoptosis in a dose-
dependent manner (Figure 6C) and induced cell cycle 

arrest at the G2M phase (Figure 6D). In McA-DR cells, 
treatment with the Trx-1 inhibitor PX-12 also inhibited 
the clonogenic activity (Figure 6E). These results suggest 
that PX-12 is a potential therapeutic agent that can reverse 
chemoresistance in DLBCL.

Figure 5: Trx-1 is overexpressed in a Dox-resistant cell line, McA-DR. We generated a Dox-resistant human DLBCL cell line 
(McA-DR) from a parental cell line (McA) that was highly sensitive to Dox, by continuously exposing cells to gradually increasing doses 
of Dox. The resistant phenotype has been retained for more than 6 months despite growth in drug-free medium. (A) Proliferation assays of 
McA and McA-DR cells responding to Dox. (B) Trx-1 protein expression in McA and McA-DR cells by western blotting. Densitometry 
analysis of Trx-1 protein expression, showing that Trx-1 expression is ~2.3 times as high in McA-DR cells as in McA cells. (C) RT-PCR 
analysis showing overexpression of Trx-1 mRNA in McA-DR cells. (D) Light micrograph of McA and Dox-resistant clone (McA-DR) 
cell lines, and colony formation assays for McA and McA-DR cell lines. (E) McA-DR cells were transfected with a negative control or 
Trx-1 siRNA. Transfected cells were subjected to colony formation assays and incubated for 10–14 days. Colonies were photographed and 
counted.
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Inhibition of Trx-1 activity modulates drug 
resistance gene expression in DLBCL cells

Because our data demonstrated that Trx-1 plays a 
role in chemoresistance of DLBCL, focused RT-PCR array 
techniques were used to examine if selective inhibition 
of Trx-1 modulated expression of genes involved in the 
body’s response to chemotherapy in DLBCL cells.  Of the 

84 genes analyzed, 17 genes showed significant down-
regulation (>2-fold) after Trx-1 knock-down by siRNA in 
a representative DLBCL cell line (MS) (Figure 7).  These 
include drug resistance genes (ABCC1 (MRP-1), BCL-
2, TOP1, TOP2A, TOP2B, and TP53), drug metabolism 
genes (GSTpi, CYP1A1, BLMH and DHFR), DNA repair 
genes (MSH2, BRCA2, and XPC), cell cycle genes (CDK2, 
CDK4, and CDKN1A) and the transcription factor HIF1A.  
These data suggest that chemoresistance effects of targeted 

Figure 6: Effect of Trx-1 inhibitor PX-12 in DLBCL. (A) Proliferation assays by thymidine incorporation in DLBCL cells treated 
with PX-12 (0–50 µM) for 96 hours. (B) Proliferation assays by thymidine incorporation in McA and McA-DR cells treated with PX-12 
(0–10 µM) for 96 hours. (C) Apoptosis analysis by Annexin V/PI staining in McA-DR cells treated with PX-12. (D) Cells from (C) also 
underwent cell cycle analysis by PI staining and flow cytometry analysis. (E) Colony formation assays in methylcellulose in McA-DR 
control and PX-12-treated cells.
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inhibition of Trx-1 in DLBCL cells are mediated, at least 
in part, by down-regulation of several key genes that are 
known to play a role in drug resistance mechanisms.

DISCUSSION

Chemoresistance is a major impediment to the 
treatment of patients with r/r DLBCL. Efforts to reverse 
chemoresistance of refractory DLBCL cells have been 
largely unsuccessful. On the basis of our data, we 
conclude that overexpression of Trx-1 in DLBCL cell 
lines and primary cells is associated with growth and 
survival, as well as chemoresistance, and that targeting 
Trx-1 with the novel Trx-1 inhibitor PX-12 may reverse 
chemoresistance. We postulate that the acquisition of high 
Trx-1 expression, either in tumor cells or in cells of the 
tumor microenvironment in DLBCL, may have occurred 
during chemotherapy, in a stressful microenvironment, 
to enable the cells to better tolerate oxidative stress. As a 
result, high basal expression of Trx-1 in tumor cells or in 
stromal cells of the surrounding microenvironment may 
lead to the up-regulation of critical drug resistance genes 
and the development of chemoresistance.

