
Article
Unraveling neural coding o
f dynamic natural visual
scenes via convolutional recurrent neural networks
Highlights
d Learning relationship between retinal response and complex

visual scenes

d We evaluate quantitatively the complexity of stimuli and

spatiotemporal regularity of RFs

d The proposed CRNN can reveal the shapes and locations of

receptive fields of RGCs

d The proposed CRNN outperforms CNNs in predicting large

populations of RGCs
Zheng et al., 2021, Patterns 2, 100350
October 8, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.patter.2021.100350
Authors

Yajing Zheng, Shanshan Jia,

Zhaofei Yu, Jian K. Liu, Tiejun Huang

Correspondence
yuzf12@pku.edu.cn (Z.Y.),
j.liu9@leeds.ac.uk (J.K.L.)

In brief

Visual neuroscience is an immensely

popular topic in AI, such that numerous

methodologies developed in visual

computing have broad applications and
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computing. Here, we use retinal data to

demonstrate how to use deep-learning

models to encode dynamic visual scenes.

The proposed models demonstrate that

recurrence plays a critical role in

encoding complex natural scenes and

learning the biological computational

underpinning of the neural circuits.
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THE BIGGER PICTURE Understanding surrounding environments perceived by eyes requires unraveling
the computational principle embedded in the neural system. Recently, deep learning has been implemented
to develop useful models of the visual system for studying simple and static scenes. Yet, we perceive
continuous dynamic scenes in an ever-changing environment, which cannot be captured by standard con-
volutional neural networks (CNNs). Here, we use the retina as a model system to demonstrate how recur-
rence helps to explain the relationship between neural response and complex natural scenes. Leveraging
CNNs with different types of recurrence, we highlight the role of recurrence in the neural coding of dynamic
visual scenes, not only better predicting the neural response, but also revealing the corresponding biolog-
ical counterparts. Our results shed new light on unraveling the coding principle of visual neurons for dy-
namic scenes and provide a way of using recurrence for understanding visual computing.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Traditional models of retinal system identification analyze the neural response to artificial stimuli using
models consisting of predefined components. The model design is limited to prior knowledge, and the arti-
ficial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an
explainablemodel that reveals how a population of neuronswork together to encode the larger field of natural
scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit
that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent
connection plays a key role in encoding complex dynamic visual scenes while learning biological computa-
tional underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the
locations of the spatiotemporal receptive fields of ganglion cells.
INTRODUCTION

Unraveling the neural system of the brain is one of the key ques-

tions of both neuroscience and artificial intelligence, as under-

standing the structure of neural systems could help to develop

novel methodologies of artificial intelligence. The visual system

constantly receives highly complex and dynamic visual scenes

with a high order of spatiotemporal correlations. To cope with

these inputs, it is necessary to develop an explainable neural
This is an open access article und
network model, either for explaining the data of neuroscience,

e.g., the neural response to input scenes,1 or for developing an

efficient computational framework for analyzing dynamic visual

scenes for artificial vision.2

The retina, as the first stage of the visual system, encodes

visual information from the external environment in both spatial

and temporal domains.1,3 It consists of three layers of neurons,

namely, excitatory photoreceptors (input), bipolar cells, and gan-

glion cells (output), with inhibitory horizontal and amacrine cells
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communicating within the bipolar and ganglion cell layers,

respectively. At the output side of the retina, i.e., the retinal gan-

glion cells (RGCs), all input signals are transformed into a

sequence of spikes. These spikes are then transmitted via the

optic nerve to the visual processing center of the brain. The retina

receives approximately 100 MB per second of visual input4 and

sends approximately 1 MB per second of visual data to the brain

from 106 RGCs.5 Therefore, the retina must be ‘‘smart’’ enough

to efficiently encode the input stimuli.1 Exploring the encoding

mechanism of the retina is essential to unravel the computational

principles of other visual systems.

Recent achievements in deep learning have led to renewed in-

terest among researchers using convolutional neural networks

(CNNs) to investigate topics in systems neuroscience.6–8 CNNs

have been used to build the most quantitatively accurate models

in predicting neural responses.9–13 In addition, deep-learning-

based methods14–17 have been proposed to model retinal sys-

tems and have made remarkable progress in analyzing visual

scenes, including those composed of artificial stimuli (e.g., mov-

ing bars) and static natural images. These studies have revealed

that novel functional neural networks can encode simple and

static visual scenes by analyzing the patterns of dynamic

responses of RGCs. However, modeling the retina to process

dynamics of rather complex natural scenes by deep neural net-

works remains unclear.18

Studies on models of the visual cortex have highlighted the

role of recurrent connections in visual processing19–21 within

the models themselves. These connections help ‘‘fill in’’ missing

data,22–25 indicating that the real visual cortex allows the brain to

‘‘predict’’ future stimuli.26–28 In addition, the retina, known as an

efficient encoder, can anticipate motion with recurrent connec-

tions.29 The RGCs can be connected laterally by electric synap-

ses, i.e., gap junctions30–33 or specific amacrine cells. The lateral

connection allows the retina to detect the differential motion of

the object and background,34 while specific asymmetric con-

nectivity of the amacrine cells helps the RGCs show direction

selectivity.35 These characteristics of gap junctions and recur-

rent connections play a critical role in the efficient encoding of

dynamic visual scenes by the retina.36,37

Therefore, recurrent connections can be a potential element for

understanding the neuronal encoding of visual scenes in the

retina, which is beyond the capability of the feedforward

approach.14,15 The disadvantage of the CNN is that the final fully

connected layer maps the convolutional feature space to individ-

ual cells’ responses, leading to a dramatic increase in the number

ofmodel parameters with the increase in the number of neuron in-

puts. In addition, theCNNmodelsof retinal encoding14–16 typically

learn only the relationship between a stimulus covering a small

fieldof viewand thesubsequent responseof theRGCs.Traditional

models for learning retinal coding, such as the generalized linear

models,38 incorporate several linear or nonlinear filters that model

each neuron and a set of coupling filters that capture the neurons’

dependencies in the recent activity of other cells. This type of

model is more closely related to the way in which a population of

the RGCs encodes an external stimulus. Some recent studies

have explored the role of recurrence,39 using recurrent neural

networks (RNNs) to model the shared feature space within the

population of neurons. However, the performance of this

approach depends critically on the initial location estimate.
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To fill in this gap with an explainable model that reveals how

the population of neurons work together to encode a larger field

of dynamic natural scenes, in this study, we propose that the

computations carried out by the retina could be better explained

by a convolutional RNN (CRNN) rather than a feedforward CNN.

