
REVIEW
published: 07 February 2022

doi: 10.3389/fmed.2022.826240

Frontiers in Medicine | www.frontiersin.org 1 February 2022 | Volume 9 | Article 826240

Edited by:

Wenrui Wu,

Zhejiang University, China

Reviewed by:

Xu Shu,

The First Affiliated Hospital of

Nanchang University, China

Mitsuko Yamamoto,

Second Genome, United States

Zhengxiang He,

Icahn School of Medicine at Mount

Sinai, United States

*Correspondence:

Nobuhiko Kamada

nkamada@umich.edu

Specialty section:

This article was submitted to

Gastroenterology,

a section of the journal

Frontiers in Medicine

Received: 30 November 2021

Accepted: 13 January 2022

Published: 07 February 2022

Citation:

Watanabe D and Kamada N (2022)

Contribution of the Gut Microbiota to

Intestinal Fibrosis in Crohn’s Disease.

Front. Med. 9:826240.

doi: 10.3389/fmed.2022.826240

Contribution of the Gut Microbiota to
Intestinal Fibrosis in Crohn’s Disease
Daisuke Watanabe 1 and Nobuhiko Kamada 1,2*

1Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI,

United States, 2WPI Immunology Frontier Research Center, Osaka University, Suita, Japan

In Crohn’s disease (CD), intestinal fibrosis is a critical determinant of a patient’s

prognosis. Although inflammation may be a prerequisite for the initiation of intestinal

fibrosis, research shows that the progression or continuation of intestinal fibrosis

can occur independently of inflammation. Thus, once initiated, intestinal fibrosis may

persist even if medical treatment controls inflammation. Clearly, an understanding of

the pathophysiological mechanisms of intestinal fibrosis is required to diminish its

occurrence. Accumulating evidence suggests that the gut microbiota contributes to the

pathogenesis of intestinal fibrosis. For example, the presence of antibodies against gut

microbes can predict which CD patients will have intestinal complications. In addition,

microbial ligands can activate intestinal fibroblasts, thereby inducing the production of

extracellular matrix. Moreover, in various animal models, bacterial infection can lead

to the development of intestinal fibrosis. In this review, we summarize the current

knowledge of the link between intestinal fibrosis in CD and the gut microbiota. We

highlight basic science and clinical evidence that the gut microbiota can be causative

for intestinal fibrosis in CD and provide valuable information about the animal models

used to investigate intestinal fibrosis.

Keywords: gut microbiota, Crohn’s disease, animal model, adherent-invasive Escherichia coli (AIEC), intestinal

fibrosis

INTRODUCTION

About a third of patients with Crohn’s disease (CD) exhibit a distinct phenotype of intestinal
fibrosis and stenosis over a period of 10 years (1). During the clinical course of their disease most
of these patients undergo surgery or endoscopic dilation to relieve the symptoms of obstruction.
Postoperative recurrence rates are high: 11–32% at 5 years, 20–44% at 10 years, and 46–55% at
20 years (2). This disease course prompted the development of several new biologics, such as
vedolizumab, a monoclonal antibody against α4b7 integrin, and ustekinumab, an antibody against
interleukin (IL)-12/23, in the field of CD therapy. However, mechanical treatments remain the only
practical method to treat obstructive complications (3, 4). Therefore, elucidation of the cellular and
molecular mechanisms of intestinal fibrosis in CD is required to improve patients’ quality of life.

Why do CD patients develop intestinal fibrosis? It is a generally accepted that inflammatory
bowel disease (IBD), consisting of CD and ulcerative colitis, is caused by a loss of tolerance to
the gut resident bacteria, which evokes an excessive immune response in a genetically susceptible
host (5). Although IBD is a multifactorial disease, human genetic studies support the association of
the gut microbiota with the etiology of intestinal fibrosis. CD patients who carry mutations at the
nucleotide-binding oligomerization domain 2 (NOD2) locus tend to display the fibrotic phenotype
more frequently (6). The dysfunction of bacterial sensing caused by NOD2 mutations implies that
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intestinal fibrosis is due to the dysfunction of the recognition
of the gut microbiota. In addition, several mouse models have
shown that specific bacteria taxa (e.g., Salmonella spp.) directly
induce a profibrogenic response in the gastrointestinal tract (7).

It has been shown that chronic tissue damage, impaired
wound healing, and the expansion of mesenchymal cells
are associated with the development of fibrosis. Multiple
complex mechanisms involve several cellular components,
including mesenchymal cells and immune cells. Physiologically,
intestinal fibrosis is the result of an excessive accumulation
of the extracellular matrix (ECM). Mesenchymal cells, such
as myofibroblasts and stellate cells, serve as the main ECM
producers and play a central role in the pathogenesis of
fibrosis (8). Studies of cell biology have shown that microbial
components affect mesenchymal cell differentiation (9), and
that myofibroblasts proliferate at a faster pace in IBD patients
compared to healthy individuals (10). These studies highlighted
the importance of the gut microbiota in the pathophysiology of
intestinal fibrosis.

On the other hand, chronic inflammation is known to be
necessary for the initiation of fibrosis, based on the evidence that
inflammation promotes mesenchymal differentiation, activation,
and proliferation. However, an animal study using mice infected
with Salmonella enterica serovar Typhimurium showed that
eradication of the pathogen using antibiotics in the early
phase of the fibrotic process did not prevent intestinal fibrosis
formation (11). Despite major therapeutic advances that focus
on the suppression of inflammation, the incidence rate of
intestinal complications, including stricture and penetration, in
CD patients has not markedly changed (12). These observations
suggest that the suppression of inflammation does not simply
change the clinical consequences of intestinal fibrosis in CD
patients. In this context, the gut microbiota can directly activate
pro-fibrotic process in myofibroblasts in addition to indirect
activation of fibrotic processes through inducing inflammatory
responses. However, the notion that inflammation-independent
mechanisms may mediate a self-perpetuating intestinal fibrosis
has not been elucidated well, leaving a knowledge gap in terms
of the precise mechanisms by which the gut microbiota promotes
the pathophysiology of intestinal fibrosis.