Although the basis for the high expression of Trx-1 
in DLBCL is still unclear, a recent study demonstrated that 
VDUP-1 (vitamin D3 upregulated protein 1; also called 
TXNIP [thioredoxin-interacting protein-1] or TBP-2 [Trx-
binding protein-2]), is downregulated in DLBCL.[20] Trx-
1 activity can be modulated by interaction with VDUP-
1, suggesting that VDUP-1 is a natural physiological 
inhibitor of Trx-1.[21] The Lymphoma/Leukemia 
Molecular Profiling Project used microarray technology 
to define a molecular profile for patients with DLBCL 
and developed a molecular outcome predictor score that 
accurately predicted patient survival.[20] The results 
suggested that DLBCL patients with the worst prognosis, 
according to the outcome predictor score, had decreased 
expression of catalase, glutathione peroxidase, manganese 
superoxide dismutase, and VDUP-1. Patients with the 
worst prognosis seemed to combine decreased expression 
of antioxidant defense enzymes with increased Trx 
system function (the redox signature score).[20] In fact, 
our analysis of a recent lymphoma profiling data set of 
240 cases also indicated a significant association between 
high Trx-1 expression and decreased overall survival rate.  
These studies suggest a direct involvement of VDUP-1 
and Trx-1 in the biology of DLBCL, but further studies 
are required to decipher their relationship with respect to 
their function in chemoresistance.

Here, we found that Dox-resistant cells express 
higher levels of Trx-1 gene and that downregulation of 
Trx-1 in these cells reversed the chemoresistant phenotype, 
suggesting that the high expression of Trx-1 in DLBCL 
may have been acquired during chemotherapy. Elevated 
Trx levels have also been implicated in the resistance of 
tumor cells to several commonly used chemotherapeutic 
agents, namely cisplatin, docetaxel, and anthracyclines 
(Dox).[22, 23] A gain of Trx-1 locus has been observed in 
drug-resistant cells identified by array CGH analysis,[24] 
suggesting that this locus is prone to genomic imbalances 

Figure 7: Inhibition of Trx-1 Activity modulates drug 
resistant genes expression in DLBCL cells. (A) DLBCL-
MS cells were transfected with a validated TXN siRNA.  48 
hrs post-transfection, RNA was extracted and RT-PCR was 
performed to detect for TXN mRNA expression.  (B) Purified 
RNA from control and TXN-siRNA-transfected cells were 
also used to perform RT-PCR array (Human Chemoresistance 
RT-PCR array from Sabioscienes).  Genes with > 2-fold down-
regulated in TXN knock-down cells compared to control cells 
are shown.
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imposed by chemotherapy.  High Trx-1 levels have also 
been shown to favor enhanced tumor cell survival and, in 
some studies, have been associated with poor prognosis 
in cancer patients.[25, 26] Although the mechanism of the 
chemoresistance function of Trx-1 is still unclear, Trx-1 
itself regulates the activity of various transcription factors, 
including NF-κB, which is known be highly activated in 
DLBCL.[6] Our Trx-1 knock-down experiments showed 
that HIF-1α is a down-stream target gene of Trx-1, 
consistent with previous studies.[8] These results also 
show that Trx-1 can modulate several important genes 
that have shown to be involved in the pathophysiology of 
DLBCL or have had negative prognostic value in DLBCL 
patients, including bcl-2,[27] TOP2a,[28] GST-pi,[29] 
CYP1A1,[30] TP53,[31] and CDK’s.[32-34]  Of these 
genes, bcl-2,[35] GST-pi,[36] and TP53[37] are direct 
targets of Trx-1 in other systems.  Clearly, coordinated 
down-regulation of several Trx-1 potential target genes, 
either directly or indirectly, could be responsible for 
protecting DLBCL cells against anticancer drugs.  
However, the contribution of individual Trx-1 target genes 
in chemoresistance may be different.  Further investigation 
is warranted and necessary to determine the signaling 
components associated with Trx-1 and related downstream 
targets involved in growth/survival and chemoresistance in 
the pathophysiology of DLBCL.

Interestingly, we also found that Trx-1 is highly 
expressed not only in DLBCL tumor cells but also in 
stromal cells in the surrounding tumor microenvironment.  
This result is quite timely as a recent study demonstrated 
that stromal cells in the lymph node microenvironment 
of B-cell chronic lymphocytic leukemia (B-CLL) 
patients strongly expressed Trx-1 and produced soluble 
Trx-1 that can rescue CLL cells from apoptosis in vitro.
[38]  It has also been shown that Trx-1 is secreted by B 
lymphocytes,[10] monocytes,[39] regulatory T cells,[40] 
and a variety of cancer cells, and Trx-1 has previously 
been shown to exhibit cytokine-like properties by 
stimulating and activating normal B lymphocytes.[10] 
Soluble Trx-1 could function as an autocrine growth 
factor for human normal and at lease some malignant 
lymphoid cells.[41] Other studies have also suggested 
that soluble Trx-1 acts synergistically with CD40 
stimulation to induce S-phase entry and mitosis in normal 
B cells and B-CLL.[41] The CD40 pathway has been 
implicated in the pathophysiology of the disease process 
of DLBCL[42-45] and has been shown to play a key role 
in chemoresistance.[46] These studies imply that the 
pre-existing activated CD40 pathway in concert with the 
extrinsic (tumor microenvironment signals) and intrinsic 
roles of Trx-1 in DLBCL cells could be important features 
that appear to provide cell growth and survival, as well 
as chemoresistance, advantages in DLBCL, particularly 
in r/r DLBCL. Therefore, the use of drugs, like PX-12, 
that inhibit the redox activity of Trx-1 might offer a novel 
approach to reverse chemoresistance in relapsed DLBCL. 