We explore deep CNN and CRNN models with natural scenes

consisting of a larger field as input. This approach allows us to

determine the shared features of the RGCs and the way they

cooperate to encode an external stimulus. The CRNN utilizes

many fewer model parameters than the feedforward CNN to

directly map out the receptive fields (RFs) of each neuron in

the population from dynamic natural visual scenes, producing

an outcome that is robust to individual stimulus videos and

RFs comparable to those recorded by experiments. Visualization

of the results shows that output neurons of the model can learn

both the underpinning spatiotemporal RFs of the corresponding

RGC and their locations. Furthermore, using a novel pruning

strategy for convolution kernels, we find that the CRNN pro-

duces a highly effective subset of kernels that capture the perfor-

mance of the full model. Altogether, these results would inspire

researchers to improve the deep-learning strategies for

modeling and analyzing dynamic visual scenes.

RESULTS

RGC-encoding model with recurrent connections
In this work, we propose a model consisting of both feedforward

convolutional filters and recurrent units. The inputs and target

outputs of the model are the natural scene movie stimuli and

the responses simultaneously recorded from a population of

the RGCs with an electrode array40 (see experimental proced-

ures for details of the data). To better study the working principle

of the encoding of external input stimuli by the retina, we intro-

duce recurrent connections based on a CNN to get closer to

the anatomy of the retina, i.e., the lateral connection, between

the RGCs by gap junction or amacrine cells. The CRNN model

consists of a four-layer network, including two convolutional

layers (model bipolar cells and amacrine cells) that use a rectified

linear unit as the activation function. The recurrent connection

layer (model lateral connection by gap junction or amacrine cells)

is added before the last fully connected layer (model RGCs). The

framework of the proposed CRNN model is shown in Figure 1,

where one recurrent layer is added to the CNN to capture the

temporal dynamics shown in the continuous natural videos and

neural responses. The units in the recurrent layer can have a va-

riety of structural forms (e.g., vanilla RNN, LSTM, or GRU, see

below for more detailed comparison). Except for special instruc-

tions, we use the long-short-term memory (LSTM) units

throughout our results. The complexity of the unit structure of

the recurrent layer does not have much influence on the perfor-

mance of the CRNN model.

RF subunits learned by the encoding models
To quantify the performance of the models, we evaluated the

predicting performance of the neural response against various

input stimuli, and explored whether the model parameters can

conform to one of the critical characteristics of the retinal cell,

namely, its RFs. Analysis of the RFs of the hidden layer parame-

ters and the neurons in the last fully connected layer would help
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Figure 1. Illustration of the CRNN model architecture

(A) Schematic diagram of the retinal circuit.

(B) A continuous input stimulus is convolved with the first convolutional layer consisting of several spatiotemporal filters, followed by another convolutional layer

that integrates the resulting feature maps. A recurrent layer is incorporated after the last convolutional layer to capture the relationship between the dynamic

natural scene stimulus and the retinal response. The activity sequence of the recurrent layer is linearly combined and passed to the final nonlinear activation

function for the prediction of the individual RGC responses. Conv layer #1, first convolutional layer; Conv layer #2, second convolutional layer.
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us gain a greater understanding of the influence of the recurrent

connection layer on model parameter learning.

To verify whether the models developed an intermediate

computational mechanism similar to a biological retinal circuit

by learning the transformation between the input stimulus and

the neural response, we generated eight RF subunits and group-

ed them to create a network model of two RGCs, as shown in

Figure 2A, with handcrafted spatial and temporal filters. The

RFs of these subunits and the subsequent composition of the

RGCs are shown in Figure 2B. To simultaneously encode the

response of the two RGC units and their subunits, the first con-

volutional layer is created with eight spatiotemporal filters, and

the dense layer is constructed with two neurons. In addition,

8 3 8 pixel white-noise images are generated as the input of

the network. We visualize the RFs of the kernels in the first

convolution layer, and the neurons in the dense layer.

To explore the effect of the recurrent connections on the

output of the models, we compare the performances of the

CRNN and the CNN. To ensure a fair comparison, all the param-

eters and structure settings of the CNN are kept consistent with

the CRNN except for the inclusion of the recurrent layer in the

latter. As there is no temporal correlation within the white-noise
stimuli, the correlations between the responses of the RGCs

and the outputs of both CRNN and CNN reach approximately

0.99 without a significant difference between the models, and

both models can learn the spatiotemporal RFs of the two

RGCs (Figure 2C), which are computed by the standard tech-

niques of spike-triggered average (STA).41 As shown in Fig-

ure 2D, the subunits obtained by the CNN and CRNN closely

match those given in the model cell. We also altered the size of

the kernels in the models and found that we can more effectively

map out the RF subunits with relatively large kernels than those

with smaller kernels (Figure S1). If the size of the convolution

kernel is set relatively small, certain subunits with similar shapes

but distributed in different spatial locations can be multiplexed

by certain convolution kernels, for example, the subunits shaped

like square blocks in the first and fifth subunits.