Herein, we review the insights of clinical and basic science
research that link intestinal fibrosis and the gut microbiota. We
highlight the cellular and molecular mechanisms by which the
gut microbiota induces the formation of intestinal fibrosis.

CLINICAL EVIDENCE

The Gut Microbiota and the Pathogenesis
of Crohn’s Disease
Clinically, it is known that recurrent CD can be prevented
by postoperative diversion of the fecal stream (13–17). Fecal
diversion surgery such as ileostomy or colostomy is indicated
for patients who have advanced perianal or colorectal CD
as it promotes mucosal healing and resolution of perianal
disease. Most individuals who undergo fecal diversion surgery
exhibit striking clinical improvement within 3–6 months, and

a substantial proportion of these patients achieve remission in
the long term (13–17). It has also been shown that treatment
with antibiotics confers notable benefits on the clinical course of
CD (18–25). These studies suggest that the eradication of certain
populations of bacteria has a beneficial influence on clinical
outcome for patients with CD.

Human genetic studies revealed that individuals who carry
variants of the NOD2 gene are more susceptible to CD
(26–28). A detailed study including disease subphenotype
analysis confirmed that NOD2 has the largest effect on the
development of CD and is strongly associated with ileal disease
(29). Biologically, NOD2 functions as an intracellular pattern
recognition receptor (PRR) for muramyl dipeptide, which is
derived from peptidoglycan of both gram-positive and gram-
negative bacteria (30). After intracellular stimulation by bacterial
products, NOD2 activates the nuclear factor kappa B (NF-κB)
pathway and provides a defensive response to protect the host
from bacterial infection. A study of mice revealed that variants
of the NOD2 gene directly influence intestinal inflammation
and bacterial translocation. Maeda and colleagues reported
that mice carrying the homozygous NOD21007fs variant have
an increased activation of NF-κB after exposure to muramyl
dipeptide, which increases susceptibility to bacteria-induced
intestinal inflammation, thereby compromising the integrity of
the intestinal barrier (31). The study of intestinal biopsies from
patients with CD revealed that the presence of NOD2 variants
(especially R702W and 1007fs) is associated with increased NF-
κB activation and altered epithelial cell–cell contacts, leading
to higher intramucosal levels of endotoxin (32). Notably, these
studies indicate that a dysfunctional bacterial sensing mechanism
in the host can trigger the development of CD. In addition,
given that NOD2 recruits ATG16L1 to the plasma membrane,
the failure to do so, as occurs in the presence of NOD2 mutants,
ultimately impairs autophagosomal encapsulation of invading
bacteria in dendritic cells (33, 34). In line with this function, a
single nucleotide polymorphism (SNP) in ATG16L1 (re2241880,
Thr300Ala) appears to be associated with an increased risk of CD
(35, 36).

The introduction of culture-independent techniques to
analyze 16S rRNA gene sequences facilitated a more in-
depth analysis of the composition of the gut microbiota (37).
It was shown that CD is associated with gut dysbiosis, a
condition characterized by an imbalance between protective
and harmful bacteria (38). A consistent finding of 16S rRNA
gene sequencing analysis was the increase in the abundance
of members of the phylum Proteobacteria (gram-negative rods,
including Escherichia spp.) in CD patients compared with
non-IBD or healthy controls, and a decrease in members
of the phylum Firmicutes (gram-positive bacteria, including
Clostridium and Bacillus spp.) (39). Many microbiome studies
recognized the adherent–invasive strains of Escherichia coli
(AIEC) within the Enterobacteriaceae family, which were often
found in ileal biopsies of the patients with active CD (40, 41).
Some studies suggested that the decreased abundance of the
phylum Firmicutes is directly associated with the pathogenesis
of CD by modulating immune functions in the intestine. Animal
studies revealed that 17 strains within Clostridia clusters IV,
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XIVa, and XVIII can induce regulatory T cells (Tregs) in the
intestine (42, 43). In addition, Faecalibacterium prausnitzii,
which belongs to Clostridium cluster IV, was identified as a
key player in the dysbiosis associated with ileal CD (44),
and shown to produce high amounts of butyrate that has
beneficial effects on IBD (45). Intriguingly, a low abundance of
F. prausnitzii is associated with an increased risk of future flares
in CD (44). Moreover, F. prausnitzii appears to protect the host
mucosa from inflammatory injury by favoring the production
of antiinflammatory cytokines, such as IL-10 (44). These data
support the notion that the composition of intestinal microbiota
is one of the critical factors in the pathogenesis of CD.

The Gut Microbiota and Intestinal Fibrosis
in Crohn’s Disease
It has been shown that CD patients carrying a NOD2 variant,
such as Arg702Trp, Gly908Arg, or the frameshift mutation
Leu1007insC, are at increased risk for complications and surgery
(46, 47). A metaanalysis showed that carriage of at least one
NOD2 variant increased the risk of stricture in CD patients (odds
ratio 1.94; 95% confidence interval 1.61–2.34) (48). Further, the
presence of two NOD2 mutations predicted a 41% increase in
the risk of complicated disease (i.e., the stricturing or fistulizing
subtype of CD) and a 58% increase in the risk of surgery (49).
These data support the idea that dysfunction of bacterial sensing
by NOD2 triggers intestinal fibrosis in CD.