In fact, PX-12 has been used in human phase I and II 
clinical trials in solid tumors. PX-12 is well tolerated in 
solid tumors, and with our preclinical rationale we may 
now be able to explore the utility of this Trx-1 inhibitor 
alone or more likely in combination with newly identified 
cytotoxic or novel agents in reversing resistance and 
treating patients with r/r DLBCL.

This study has provided important new advances in 
understanding the biology of DLBCL chemoresistance, 
a very important but largely unknown, challenging 
area of lymphoma therapeutics, which may lead to the 
development of new, more effective approaches to treating 
this most common type of lymphoid cancer, particularly 
the increasing r/r form of DLBCL, which is currently 
incurable and rapidly leads to the patient’s demise.

MATERIAL AND METHODS

Cells and reagents

Human DLBCL cell lines (MS, DS, DB, JM [McA], 
FN, EJ, HF, HB, MZ, LR, CJ, LP, and PL) were established 
from tissue biopsy or effusion specimens from patients 
as described elsewhere.[47] The SUDHL-4, SUDHL-6, 
OCI-LY3, and OCI-LY10 DLBCL cell lines were obtained 
from Dr. Michael Rosenblum (The University of Texas 
MD Anderson Cancer Center, Houston, TX). The BJAB 
cell line was obtained from American Type Culture 
Collection (ATCC) (Manassas, VA). This study was 
conducted in accordance with the Declaration of Helsinki 
and approved by the Institutional Review Board of MD 
Anderson Cancer Center. Informed consent was obtained 
from all patients whose tumor samples were used. The 
cells were cultured in RPMI-1640 medium (Gibco, 
Rockville, MD) containing 15% fetal calf serum (FCS) 
(HyClone Laboratories, Logan, UT). The monoclonal Trx-
1 antibody and the Trx-1 inhibitor PX-12 (1-methylpropyl 
2-imidazolyl disulfide) were provided by Dr. Garth 
Powis.[16, 19] The Trx-1 validated small interfering RNA 
(siRNA) and control siRNA were purchased from Applied 
Biosystems/Ambion (Austin, TX).

TMA analysis and immunohistochemistry

We used two DLBCL tissue microarrays (TMAs). 
TMA1, consisting of 92 cases of DLBCL (TMA 
LY1001; a single core per case), was purchased from 
US Biomax (Rockville, MD), and TMA2, consisting 
of 47 cases of DLBCL, was provided by Dr. Francisco 
Vega.[48] The TMA slides were dewaxed at 55°C for 20 
minutes, followed by three 5-minute washes with xylene. 
Immunostaining was performed using 5-µm-thick, 
formalin-fixed, paraffin-embedded tissue sections, epitope 
retrieval with Diva deblocking buffer and a deblocking 
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chamber, and the Mach 3 system (all from Biocare 
Medical, Concord, CA). Staining was performed using the 
Autostainer Plus (DakoCytomation, Carpinteria, CA). The 
washing buffer used was 0.05 M Tris (tris(hydroxymethyl)
aminomethane)-buffered saline supplemented with 
0.05% Tween. 3,3′-diaminobenzidine tetrahydrochloride 
was used as the chromogen (Liquid DAB+ substrate 
chromogen system, DakoCytomation), and all tissue 
sections were counterstained with hematoxylin. The 
evaluation of Trx-1 staining was semiquantitatively scored 
by 3 scientists (L.V.P., R.J.F., F.V.)  TMA positivity for 
Trx-1 was defined as immunostaining in >30% of the 
cells. Trx-1 protein expression was scored as negative, 
weak, or strong depending on the staining signal intensity. 
TMA photomicrographs were captured using an Olympus 
BX41 dual-head light microscope equipped with an 
Olympus Q-Color5 digital camera (Olympus America, 
Melville, NY), with a 20× plan apochromat objective. 
Digital images were obtained and adjusted using Adobe 
Photoshop CS3 (Adobe Systems).