To further verify the properties of the convolutional kernels

learned from the models with different settings, we calculate

the spatial autocorrelation as an index of spatial regularity.42

We then propose a novel index to describe the temporal regular-

ity (Equation 3 in experimental procedures) of the kernels. Fig-

ure 2E shows the distribution of both indices of the RF subunits

of model data and for the filters learned in the CNN and CRNN,
Patterns 2, 100350, October 8, 2021 3
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(E) Spatial autocorrelation versus temporal regularity of the model and convolutional filters in the models.
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demonstrating that both models preserved the subunits of the

model cell well, indicating that the filters can be effectively

learned and that the indices of spatial and temporal regularities

can characterize the importance of the RF subunits well.

Our results are robust to the use of [1 weight regularization,

which results in the regularization of the subunits with more

compact shapes (Figure S1). Thus, we apply regularization

throughout the techniques below. To further examine the robust-

ness of our models, we simulate another network model of the

RGCs with different subunit shapes. We manipulated the first

subunit (model II) shown in Figure 2F, and found that CRNN is

more robust to subunit variations than CNN, in that the CRNN

can robustly learn the eight spatiotemporal filters corresponding

to the subunits with proper model settings, while the CNN fails to

do so to the same degree (Figures 2F and 2G). These results indi-

cate the critical role of recurrent connections in the CRNN to bet-

ter capture the underlying computational components of the RF

subunits of the retinal neural network.

CRNN enhances the encoding of retinal responses to
dynamic natural stimuli
To verify the performance of theCRNNmodel regarding the elec-

trophysiological data and evaluate whether the models can learn

the adaptability of the retina to dynamic visual scenes, we further

built models for the prediction of the response of a population of

RGCs to natural movies. Two natural movies approximately 60 s

long were used to train the models. The first movie (movie 1) was

relatively simple, consisting merely of scenes of salamanders

swimming in a tank. In contrast, the second (movie 2) was

more complex, showing a tiger hunting its prey, in a backdrop

of grass and trees, and with fast transitions between scenes.

Example frames of the two natural movies and the correspond-

ing RGC responses in terms of individual trials of spike trains as

well as trial-averaged firing rate are shown in Figure 3A, together

with the model output in the format of firing rate, from which

one can sample individual spikes using the Poisson process

(Table 1).38

After ht network training, we evaluated the correlation coeffi-

cient (CC) between the response of each RGC and the output

of the neurons in the dense layer, as well as between the average

firing rate of the output neurons in the models and the average

response of the RGCs. The performance of the models with

respect to the RGC population is shown in Figures 3B and 3C,

where the CRNNmarkedly outperforms the CNN on bothmovies

(average CC of RGCs 0.857 versus 0.698 on movie 1, 0.718

versus 0.623 on movie 2), independent of the size of the training

data (Figure S2). This improvement is also true when training the

models with individual trials of spike trains (Figure S3). Particu-

larly, for movie 1, the CRNN performs notably better than CNN,

which may be because movie 1 is visually less complex than

movie 2. Subsequently, to evaluate the complexity of dynamic

natural scenes quantitatively, we characterized the spatial and

temporal complexities of the scenes by calculating the structural

similarity index (SSIM) between patches of the frames of movies,

and compared thembetween the twomovies in Figure 3D, which

indicates that movie 2 was more complex than movie 1. We then

examined the relationship between the complexity of the dy-

namic visual scenes (see Figure S4 and experimental proced-

ures) and the performance of the models in terms of the CCs be-
tween the individual RGCs and the model outputs. As shown in

Figure 3E, the performance of the models was lower for the

more complex movie 2 than for movie 1, which suggests that

the complexity of the visual scenes is indeed a major driving

force for modeling prediction.

CRNN recovers the neuronal RF using dynamic natural
scenes
In addition to evaluating the ability of the model to predict re-

sponses, we further show whether the structural components

of the models can capture the intermediate computational

mechanism of the retinal encoding circuit for dynamic scenes.

Figure 4 shows the RFs of the RGCs and those that the

CNN and CRNN learned when trained on movie 1 and movie 2.

Experimentally, the RFs were computed with the STA obtained

from white-noise stimuli to obtain a 3D spatiotemporal RF filter.

Thereafter, we applied singular-value decomposition (SVD) to

the 3D filters to obtain a temporal filter and spatial filter (Fig-

ure 4A). Two-dimensional Gaussian functions were fitted to the

components of the spatial RFs obtained from both data and

models to determine their center, size, and shape. Figures 4A

and 4B show the fitted 2D Gaussian function of each RGC and

model neuron as ellipses.

To better quantify the similarity of the RFs between the RGC

data and the models obtained for each cell, we calculated the

cosine distance between the 2D Gaussian distribution of the

RFs of the model neurons and those of the recorded RGCs (Fig-

ure 4C). While calculating the RF distance, we considered only

the neurons that are able to learn an RF. For example, the neu-

rons indicated in the third column of Figure 4A, which do not

learn an effective spatial RF, are not included in the statistical

analysis. Themodel with the best performance (the CRNNmodel

trained onmovie 1) best reproduced the RFs of a large number of

the RGCs with a notably small distance between the RFs of the

data and themodel, while theCNNmodel trained onmovie 2was

unable to learn either the spatial or the temporal filters. More-

over, as the temporal correlations in movies of natural scenes

aremuch higher than those found in white-noise stimuli, the tem-

poral filters obtained by the models trained on these movies

adapted better than the filters calculated by white-noise stimuli.

The models that learned the temporal filters usually produced fil-

ters whose first peak had a low temporal latency, while the peaks

of the temporal filters obtained using white-noise stimuli had

much longer latency, which is a peculiar feature of the temporal

adaptation induced in the retina by stimulus imageswith different

statistics.43 These results indicate that the CRNN, and not the

CNN, can model the rich computational structures of the retinal

neural circuit while learning the complex dynamic visual scenes.