The increased production of microbial antibodies in serum
also supports the contribution of the gut microbiota toward the
pathogenesis of intestinal fibrosis in CD. The serum antibody to
flagellin anti-CBir1, which reflects aberrant adaptive immunity
to luminal commensal bacteria, is significantly elevated in CD
patients (50). Anti-CBir1 has been shown to react with flagellins
fromClostridium species in the gut (50). It is known that flagellins
are important molecules, located on the bacterial surface and
involved in both adhesion and motility (51). In addition, flagellin
interacts with its toll-like receptor TLR5, leading to the activation
of NF-κB and the subsequent transcriptional induction of many
proinflammatory cytokines (50, 52). Dubinsky and colleagues
showed that children with CD who have anti-CBir1, anti-E.
coli outer-membrane protein C antibodies (anti-OmpC), anti-
Pseudomonas-associated sequence I2 antibodies (anti-I2), and
anti-Saccharomyces cerevisiae antibodies (ASCA) are at an 11-
fold higher risk of developing strictures and fistulas compared to
those who are seronegative (53). Also, an Irish study reported a
significant association between serum anti-CBir1 positivity and a
complicated disease behavior as well as ileal location (54). These
results suggest that immune responses against gut microbes may
contribute to the development of intestinal fibrosis.

In addition, microbiome analysis of CD patients provides
information about the relationship between the gut microbiota
and intestinal fibrosis. As mentioned, Sokol and colleagues
reported the association of a reduced abundance of F. prausnitzii
with an increased risk of postoperative recurrence of CD (55).
Another study showed that the increased risk of CD recurrence
after bowel resection was associated with enriched diversity in
members of the Enterobacteriaceae family, and the maintenance

of remission was associated with increased diversity in members
of the Lachnospiraceae family, which reside within Clostridium
cluster XIVa (56). Therefore, although clinical evidence of the
direct influence of the gut microbiota on intestinal fibrosis has
been insufficient, several studies suggest that specific microbiota
contribute to the pathogenesis of intestinal fibrosis in CD.

Moreover, it is reported that intestinal myofibroblasts display
different functional capacities between normal individuals and
patients with IBD, particularly CD (10). Myofibroblasts isolated
from CD patients proliferated faster than those derived from
normal individuals and UC (10). Also, the expression patterns of
TGF-β isoforms differ in CD compared to normal or UC. In CD
myofibroblasts, TGF-β3 is significantly reduced, while TGF-β2 is
enhanced compared to normal or UC (10). These results indicate
that the differential functional capacity of myofibroblasts in CD
may lead to the development of intestinal fibrosis. However, the
involvement of the gut microbiota in the regulation of TGF-β
isoforms remains unclear.

EXPERIMENTAL EVIDENCE THAT
SUPPORTS THE ROLE OF MICROBIAL
STIMULATION IN FIBROSIS

Direct Activation of Fibroblasts Through
Microbial Ligands
Excessive ECM synthesis is a fundamental factor in the
development of fibrostenosis. In IBD, myofibroblasts
originate from numerous sources, including the cells of
Cajal and subepithelial myofibroblasts. It is known that
bacterial components directly activate intestinal myofibroblasts
(Figure 1). Activated myofibroblasts are modified fibroblasts
with smooth muscle–like features and considered to be
responsible for the development of intestinal fibrosis. Once
activated, myofibroblasts synthesize large quantities of ECM
components; primarily collagen, glycosaminoglycans, tenascin,
and fibronectin (57).

It is known that microbe-derived pathogen-associated
molecular patterns (PAMPs) are sensed by pattern recognition
receptors (PRRs), such as toll-like receptors (TLRs) and Nod-
like receptors (NLRs), expressed in intestinal immune and
nonimmune cells (58). Likewise, mesenchymal cells in the
intestine also express TLR1–9 and NOD1–2 (59). Among
several receptors, TLR4 functions as the signaling receptor for
lipopolysaccharide (LPS), the major component of the outer
membrane of gram-negative bacteria (60), whereas TLR2 is
activated by the cell wall components of gram-positive bacteria
(61–63). Cultured intestinal myofibroblasts, once activated,
secrete cytokine after TLR2 or TLR4 ligand stimulation (59).
There is also evidence that intestinal fibroblasts respond to
LPS by activating NF-κB signaling, which enhances collagen
contraction (64).

As well as TLR2 and 4, TLR5 signaling is associated with
the pathogenesis of intestinal fibrosis. Zhao et al. reported that
a profibrogenic phenotype of intestinal fibroblasts is triggered
exclusively by the TLR5 ligand flagellin (present in all flagellated
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FIGURE 1 | The summary of mechanisms by which the gut microbiota influences intestinal fibroblasts. We summarize the direct influence of microbiota on intestinal

fibroblast (section direct activation of fibroblasts through microbial ligands). In addition, we also summarize the indirect influence of microbiota on intestinal fibroblast

via epithelial cells or immune cells (section indirect activation of fibroblasts through the microbial ligands).

bacteria), and this event is TGF-β1–independent and post-
transcriptionally regulated (65) (Figure 2). In this study, the role
of myofibroblasts to directly sense PAMPs in intestinal fibrosis
was confirmed in vivo, as the selective deletion of MyD88 (the
adaptor molecule for all TLRs except TLR3) in cells expressing
α-smooth muscle actin (α-SMA) ameliorated intestinal fibrosis
(65). Furthermore, the TLR5 ligand appears to promote cell
cycle entry and proliferation of mesenchymal cells in vitro (67).
Consistent with intestinal fibrosis, there is evidence that the gut
microbiota promotes liver fibrosis. Elevated LPS levels have been
measured in the systemic and portal circulation of patients with
cirrhosis (68, 69). These studies suggest that the microbial ligand
of LPS arriving from the portal vein or bacteria translocated to
the liver promotes a liver fibrogenic response via TLR4 (68, 69).
In accordance with clinical study, it has been shown that hepatic
stellate cells, are activated by TLR4 ligands and mediate various
fibrogenic effects (70, 71). In addition, TLR4 ligands indirectly
contribute to liver fibrogenesis, rendering hepatic stellate cells
more susceptible to TGF-β1 through downregulation of the
TGF-β1 decoy receptor BAMBI (70). In line with the results of
these studies, it has been shown that selective decontamination
of the intestinal microbiota using an antibiotic agent inhibits
experimental liver fibrosis with a decreased level of plasma LPS
(70, 72).