Proliferation assays

In vitro thymidine incorporation (proliferation) 
assays were performed as described previously.[49] 
Briefly, cells were plated (in triplicate) at 4.0 × 104 cells/
well in 200 µL of RPMI 1640 with 15% FCS and the 
indicated reagents in a 96-well plate and incubated in 5% 
CO2 at 37°C. After 48 hours, each well was pulsed with 
0.5 µCi/10 µL of [3H]thymidine (Amersham, Arlington 
Heights, IL) for 16 hours. Cells were harvested, and the 
radioactivity was measured.

Immunoblot analysis

Whole-cell extracts were solubilized with 1.0% 
SDS sample buffer and electrophoresed on a 4–15% 
SDS-PAGE gel (Bio-Rad, Richmond, CA). Proteins were 
transferred onto a polyvinylidene difluoride membrane 
and were probed with various specific primary antibodies 
and the appropriate horseradish peroxidase-conjugated 
secondary antibodies. Proteins were visualized using the 
ECL system (Amersham, Piscataway, NJ).

RNA isolation and real-time PCR

Total RNA isolation was performed by using Trizol 
LS Reagent (Invitrogen) according to the manufacturer’s 
instructions. Reverse transcription of RNA was carried 
out with a cDNA archive kit (Applied Biosystems, Foster 
City, CA). Synthesized cDNA was subjected to real-time 
polymerase chain reaction (RT-PCR) for the detection 
of related gene transcripts (Trx-1 and 18S). In brief, 2.5 
µL of cDNA was placed in a 25-µL reaction volume 

containing 12.5 µL of TaqMan Universal PCR Master 
Mix, No AmpErase UNG, 8.75 µL of water, and 1.25 µL 
of primers and probe sets. The primers and probes were 
purchased from Applied Biosystems and were designed 
to span exon–exon boundaries.  The Human Cancer Drug 
Resistance and Metabolism PCR Arrays were purchased 
from SAbiosciences (Frederick, MD). Amplification 
was performed in the ABI Fast 7500 Real-Time PCR 
system (Applied Biosystems) using the following cycling 
program: 95°C for 10 minutes; 40 cycles of 95°C for 15 
seconds, 60°C for 60 seconds. All samples were analyzed 
in triplicate. DNA contamination was evaluated by 
performing PCR on the non-reverse-transcribed control of 
each sample. The relative expression levels of the genes of 
interest were normalized to the endogenous reference 18S 
and relative to a control sample as a calibrator by using 
the formula 2–∆∆CT. The threshold cycle (CT) reflects the 
cycle number at which the fluorescence generated within 
a reaction crosses the threshold.

Establishment of doxorubicin-resistant cell lines

We generated a doxorubicin-resistant (DR) DLBCL 
cell line (McA-DR) from a parental cell line (McA) by 
multistep exposures of cells to increasing doses (up to 50 
ng/mL) of doxorubicin (Dox) for 8 weeks. Briefly, cells 
were initially cultured in a low drug concentration for 
1 week and then maintained in drug-free medium for 1 
week to stabilize the cells. Medium with increasing drug 
concentration was changed every other week during the 
selection, and subsequently the cells became resistant to 
Dox. The resistant clones were expanded in drug-free 
media. Expanded clones were retested for drug resistance 
before any further studies.

Transient transfection of DLBCL cells

DLBCL cells (MS and OCI-LY10) were transiently 
transfected with 50 nM Trx-1 validated siRNA (Applied 
Biosystems/Ambion) using the Neon transfection 
system (Invitrogen, Carlsbad, CA).[50] The transfection 
efficiency ranges from 70% to 80% with 75% cell viability 
for MS cells, and from 50% to 60% with 70% viability for 
OCI-LY10 cells.

Methylcellulose clonogenic assays

The colony formation assay in methylcellulose 
(M3434; StemCell Technologies, Vancouver, BC, 
Canada) was performed according to the manufacturer’s 
instructions. Briefly, DLBCL cells were initially plated 
in methylcellulose at a density of 2 × 103 cells/0.3 mL/
well in a 12-well plate and incubated for 10–14 days. 
Colonies were stained with p-iodonitrotetrazolium violet, 
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photographed, and counted using QCapture Pro software 
(QImaging, Surrey, BC, Canada). All experiments were 
performed in duplicate and repeated at least 3 times.

Apoptosis analysis by Annexin V/propidium iodide 
(PI) staining and cell cycle analysis by PI staining and flow 
cytometry analysis methods were previously described.
[49]

Statistical Analysis

The software used for statistical analysis was 
GraphPad Prism 5b (GraphPad Software, Inc., La Jolla, 
CA). Statistical significance was determined by the 
student t-test.  P-values <0.05 were considered statistically 
significant.
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