Efficient learning of the CRNN model
In the previous sections, we have described how the introduction

of the recurrent layer can improve themodel performance in pre-

dicting the retinal response to dynamic sequence stimuli and the

robustness of learning to infer the subunits. In addition to the

response prediction performance, quantification of the effective-

ness of CRNN on the retinal electrophysiological data is a key

issue in evaluating a neural coding model. We compare the

CNN and CRNN from two aspects: inferring the subunits of the

retinal circuit and learning to predict the responses of large-scale
Patterns 2, 100350, October 8, 2021 5
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population ganglion cells. They are used to evaluate whether the

introduction of the recurrent layer can improve the effectiveness

of the retinal coding model.

First, we evaluated the kernel parameters of the first convolu-

tional layer trained on themovies according to the subunit impor-

tance indices, the spatial autocorrelation, and the temporal

regularity (shown in Figure 5A). The spatial autocorrelation can

measure whether the spatial filter of the convolutional kernel is

relatively concentrated in a certain area, while the temporal reg-

ularity can measure the adaption regularity of the temporal filter.

When we construct reduced/pruned models using fewer sub-

units selected according to the value of either index, the perfor-

mance is found to be better preserved in models pruned based

on the temporal regularity index. The pruning results with

different numbers of convolutional filters quantified by both the

spatial and the temporal indices are shown in Figure 5B. The per-

formance of the reduced models can be maintained at a good

level regardless of the temporal regularity indices of the remain-

ing subunits. In contrast, when using the spatial autocorrelation,
the performance of the reduced CNN model significantly drops

when the number of convolution kernels is less than 32. More-

over, it is interesting to note that by using temporal filter regularity

as a quantified index, the reduced CNN model can still achieve

high performance on both movies. For the CRNN, the convolu-

tion kernels learned in the model are better than those in the

CNNmodel; thus, the prediction performance can bemaintained

at a better level when unimportant convolution kernels are

removed, especially for the model with the best performance in

movie 1. A few examples of selected filters sorted in terms of

decreasing temporal regularity are illustrated in Figure 5C, indi-

cating that the filters aremore organized in movie 1 than in movie

2. Altogether, these results signify that the temporal regularity is

prioritized in learning dynamic visual scenes, and the CRNN en-

ables us to implement efficient learning with a superb represen-

tation of the retina, even with a much smaller set of learned

parameters.

Thus far, we have used a population of 80 RGCs from a sin-

gle recording to serve as our electrophysiological dataset. To
Patterns 2, 100350, October 8, 2021 7
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further explore the effect of the amount of data size on model

learning, we obtained a second dataset involving 14 recordings

from 1,218 RGCs for movie 1 and 500 RGCs for movie 2, and

used this dataset to again train the models. In addition, we

evaluated the influence of the number of hidden units in the

recurrent layers on the performance of the models. Table S1

shows the number of parameters used in the models con-

structed for this set of experiments: the existing CNN model

described above and CRNN models constructed with 32, 64,

128, and 256 recurrent units. Following the training of these

models using the second dataset mentioned above, the

CRNN models were found to outperform the CNN models in

both movies (Figure 6A), similar to the results reported in the

above subsections. However, we found that more recurrent

units are not always better; eventually, a large number of recur-

rent units result in a deteriorated model performance. For

movie 1, the CRNN model achieved good performance with

32 recurrent units. As the number of units increased to 64

and then 128, the performance of the CRNN models slowly

increased. For movie 2, the CRNN model did not perform

well with 32 recurrent units and achieved the best performance

with 64 units, implying that the optimal CRNN model for movie

2 requires 64 recurrent units, while the performance for movie 1

is relatively equitable with 32–128 units.
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To examine the RFs learned by these models, we first

computed them using white-noise images as described

earlier, followed by calculating the spatial autocorrelation

and temporal regularity of the RFs of the output neurons.

The average values of these indices are shown in Figure 6B.

Some examples of the spatiotemporal RFs learned by the

models with the highest spatial autocorrelation (left) and tem-

poral regularity indices are shown in Figure 6C. The CRNN

models with the best performance on movie 1 (CRNN-128)

and movie 2 (CRNN-64) exhibit more regularized RFs (spatial

centralized, regular oscillatory temporal wave) than other

models. For the CRNN with 256 recurrent nits, the centralized

area of the spatial filters was much larger than that of other

models, while the spatial filter had less diversity, or in other

words, was more uniform. This observation suggests that us-

ing more recurrent units can yield output neurons with similar

RFs, which can be combined with several small RFs in the

same region. In addition, when training with the complex

scenes of movie 2, some spatial RFs of the CRNN exhibited

complex tuning beyond spatially localized center-surround

tuning, which could be due to the overly dense representation

in the collated population of the RGCs used for training the

model. Taken together, these results suggest that a CRNN

with more RGC samples could achieve a nearly 100% perfect
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performance, while a feedforward CNN would be unable to

learn the response of a large group of RGCs. Moreover, the

CRNN could be capable of demonstrating robust performance

with a small number of recurrent units.

Different structures of the recurrent layer
To show that our results are not dependent on one specific type

of recurrent structure, we tested and compared three types of

recurrence: vanilla RNN, gated recurrent unit (GRU),44 and

LSTM.45 Their structures are shown in Figure 7A. The predicting

performances of these three structures for natural movies are

similar (Figure 7C). In addition, we examined whether the models

could obtain the spatiotemporal RF of the RGCs, and some

example results are shown in Figure 7B. By calculating the

cosine distance between the 2D Gaussian distribution of the
RFs of the models and those of the recorded RGCs, we found

that the models with LSTM units could obtain RFs with higher

similarity with the RGC data (Figure 7D). Overall, these results

demonstrate that CRNN models with different kinds of recurrent

units can achieve comparable performance and outperform the

CNN model. In other words, the difference in performance be-

tween CNN and CRNN is not due to the complexity of the

LSTM/GRU units, but the recurrent layer is essential. However,

considering the maintenance of the model’s ability to learn

long-term input stimuli, the vanilla RNN models are prone to

gradient disappearance/explosion when receiving long-term

stimuli, and the performance of themodel based on LSTM is bet-

ter than that based on GRU, as well. Therefore, the results of the

CRNN models obtained in the above section were constructed

with the LSTM. These results indicate that the recurrent layer
Patterns 2, 100350, October 8, 2021 9
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as a general form, rather than specific models of recurrent units,

plays a functional role in explaining neural responses to dynamic

visual scenes.