Indirect Activation of Fibroblasts Through
the Microbial Ligands
In addition to intestinal fibroblasts, the gut microbiota influences
immune cells and epithelial cells, which may also serve as
possible cell mediators for the development of intestinal fibrosis

(Figure 1).Microbial stimulation induces chemokines, cytokines,
and reactive oxygen species (ROS) production by immune
or epithelial cells, which in turn promote the activation of
intestinal fibroblasts.

Cytokines are mediators that send a signal from a cell by
binding to receptors on themselves or another cell surface.
Several types of immune cells in lamina propria exert their
function by producing specific cytokines, which can affect
the intestinal fibroblasts. It is well known that TGF-β plays
a crucial role in the machinery of intestinal mesenchymal
cell activation and ECM production. The canonical TGF-β
intracellular signal transduction pathway is mediated by Smad
proteins as TGF-β receptor activation phosphorylates Smad2 and
Smad3 and induces binding with Smad4 (73). The Smad2/3-
Smad4 complex translocates into the nucleus, regulating TGF-β
target genes. The Smad-dependent pro-fibrotic effects of TGF-
β can result in myofibroblast activation and ECM accumulation
(collagen production).

Several other cytokines are also involved in the formation
of intestinal fibrosis. For instance, IL-1β can be the mediator
to connect the microbiota-immune cells-intestinal fibroblasts
interactions. In line with the previous studies, our laboratory
showed that specific microbes accelerate IL-1β production by
mononuclear cells in the lamina propria (74). It is also known
that IL-1β is mainly produced bymononuclear phagocytes, acting
as a pro-inflammatory effector cell of intestinal inflammation
(75). In turn, IL-1β promotes the secretion of collagens I
and IV, IL-8, monocyte chemoattractant protein (MCP)-1, and
MMP-1 from colonic subepithelial myofibroblasts (76). These
findings imply the possibility that the gut microbiota contributes
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FIGURE 2 | Persistent intestinal colonization of AIEC strain LF82 potentiates the development of intestinal fibrosis, a common and potentially severe complication of

intestinal colitis (66). Flagellin produced by AIEC promotes the expression of interleukin 1 receptor–like 1 (IL1RL1, also known as ST2) in intestinal epithelial cells (IECs),

which depends on flagellin ligands TLR5 and NLRC4 on IECs. ST2 expression augments IL-33 signaling, thereby promoting intestinal fibrosis. Conversely, there is a

mechanism by which intestinal myofibroblasts directly respond to flagellin with enhanced fibronectin or collagen production in a MyD88-dependent manner (65). AIEC,

adherent–invasive Escherichia coli; ECM, extracellular matrix; LPS, lipopolysaccharide; ST2, interleukin 1 receptor–like 1 (IL1RL1, also known as ST2).

to the development of intestinal fibrosis via induction of IL-
1β from immune cells, albeit there is another contradictory
report showing IL-1β inhibits collagen synthesis and induces
collagenase and TIMP-1 production in intestinal smooth muscle
cells (77, 78). Furthermore, TL1A, a protein encoded by
TNFSF15, binds to death domain receptor 3 (DR3) and
is expressed by various cell types, including immune cells.
Primary intestinal myofibroblasts express DR3 and respond
to TL1A, increasing collagen deposition (79). Consistently, it
was reported that constitutive expression of TL1A in either
lymphoid or myeloid cells leads to the acceleration of intestinal
and colonic fibrosis (80, 81). Importantly, TL1A-mediated
intestinal fibrosis and fibroblast activation are dependent on
specific microbial populations (9). It is generally believed
that Th1 cell-associated cytokines drive inflammation, whereas
uncontrolled type 2 and type 17 cell responses might drive
tissue fibrosis through the excessive deposition of ECM (75).
IL-17 cytokines, primarily produced by Th17 cells, consists of
six related proteins: IL-17A (also called IL-17), IL-17B, IL-17C,
IL-17D, IL-17E (also called IL-25), and IL-17F, which signal
through five receptor subunits IL-17RAIL17RE (82). It has been
shown that pathogenic IL-17A-dependent immune responses
are induced by microbial stimulation of DCs through NOD2,
and therefore the deletion of NOD2 prevents the development
of colitis (83). In addition, IL-17A enhances the production of
collagen I and heat shock protein 47 (HSP47) in subepithelial
myofibroblasts, which is significantly elevated in the intestinal
tissues of patients with active CD (84). In line with these findings,
the colonization by adherent-invasive Escherichia coli (AIEC)
induces Th17 responses, heightens proinflammatory cytokines

and fibrotic growth factors, with transmural inflammation and
fibrosis (85). Previous studies have also shown that another
mediator is chemokines that are leukocyte chemo-attractants that
cooperate with profibrotic cytokines in fibrogenesis by recruiting
myofibroblasts, macrophages, and other critical effector cells to
sites of tissue injury (86). Blockade of CC- and CXC chemokine
receptors decreases fibrosis in association with decreased IL-4
and IL-13 (86).

In addition to immune cells, intestinal epithelial cells also
act upstream of intestinal fibroblasts, thereby contributing to
intestinal fibrosis development. Epithelial cells are located at
the interface of the inner lumen of the digestive tract and
inside the intestinal wall. Like immune cells, epithelial cells also
express various receptors for microbial ligands and produce
several cytokines. For instance, IL-1α is constitutively expressed
in epithelial cells, although it can be expressed by other cell
types, such as macrophages, monocytes, and endothelial cells
(87). Previously, it was reported that intestinal epithelial cell-
derived IL-1α induces cytokine production by human intestinal
fibroblasts (HIFs) (88). In addition, it has been known that IL-
1α and TNF-α also increase TGF-β1 and TIMP-1 production
by colonic epithelial cells (89). Also, IL-1α acts as a profibrotic
cytokine in other organs, as IL-1α -deficient mice exhibit reduced
collagen deposition in response to bleomycin treatment in lung
fibroblasts (90).

In addition to these mechanisms, intestinal epithelial cells
are involved in the pathogenesis of intestinal fibrosis via the
machinery of epithelial-mesenchymal transition (EMT). It is well
known that EMT is the primary mechanism in the development
and progression of cancer and fibrosis (91).While EMT, epithelial
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cells change their morphology to spindle-shape, down-regulating
the expression of epithelial molecules, such as E-cadherin, and
gain mesenchymal characteristics, including vimentin and alpha-
smooth muscle actin (α-SMA). Wang and colleagues have shown
the role of the NLRP3 inflammasome in the EMT process.
Interestingly, the EMT process is independent of the NLRP3
inflammasome complex formation but requires the presence of
the NLRP3 protein (92).

Other mechanisms that cause intestinal fibrosis due to
intestinal microbiota can be evoking oxidative stress. It has
been known that polymorphonuclear leukocytes (PMNs)migrate
to the site of infection or injury, engulf invading pathogens,
and secrete ROS (93). ROSs are small molecules, including
oxygen radicals (superoxide and hydroxyl) and non-radicals
such as hypochlorous acid, singlet oxygen, and hydrogen
peroxide. In the intestine, PMNs are the primary sources of
ROS and reactive nitrogen species (RNS), as these cells express
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
enzymes (NOX/dual oxidase), the mitochondrial electron
transport chain (mETC), and nitric oxide synthases (NOSs).
It has also been shown that certain intestinal epithelial cells
rapidly generate reactive oxygen species (ROS) in response
to microbial signals (94), and subsequently, generated ROS
promotes the production of several profibrogenic factors
that stimulate the production or inhibit the degradation of
ECM (95).

ANIMAL STUDIES

Microbiota-Dependent Animal Models of
Intestinal Fibrosis
Radiation-Induced Intestinal Fibrosis Mouse Model
Clinically, it is known that radiation of the small bowel and colon
induces severe intestinal fibrosis. A model of radiation-induced
intestinal fibrosis in rats, and to a lesser extent in mice, has been
widely used to study the mechanisms of intestinal fibrosis. This
model reproduces the events responsible for the intestinal fibrosis
in humans observed during radiation therapy. Morphological
and pathological findings in this model include radiation-
induced thickening of the bowel wall, accompanied by an
enlarged submucosa, increased proliferation rates of fibroblasts
and smooth muscle cells, as well as enhanced accumulation of
collagen and other ECM components (96). Some genetically
engineered animal models of IBD do not develop intestinal
fibrosis when maintained in germ-free (GF) conditions (97).
Mice colonized with only Bacteroides thetaiotaomicron and E.
coli have similar outcomes to the GF mice (97). Consistent
with GF mice, Zhao and colleagues showed that antibiotic
cocktail pretreatment before radiation effectively reduces the
content of LPS and inhibits the TLR4/MyD88/NF-κB signaling
pathway in the ileum (98). Antibiotic treatment also significantly
improves the survival rate and attenuates intestinal injury
of the mice after radiation by reducing inflammation and
preventing intestinal fibrosis (98). These results indicate that
the intestinal microbiota plays an important role in this model
(Table 1).

IL-10–Deficient Intestinal Fibrosis Mouse Model
It was reported that interleukin 10 (IL-10)-deficiency aggravates
intestinal (106) and renal fibrosis (107). It is well known
that the interleukin 10 (IL-10)–deficient mouse shares several
characteristics in common with CD (106). Nevertheless, this
model has not been extensively adopted to study intestinal
fibrosis. However, it has been shown that if IL-10–deficient
mice undergo ileocecal resection, they develop postsurgical
fibrosis in the small intestine, distant from the site of surgery,
with an associated increase in procollagen-α1(I) (COL1A1)
mRNA expression (99). In addition, consistent with CD
patients, intestinal fibrosis develops on the proximal side of the
anastomosis (108). Therefore, this model is clinically relevant
and useful to study postoperative recurrence as occurs in CD.
As for the machinery of intestinal fibrosis associated with IL-10
deficiency, the prohibition, which serves as a chaperone involved
in stabilizing mitochondrial proteins (92), might be associated
with the pathogenesis of intestinal fibrosis in IBD (109). It is
well known that IL-10–deficient mice show no inflammation
when housed in specific pathogen-free (SPF) conditions, but they
develop intestinal inflammation on transfer to regular housing
conditions (110). Interestingly, IL-10–deficient mice housed in
GF conditions fail to develop inflammation or fibrosis even after
ileocecal resection, suggesting that this response also depends on
the presence of the gut microbiota (99) (Table 1).