DISCUSSION

To unravel how the retina computes dynamic natural visual

scenes, we have investigated the role of recurrent connection
10 Patterns 2, 100350, October 8, 2021
in encoding complex dynamic visual scenes in the retina in this

study. Using both simulated and experimental data, we

observed that the CRNNwasmore effective than the CNN in pre-

dicting the response to the movies, as well as at generating the

effective and comparable RFs shown in experiments. This

observation, independent of the specific choice of recurrent

units modeled, is a general feature that emerged from the neural

response to dynamic visual scenes.
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The role of the recurrent connection
The CRNN models capture several important properties of the

biological retinal circuits, while the CNN cannot. First, the convo-

lutional filters in the first hidden layer of the CRNN are more

consistent with the model subunits in terms of the shapes of

the RFs, regardless of kernel size changes. Second, the CRNN

better predicts the response of the animal retina to natural scene

movies. Last, the CRNN provides an estimate of the location and

shape of the RF of each RGC.

Inspired by experimental observation in neuroscience,46

typical neural networks have a hierarchical architecture with

several layers. Some of these layers include a block of convolu-

tional filters, and consequently, each filter serves as a feature de-

tector to extract an important property of the input images.47

Thus, training with a large set of images allows the convolutional

filters to play functional roles as neurons in the retina and the el-

ements of other visual systems to encode the complex statistical

properties of natural images. The filter shapes are sparse and

localized, like the RF of the visual neurons. Therefore, it would

be reasonable to use similar neural network approaches to

investigate the central question of neuronal encoding in

neuroscience.8

In visual coding, the ventral stream of visual processing in the

brain starts in the retina and passes to the lateral geniculate nu-

cleus via the optic nerve, and finally the layered visual cortex, to

reach the inferior temporal gyrus. This visual pathway has been

suggested as the ‘‘what pathway,’’ used to recognize and iden-

tify visual objects.48,49 A deep neural network was used to model

and predict with reasonable accuracy the activity of the neurons

in the inferior temporal cortex in monkeys.8,50–52 Therefore, the

biological underpinnings of the ventral stream of visual process-

ing in the brain can be related to the structure components used

in deep neural networks. However, interpretation of this relation-

ship is not straightforward, since the pathway from the retina to

the inferior temporal cortex is complicated,8 although in the

retina the neuronal organization is relatively simple.53

Previously, a few studies have taken this approach by applying

different kinds of CNNs to model earlier elements of the visual

systems on the brain, such as the retina,15,39 V1,54–58 and

V2.59 Similar to the current study, most of these studies sought

to demonstrate that a better performance in terms of neural

response could be achieved by using either a feedforward

CNN or an RNN, or both. The results presented in this study pro-

vide a promising direction in which to reinvestigate the functional

role of feedforward and recurrent approaches for different types

of visual scenes. The recurrent layer plays an important role in

modeling neuronal nonlinearity, which is a unique feature of neu-

ral computation.60 By incorporating recurrent connections,

many models have shown advantages in recognizing static im-

ages.22,25,61–64 An unrolled recurrent network is equivalent to a

deeper or wider network that saves on neurons by repeating

data transformation several times,24,65,66 but it improves the flex-

ibility trading of speed and accuracy in biological vision.67 Our

results, together with those from other recent studies, provide

new insights into the underlying mechanisms of neuronal encod-

ing for dynamic visual scenes, as well as the design of better

models for analyzing dynamic visual scenes.

Another potential approach is to model recurrence with an

additional layer of neurons to mimic the role of inhibitory ama-
crine cells of the retina. One simple way is to add inhibition using

local normalization, such that each inhibition cell suppresses a

local group of cells, similar to the retinal biologic mechanism.

However, how to add grouping constraints to make lateral sup-

pression work is still an open problem. As early as in the

AlexNet68 on the image classification task, the authors intro-

duced local response normalization to make neurons in the

same local region inhibit one another. However, the divisive

normalization did not bring too much gain to the network perfor-

mance. Hence, this idea is not widely used in deep neural net-

works so far. Given the rich neuroscience knowledge from the

retina and other visual pathways, there may be other ways to

add inhibitory neurons to artificial neural networks. It is worthy

of more detailed investigation and future work.

Model parameter pruning using temporal filters
To evaluate whether the elements of the models play the roles of

intermediate computational mechanisms similar to those used in

biological retinal circuits, several subunit importance evaluation

indices have been introduced. In one study,17 the authors

reduced the number of hidden neurons or stimulus attribution

of the trained models based on an importance index and finally

tested the effectiveness of CNN subnetwork models through

their response-based performance in experimental protocols,

including omitted stimulus response, motion reversal, etc. This

method is used to quantify the importance of the model units ac-

cording to their contribution to the final neuronal firing rate and

exploit stimulus invariance to reduce computational dimension-

ality. However, this is infeasible when the natural dynamic

stimulus is not spatially invariant, and the prediction result is a

population response rather than a single neuron response;

furthermore, it is difficult to measure the contribution of each

subunit to the individual RGCs.

In other studies, the effectiveness of model subunits has

been quantified by the spatial autocorrelation of the convolu-

tion kernels,16,42 and was determined by the Moran index.

However, this method can be verified only on the white-noise

stimuli, since they are not spatiotemporally correlated. Hence,

the spatial RF of the convolution kernel is relatively concen-

trated in a small area, representing only the center effect of

the RF without the surrounding inhibition effect.41 Such a sim-

ple RF allows the selected subunit to achieve desirable re-

sults. However, in dynamic natural scenes, each pixel has a

comparatively high correlation with spatially adjacent areas,

leading to a large spatial autocorrelation for the convolution

kernel, with no possibility of reduction of the correlation as

represented in the Moran index. Consequently, we took

advantage of the biphasic response via the ON and OFF polar-

ity in the temporal filter of the RF produced by temporal adap-

tion43,69 and evaluated it according to a relatively regular oscil-

latory wave with some peak sensitivity and period of adaption.