SAMP1/Yit Intestinal Fibrosis Mouse Model
Spontaneous models of intestinal fibrosis are particularly
promising because they do not depend on exogenous
stimulations. The senescence accelerated mouse (SAM)
P1/Yit strain was originally generated by selective breeding of the
SAMP1 line (100). The SAMP1/YitFc substrain (SAMP1/Fc) was
developed in Fabio Cominelli’s laboratory (111) and shown to
share more histomorphological features in common with human
CD than the SAMP1/Yit mouse line. The SAMP1/Yit mouse
develops spontaneous enteric inflammation in the ileum within
10 weeks after birth and reveals a 100% penetrance of fibrosis by
30 weeks after birth (100). In addition, a fraction of these mice
spontaneously develops perianal fistulas and accumulate ECM
in the small bowel and colon with thickening of the muscularis
mucosa, predominantly in the terminal ileum, a feature closely
resembling intestinal stricture in CD patients (111). Like the two
intestinal fibrosis models just described, the SAMP1/Yit mice
do not exhibit inflammation in GF conditions (100). However,
the GF SAMP1/Yit mice reconstituted by transfer of the gut
microbiota from SPF SAMP1/Yit mice do develop intestinal
disease (100). Evidently unknown host–microbial interactions
amplify the severity of intestinal disease in this model (Table 1).

Constitutive TL1A Expression–Induced Intestinal

Fibrosis Animal Model
TL1A (a protein encoded by the TNFSF15 gene) is a member
of the tumor necrosis factor (TNF) superfamily that can bind to
death domain receptor 3 (DR3). A TNFSF15 haplotype appears to
be associated with higher TL1A production, increased risk of CD,
intestinal fibrostenosis, and greater need for surgery (112–114).
In accordance with clinical data, constitutive TL1A expression
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TABLE 1 | Summary of animal models of intestinal fibrosis associated with the gut microbiota.

Model Method Site Other issues Ref.

1. Microbiota-dependent animal models of intestinal fibrosis

Radiation-induced intestinal

fibrosis

Mice are exposed to

radiation

This model depends on the

site of irradiation

· Intestinal fibrosis in this model resembles the

appearance in CD

· Intestinal fibrosis is radioresistant to total body

irradiation with 10–22 Gy

· Antibiotic treatment prevents intestinal fibrosis

(97, 98)

IL-10−/− mouse Spontaneously induced Colon, primarily

Small intestine, less

common

· IL-10–deficient mice housed in GF conditions fail

to develop inflammation or fibrosis

(99)

SAMP1/Yit mouse Spontaneously induced Small bowel, primarily

(terminal ileum) in early and

late disease

· Intestinal histology resembles CD

· SAMP1/Yit mice do not exhibit inflammation under

GF conditions

(100)

TL1A

overexpression-induced

fibrosis

Spontaneously induced Ileum and colon · TL1A–Tg mice raised in GF conditions do not

display an increased number or proportion of

activated fibroblasts in the cecum

· The major advantages of the TL1A–Tg fibrosis

models are the obvious relevance to human CD

(9)

2. Animal models of intestinal fibrosis induced by microbial components

PG–PS-induced intestinal

fibrosis

Injection of PG–PS into the

subserosa of cecal or small

bowel wall

Small and large bowel · Transmural granulomatous enterocolitis and severe

transmural fibrosis in ileum and colon may

be observed

· Time-consuming and technically demanding

technique, requiring a surgical laparotomy

(101)

Intestinal microbiota

(feces)–induced intestinal

fibrosis

Injection of a filtered fecal

suspension into the wall of

the left colon during

laparotomy

Colon · A focal and aggressive colitis with severe

transmural fibrosis, elevated collagen levels, and

frequent colonic strictures may be observed

· Technical difficulty limits the availability of

this model

(102)

3. Animal models of intestinal fibrosis induced by bacterial infection

Salmonella spp.

infection–induced intestinal

fibrosis

Mice are given streptomycin

orally 24 h before infection

with bacteria by oral gavage

Cecum and colon · C57BL/6 (B6) mice are extremely sensitive to

wild-type Salmonella infection, resulting in increased

mortality within the first week of infection

· Use of the attenuated S. enterica ser. Typhimurium

1aroA mutant causes colitis and severe fibrosis

without significant mortality

(7)

AIEC (LF82)

infection–induced intestinal

fibrosis

Mice with DSS-injured colon

(or Salmonella

infection-injured) are orally

challenged with bacteria

Colonic mucosa · Flagellin (ligand for TLR5 or NLRC4) is necessary

to exacerbate DSS-induced mouse colitis

· LF82 adhesion is mediated by binding of the type

1 pili of AIEC to the host glycoprotein CEACAM6

on IECs

· Flagellin produced by AIEC is a key molecule that

promotes the expression of IL1RL1 in IECs, which

associates with intestinal fibrosis

(66, 103–105)

AIEC (NRG857c)

infection–induced intestinal

fibrosis

Mice are given streptomycin

orally 24 h before infection

with AIEC NRG857c

Colon and cecum · This model shows ileal and colonic inflammation

that involves Th1 and Th17 immune responses

· Cecal and colonic fibrosis (transmural fibrosis) in

multiple mouse strains may be observed

· This model shares significant similarities with CD

(85)

AIEC, adherent-invasive Escherichia coli; CD, Crohn’s disease; DSS, dextran sulfate sodium; GF, germ-free; IECs, intestinal epithelial cells; PG–PS, peptidoglycan–polysaccharide.

in mice increases collagen deposition in the colon without
detectable histologic colitis, whereas the ileum exhibits increased
collagen deposition with spontaneous ileitis (80, 81, 115, 116).
In addition, colitogenic conditions induced by chronic dextran
sulfate sodium (DSS) treatment or adoptive T-cell transfer
increase collagen deposition with fibrostenotic lesions that cause
intestinal obstruction in this model (117) (Table 1).

Jacob and colleagues showed that the profibrotic and
inflammatory phenotype resulting from constitutive TL1A

expression is abrogated in the absence of the resident
microbiota (9). Although an increased proportion of intestinal
myofibroblasts can be observed in TL1A–transgenic (Tg) mice
raised in conventional SPF conditions (79), TL1A–Tg mice
raised in GF conditions do not display an increased number
of activated fibroblasts in the cecum (9). Colonic fibroblasts
isolated from the TL1A–Tg mice also displayed a significantly
higher migratory capacity compared with those isolated from
wild-type mice in a scratch cell migration assay; however, the
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enhanced rate of fibroblast gap-closure observed in TL1A–Tg
mice raised in native conditions was eliminated in GF conditions
(9). Furthermore, reconstitution with intestinal microbiota from
SPFmice, but not human donormicrobiota, resulted in increased
intestinal collagen deposition and fibroblast activation in TL1A–
Tg mice (9). Thus, these results indicate that TL1A-mediated
intestinal fibrosis and fibroblast activation are dependent on
specific microbial populations (Table 1).

Chemically-Induced Intestinal Fibrosis Animal Model
It has been well known that mice drinking the sugar polymer
of DSS for several days develop highly reproducible colitis with
bloody diarrhea, ulcerations, and weight loss (118). In the same
way, chronic administration of DSS for several cycles results in
intestinal fibrosis in certain strains (119). It was reported that DSS
administration induces colitis in GF mice to the same extent or
even more severely compared with conventionally housed mice
(120), indicating that resident gut microbiota is not required for
DSS-induced colitis.

However, mice develop more severe intestinal fibrosis when
colonized with a pathobiont AIEC (66), suggesting that specific,
most likely pathobiont-type microbiota contributes to the
development of fibrosis in this model. Consistently, deletion
of MyD88 results in the amelioration of intestinal fibrosis
in this model (65). In contrast, a probiotic Lactobacillus
acidophilus strain reduces the severity of DSS-induced intestinal
fibrosis (121).

Likewise, the trinitrobenzene sulfonic (TNBS) acid-induced
intestinal fibrosis model is one of the most commonly applied
chemically-induced intestinal fibrosis models (122). Repetitive
rectal TNBS application results in chronic colitis accompanied
by intestinal fibrosis with luminal stenosis and bowel dilatation.
TNBS administration disrupts the epithelial barrier, thereby
leading to the invasion of luminal bacteria into the colonic
wall in conventionally-housed animals (123). In contrast, no
colitis occurs when TNBS is administered after eradication of
the colonic microbiota by antibiotics (124), and some bacteria,
including Lactobacillus casei (DN 114-001 strain), may even have
protective properties in TNBS mouse model (123). Thus, the gut
microbiota regulates the pathogenesis of TNBS-induced colitis
and intestinal fibrosis.

Animal Models of Intestinal Fibrosis
Induced by Microbial Components
Animal Model of Intestinal Fibrosis Induced by

Peptidoglycan–Polysaccharide
Peptidoglycan–polysaccharide (PG–PS) is a polymer composed
of sugars and amino acids that is found in the bacterial cell
wall. Transmural enterocolitis in rats can be observed after
injection of purified sterile PG–PS derived from bacteria (e.g.,
Streptococcus pyogenes) into the subserosa of the cecal or small
bowel wall during laparotomy (101). In this model, the initial
insult is characterized by intense transmural inflammation
and avid infiltration of acute inflammatory cells, including
polymorphonuclear leukocytes. After several weeks, the
acute inflammatory response becomes a patchy, chronic
granulomatous inflammation, which has similarities to the

chronic inflammation in CD. The affected intestinal wall
becomes thickened and intraabdominal adhesions can develop
(125), while areas of granulomatous inflammation express
increased levels of collagen-α1 (COL1A1), TGF-β1, and IL-6
mRNA (126). Moreover, significant fibrosis and abundant
mesenchymal cells surround the granulomas in this model. The
mesenchymal cells have morphological and immunostaining
patterns consistent with myofibroblasts, which are the key
effector cells in intestinal fibrosis (126). The PG–PS model shows
that the infiltration of nonviable bacterial components into the
intestinal wall is sufficient to trigger inflammation and initiate
intestinal fibrosis, and this infiltration can be enacted by bacterial
components in the healthy intestinal lumen (Table 1).

Animal Model of Intestinal Fibrosis Induced by Feces

and Bacterium Injection
This model shares many technical similarities to the PG–PS
model. An injection of a filtered fecal suspension into the
wall of the left colon of rats during laparotomy causes a focal
and aggressive colitis with severe transmural fibrosis, elevated
collagen levels, and frequent colonic strictures (102). A subserosal
injection of a single organism suspension of intestinal anaerobes,
but not aerobes, reproduces similar findings (102). The treated
animals show signs of chronic inflammation and fibrosis with
stricture development, significantly elevated levels of mucosal
and serum TGF-β and increased collagen deposition. In this
model, the increased production of TGF-β1 stimulates Smad2/3
phosphorylation and enhanced ALK5, TIMP-1, and COL1A2
gene expression (127). In addition, it has been shown that use of
anti-TGF-β antibodies significantly abrogate collagen deposition
in this model (102). These observations emphasize the impact of
commensal intestinal bacteria on TGF-β1, collagen production,
and intestinal fibrogenesis (Table 1).

Intestinal Fibrosis Induced by Salmonella spp.