Temporal adaption is ubiquitous not only for the neural

computation of sensory input,43 but also for controlling and

adjusting the dynamic range of single cells and neural popula-

tions in investigations of general neural dynamics.70,71 Without

limitation of the properties of visual stimulus, e.g., spatial in-

variation, our importance index, an important feature for

modeling of the retinal encoding, used to evaluate the tempo-

ral filter enables us to incorporate neuronal adaption in
Patterns 2, 100350, October 8, 2021 11
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response to complex and dynamic natural visual scenes.72,73

Thus, our filter pruning approach could help reduce the effec-

tive number of parameters in other deep-learning models while

processing the dynamic visual scenes, expanding their perfor-

mance beyond that for static natural images.

Application to other systems
Here we use the retina as a model system to explain the role of

recurrence in the network modeling the relationship between

neural response and dynamic visual scenes. It is well known

that the retina is one of the best-understood examples in neuro-

science for visual computing.1 The methodologies for the retina

generally work well for other visual pathways, from the lateral

geniculate nucleus and primary visual cortex to the inferior tem-

poral cortex, as well as neural coding in other parts of the

brain.8,38 Recent studies also emphasize the role of recurrence

in visual computing.20,63,64 Our work aligns with this line of

showing the unique feature of recurrence in neural network

models: the recurrent connection plays a role similar tomaintain-

ing the memory of lasting external stimulation and ongoing neu-

ral dynamics. In other words, the recurrent layer stores the pre-

viously input computation information in the hidden node state,

and then a new prediction judgment can be made by combining

the previously stored information when a new input is intro-

duced. This functional role is generally shown in various brain

areas.7,8

The topic of our work focused on dynamic visual scenes, e.g.,

continuous videos. Video analysis is of great interest to data sci-

ence researchers, not only for neuroscience, but also for other

domains of applied vision, including machine vision, neuromor-

phic computing, and brain-machine interface, where a large

chunk of data in the format of videos is analyzed.2 Analysis of

static natural images is relatively easy,18 while videos span mul-

tiple scales in space and time, which raises tremendous diffi-

culties for analyzing the contexts themselves,74 as well as for

characterizing the underlying neural dynamics.72 We show that

movies with different levels of complexity show different behav-

iors in models. Such difference calls for a further investigation of

the level of scene complexity and how it affects neural dynamics

and the network modeling approach.

Visual neuroscience is an immensely popular topic in machine

learning, such that numerous methodologies developed have a

broad application to and inspiration for other topics.7,46 From

the perspective of deep learning, the introduction of recurrent

connections affects the parameter adjustment of the model dur-

ing backpropagation, subsequently affecting the learning re-

sults. When modeling the neural response of simulated data,

the convolution kernels of the CRNN are more consistent with

neural subunits. When the model is trained with videos, the

spatial autocorrelation and temporal regularity of the spatiotem-

poral filters in the CRNNmodel are stronger, suggesting that the

lateral connections routed by inhibitory cells or gap junctions

play a functional role. In particular, it is very beneficial to use tem-

poral regularity to reduce themodel parameters to a subset while

maintaining the model performance. It implies that the effect of

the temporal domain in videos is more prominent than that of

the spatial domain.43,74 These implications based on a neurosci-

ence-inspired approach could provide inspiration for algorithm

designs of artificial intelligence.46
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Limitations
In this work, the CRNN model mainly simulates the structure of

the retina, with a three-layer feedforward network with some in-

terneurons and gap junctions. Thus the proposed model was

studied to simulate the encoding process of the retina with a

relatively simple setting. However, in addition to the interneu-

rons such as amacrine cells and gap junctions, there are other

interactions between cells in the retinal circuit, for instance,

feedback from RGCs to the inner retina.75 The current architec-

ture of our proposed models is based on the simple assump-

tion of the retinal circuit. These retinal components that we

have not simulated may play an indispensable role in the pro-

cess of encoding the external environment by the retina. Future

work is needed to include these feedback factors, which can

improve our modeling approach beyond the retina to other

higher visual pathways.

When learning to predict the response of the same 80 ganglion

cells to the two natural scene videos, CRNN can train an effective

model on each stimulus. However, it is still unable to transfer the

models between videos, e.g., a model trained onmovie 1 cannot

predict well the response of RGCs to movie 2. Thus, future work

is needed to introduce some strategies to make the model show

good generalization performance on different visual stimuli.

Furthermore, dealing with the higher complexity of movies may

need additional mechanisms. One possible mechanism is atten-

tion or feedback, which has engendered significant efforts in

modeling visual computing.

The added recurrent layer could have an attention mech-

anism whereby the recurrent unit will pay attention to

different features of the input. Except for the recurrent-

based attention network, recently the transformer,76 based

solely on attention mechanisms, has outperformed many

convolutional recurrent networks on processing sequential

tasks, e.g., natural language processing. Ideally, in the

future, we hope to build models utilizing these deep-learning

architectures for neural encoding and decoding of the visual

pathway rather than the retina. Another direction is to use

graph neural networks processing non-Euclidean data.77

The current models of retinal coding usually receive frame-

based input, which belongs to the distribution of the

Euclidean domain. The traditional convolutional layer can

extract features well on regular Euclidean data. In the future,

we will explore how to build a model to predict the retinal

response against stimuli that belong to different data distri-

butions in the non-Euclidean domain. These strategies could

reinforce our consideration of the role of recurrence in visual

computing, either data raised from neuroscience or applica-

tions of neuromorphic computing, brain-machine interface,

and video analysis.
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Table 1. Models’ parameter settings

Name Description Size/value

Inputs spatiotemporal stimulus 90 3 90 3 20

conv1

num

number of kernels in the first

convolutional layer

128

[11 weight regularization in the first

convolutional layer

5 3 10�4

conv2

num

number of kernels in the second

convolutional layer

64

[2 weight regularization 10�3

[1 activity regularization on the dense

layer

10�3

Outputs dynamic responses of the population

RGCs

80
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The RGC encoding models

To untangle the underpinnings of the retinal system and gain a clearer under-

standing of the stimulus/response relationship for dynamic scenes, we pro-

pose two deep-learning models to describe RGC encoding: one based on a

CNN and another based on a CRNN.

CNN

The structure of the proposed CNN encoding model is the same as that of the

models used in the references.14,16 In the CNN model, we establish two con-

volutional layers to extract the spatiotemporal information of the input stim-

ulus. The outputs of these convolutional layers are obtained as follows:

Ol = gð4ðW l �Ol�1 + blÞÞ; (Equation 1)

where W l and bl are the convolutional weights and biases of layer l, respec-

tively. � denotes the convolution operation, and gð ,Þ is the activation function,
which is set as the ReLU function gðxÞ=maxð0; xÞ in this work. 4ð ,Þ denotes all
the operations that follow the convolution, e.g., batch normalization and the

addition of Gaussian noise. After the second convolutional layer, we flatten

the output O2 into a one-dimensional vector ~O2, and pass it through a dense

layer with n output neurons corresponding to the population RGCs. The out-

puts of the dense layer denote the firing rates of the RGCs, which are obtained

as follows:

by = 4ðWd , ~O2 + bdÞ; (Equation 2)

where 4ðxÞ is the parametric softplus function 4ðxÞ = a,logð1 + expðbxÞÞ, and
Wd and bd are the connected weights and biases, respectively, of the dense

layer. The a and b are trainable parameters. Taking the actual firing rate y of

the RGCs as the fitting target, the models are optimized to jointly minimize

the Poisson loss function and regularization as follows:

Lðy; byÞ = 1

N
ðby � ylogbyÞ + jjWd jj2 + jjby jj1; (Equation 3)

where N is the batch size of the samples used at each iteration. jj/jj1 and

jj/jj2 represent [1 and [2 norm regularization, respectively. To avoid overfit-

ting and ensure that the neurons are sparsely firing, we apply [2 norm regula-

rization to the weights and [1 norm regularization to the neuron activation. In

each layer of the network, we add the [2 norm to regularize the weights of

the layer. The output of each layer is normalized using batch normalization

prior to the nonlinear activation function. In the last fully connected layer, the

softplus activation function is used with trainable parameters a and b. The

weight of the first convolutional layer is regularized by the [1 norm to let the

RFs of the convolutional kernels have more compact shapes. The nonnegative

loss and Adam optimization strategies are used for multivariate regression

training.

CRNN

In the CRNN model, we add an additional recurrent layer between the second

convolutional layer and the final dense layer of the previous CNN model. We
have examined the effects of different kinds of units in the recurrent layer on

predicting the retinal response to natural movie stimuli, including vanilla

RNN, GRU, and LSTM. We use 32 recurrent units as the components of the

special recurrent layer (the number of recurrent units can be adjusted when

the number of RGCs increases), which has been shown to be powerful and effi-

cient in modeling sequence dependencies. We take the output of the second

convolutional layer O2 = fO1
2;.;Ot

2g as the input sequence to the recurrent

layer, where each feature map Ot
2 is the input at each time step. In the

following, we introduce the details of vanilla RNN, GRU, and LSTM.

Vanilla RNN. In the vanilla RNN unit, output state vector ht is obtained by

passing through the multiplication of the output of the second convolutional

layer Ot
2 and the previous state ht�1 to the Tanh activation function:

ht = tanh
�
W ,Ot

2 + U ,ht�1 + b
�
; (Equation 4)

whereW,U, and b are the feedforward weight matrix, recurrent weight matrix,

and bias vector, respectively, which need to be learned during training. W, U,

and b in the following formulas also have the same meaning.

GRU. Compared with the vanilla RNN, update gate zt and reset gate rt are

introduced into the GRU unit to avoid gradient vanishing/exploding with

long-term stimuli. The hidden state ht of the GRU unit is obtained by:

zt = s
�
Wz ,O

t
2 + Uz ,ht�1 + bz

�
; (Equation 5)

rt = s
�
W r ,O

t
2 + Ur ,ht�1 + br

�
;

bht = tanh
�
Wh ,O

t
2 + Uhðrt +ht�1Þ + bbh�;

ht = ð1� ztÞ+ht�1 + bht+zt ;

where , refers to dot production, and + denotes element-wise multiplication.

LSTM. Each LSTM unit consists of an input gate it , a forget gate f t , and an

output gate ot , while one hidden unit means maintaining one time-step mem-

ory at t. The states of these gates and cells are as follows:

f t = s
�
W f ,O

t
2 + Uf ,ht�1 + bf

�
; (Equation 6)

it = s
�
W i ,O

t
2 + Ui ,ht�1 + bi

�
;

ot = s
�
Wo ,O

t
2 + Uo ,ht�1 + bo

�
;

bct = tanh
�
Wc ,O

t
2 + Uc ,ht�1 + bc

�
;

ct = f t+ct�1 + it+bct ;

ht = ot+tanhðctÞ;

where bct , ct, and ht represent the cell input activation vector, cell state vector,

and output vector, respectively, and + denotes element-wise multiplication.

Each recurrent unit generates a sequence output h= fh1;.;htg t = 64, and

by stacking nl = 32 recurrent units in one layer, the output of the entire recurrent

layer isH = h1;.;hnl . Similar to the outputs of the convolutional layer, we also

flatten the recurrent layer outputH into a one-dimensional vector ~H, and pass

it through a dense layer with n output neurons. The final output of the CRNN

model by is the following:

by = 4ðWd ,fH + bdÞ; (Equation 7)

where 4ð ,Þ is identical to the parametric softplus function used in Equation 2.

Similar to the training process of the CNNmodel, the CRNNmodel is optimized

by minimizing the Poisson loss, with [1 regularization on neuron activity by and

[2 regularization on the connected weight Wd.

Model implementation

All of the models were implemented with Keras using TensorFlow as the back

end and trained on NVIDIA K80GPUs. The training epoch was set to 1,000, but

the training would terminate early if the loss converged. To model biophysical
Patterns 2, 100350, October 8, 2021 13
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RGC responses using an entire frame as input, we used a filter size of 253 25

in the first convolutional layer and a filter size of 113 11 in the second layer. For

the CRNN models referred to in the results, which were trained on natural

movies, we used LSTM units in the recurrent layer with [2 norm regularization

in the kernels. In addition to modeling larger amounts of RGC data with CRNN

models constructed with 32, 64, 128, and 256 LSTM units, we used 32 units in

all the other CRNN models. Except for the recurrent layer, all the other units

and hyperparameters were the same for the CNN and the CRNN. The settings

of the CNNs and CRNNs used for learning the relationships between the dy-

namic responses of the population RGCs and the natural movies are shown

in Table 1.

Model pruning

To examine whether the deep-learning-based mode just learns the relation-

ship without explainable hidden units, we developed a novel pruning strat-

egy to evaluate the importance of the parameters of the convolution

kernels, and to evaluate whether the models act as intermediate computa-

tional mechanisms similar to those used in biological retinal circuits. Ac-

cording to previous analyses of temporal filters of neural circuits, the RF

of an effective temporal filter is a relatively regular oscillatory wave with a

certain peak sensitivity and an adaptation period, such as that for ON or

OFF bipolar cells.69 Therefore, we propose a novel subunit importance in-

dex to quantify the wave regularity of a temporal filter. The calculation

formula is as follows:

Itemporal =
1

T

XT
i =1

jkwi j�maxjwkj � ε

w�w2 + ε

; (Equation 8)

wherew is the weight of the temporal filter obtained by SVD of the first convo-

lutional kernel, T is the length of the temporal filter, andwi is the element of the

temporal filter at position i. The first term of the formula determines whether

there are regular wave peaks in the temporal filter. To eliminate the influence

of the corresponding ON and OFF subunits, the first term is calculated using

the absolute value of the given parameter of the kernel. In the second term,

the Euclidean distance between each temporal filter parameter and its average

value is used as the denominator to improve the diversity of the temporal filter.

ε is a small value, which is set to 5 3 10�4.
RGC experimental data

To verify the performance and effectiveness of our models with biological data,

we used public datasets recorded from the ganglion cells of isolated salaman-

der retinas using multi-electrode arrays with natural movies as the input stim-

uli.40 Briefly, each frame of the movies covered an area of 2,700 3 2,700 mm2

on the retinas with a spatial resolution of 3603 360 pixels. The multi-electrode

arrays were used to record the responses of 80 RGCs to 31 and 33 trials of the

presentation of movie 1 (simple scenes of swimming salamander) and movie 2

(complex scenes of animals), respectively (described earlier under ‘‘CRNN en-

hances the encoding of retinal responses to dynamic natural stimuli’’). For

model training, the target output was created by averaging the response

from each cell over all trials and binning with a bin width of 33 ms. To have

themodel learn the spatial and temporal filters, at each of the time bins created

for the target model output, the corresponding frame of the movie down-

sampled to 90 3 90 pixels, along with the frames of the preceding 20 time

bins, was fed as the input.
Complexity of the natural scenes

Natural movies have different scene contexts, which can be described in

the pixel space on spatial and temporal scales. To characterize the

spatiotemporal complexities of the scenes, first, each frame of the movie

is sliced into patches of equal size, and the similarity between each

patch and its neighboring patches is computed. For spatial complexity,

we first calculate the SSIM between a patch and the eight neighboring

patches in each movie frame. Next, we average the SSIM values across

the neighboring patches. By averaging this value across all frames, we

take the spatial correlation of the patch; the spatial complexity of the

patch is 1 minus this value, i.e., a higher correlation means that the patch

has a lower complexity. For example, for patch i (as shown in Figure S2),

the spatial complexity SC is:
14 Patterns 2, 100350, October 8, 2021
SCi = 1� 1

T

XT
t =1

1

n

Xn
j˛neigðiÞ

SSIM
�
pt
i ;p

t
j

�
; (Equation 9)

where T is the number of frames in the movie, n is the patch number of j, which

specifies its location as one of the eight neighbors of patch i, and p denotes the

slice patch.

The calculation for the temporal complexity is similar; however, instead of

comparing the patches in the same frame, the SSIM is calculated between a

patch in frame t and its eight neighboring patches in the corresponding posi-

tions in frame t + 1, as well as between the patch at time t and the same patch

at time t + 1. The temporal complexity of the patch is then obtained by perform-

ing similar steps as described for the spatial complexity. The formula for tem-

poral complexity TC of patch i is as follows:

TCi = 1� 1

T � 1

XT�1

t = 1

1

n+ 1

 Xn
j˛neigðiÞ

SSIM
�
pt
i ;p

t + 1
j

�
+ SSIM

�
pt
i ;p

t + 1
i

�!
:

(Equation 10)

Using a patch size of 18 3 18 pixels, space and time complexities of both

movies are shown in Figure 3D. Such complexities can affect the performance

of the encoding models. To relate the performance of each model RGC to the

complexity of an individual movie patch, we overlap the RF of each RGC with

each patch, collocate those RGCs in that patch, and average all the CCs of the

individual RGCs as the performance of the CNN and CRNN models for that

particular image patch. Finally, we obtain a relationship between the

complexity of each movie and the performance of each model, as shown in

Figure 3E.
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