Infection
Nontyphoidal Salmonella enterica spp., such as Salmonella
enterica serovar Typhimurium, are intestinal pathogens that can
infect a wide range of animals, including humans (128, 129).
It is known that certain Salmonella serovars are host restricted,
whereas others have a broad host range. In humans, S. enterica
ser. Typhimurium and Paratyphi can cause typhoid characterized
by systemic infection, fever, and often, gastrointestinal symptoms
such as diarrhea. In contrast, S. enterica ser. Typhimurium causes
enterocolitis in humans and cattle, but systemic infection in mice
(Table 1).

Serovars of S. enterica spp. are widely used in laboratory
studies to gain an understanding of the basis of mucosal immune
responses and intestinal diseases such as gastroenteritis and
typhoid. It is known that oral infection with S. enterica ser.
Typhimurium leads to spread via the gut-associated lymphoid
tissue (GALT) to systemic sites in genetically susceptible mice.
The bacteremia and lesions in the systemic organs of these
mice are akin to typhoidal salmonellosis in humans; hence, this
phenotype is known as mouse typhoid (130). As for Salmonella
colonization in the mouse intestine, it is known that strain-
dependent genetic susceptibility affects the host response to
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Salmonella infection. It has been shown that S. enterica ser.
Typhimurium can cause chronic infection of systemic organs in
some genetically resistant inbred mouse strains (e.g., 129SvEv,
Nramp1+/+) (131). Consequently, these mice are useful animal
models of persistent Salmonella systemic infection (131). On the
other hand, several studies have aimed to improve Salmonella
colonization in the mouse intestine. It is known that the
intestinal tract of conventional SPF mice is poorly colonized by S.
enterica ser. Typhimurium (∼104 CFU/g of contents) (132, 133).
However, pretreatment of SPF mice with an antibiotic agent
results in abundant colonization of S. enterica ser. Typhimurium
in the cecum and colon, and susceptibility to colitis (132); a
technique that is now widely used in this murine model of
Salmonella spp. infection (Table 1).

In addition to studies of enterocolitis, oral administration
of live S. enterica ser. Typhimurium has been used to study
the pathogenesis of intestinal fibrosis. The severity of disease
and intestinal fibrosis has been shown to depend on the
genetics of the mouse strain (7). 129sv/J mice pretreated
with antibiotics and chronically infected with S. enterica ser.
Typhimurium strain SL1344 can serve as a robust model of
intestinal fibrosis (7). In contrast, the C57BL/6 mouse strain is
extremely sensitive to wild-type Salmonella infection, resulting
in increased mortality within the first week of infection (7).
Grassl and colleagues reported that to use C57BL/6 mice for
an intestinal fibrosis model using Salmonella infection, the
attenuated S. enterica ser. Typhimurium mutant strain 1aroA
(attenuated by a block in the synthesis of aromatic amino
acids) can be used. These C57BL/6 mice have severe fibrosis
without significant mortality (7). Thus, infection with the
S. enterica ser. Typhimurium 1aroA mutant allows analysis
of the mechanisms that contribute to intestinal fibrosis in
knockout mouse models maintained on a C57BL/6 background.
So, which mouse strain and bacterial strain are the best to
study intestinal fibrosis? Johnson and colleagues reported that
although the severity of fibrosis in the Salmonella infection
models varies depending on the host and bacterial strain, CBA/J
mice infected with the S. enterica ser. Typhimurium SL1344
strain may be the optimal model for intestinal fibrosis (134)
(Table 1).

This model has provided several insights that attribute the
pathogenesis of intestinal fibrosis to the intestinal microbiota.
First, the Salmonella virulence factors such as Salmonella
pathogenicity islands (SPI)-1 and−2 are essential for the
induction of intestinal fibrosis in this model (7). The resulting
extensive transmural inflammation, primarily evident in the
cecum but also in the colon, is accompanied by an upregulation
of T helper 1 (Th1) cytokines, fibrotic growth factors, and
procollagen type I. These profibrotic profiles are consistent
with CD, which is associated with strong Th1 immune
responses, including elevations in proinflammatory cytokine
TNF-α expression. Further, early blockade of inflammation by
eradicating the S. enterica ser. Typhimurium infection with
levofloxacin ameliorates intestinal fibrosis, but does not abolish
subsequent fibrosis, suggesting that once initiated, intestinal
fibrosis in this model is self-propagating (11). Finally, an animal
study using Rorasg/sg BMT mice (i.e., group 2 innate lymphoid

cell (ILC2)–deficient mice) showed that collagen deposition is
associated with IL-17A and RORα-dependent innate lymphoid
cells (ILCs) (135), affirming ILC involvement in intestinal fibrosis
in this model (Table 1).

Intestinal Fibrosis Induced by Adherent–Invasive

E. coli

Members of the E. coli family constitute a normal component of
the healthy intestinal microbiota. It is known that E. coli strains
can acquire virulence factors to adapt to harsh circumstances
in the host. Many studies have reported that some E. coli
strains isolated from the ileal lesions of CD patients exhibit
adherent and invasive capabilities in gastrointestinal epithelial
cells and macrophages (136–141); hence, termed adherent–
invasive Escherichia coli (AIEC) (136). Cell biological studies
showed that AIEC phagocytosed by macrophages are more
resistant to xenophagy and capable of inducing a persistent
inflammatory response by releasing large amounts of TNF-α
(141, 142). Interestingly, monocytes from CD patients who carry
homozygous or heterozygous NOD2 polymorphisms display
reduced secretion of IL-1β, IL-6, and IL-10 after AIEC infection
in vitro compared with monocytes from CD patients without
NOD2 polymorphisms (143). In addition, clinical studies showed
that AIEC strains are preferentially observed in ileal CD
(40, 137, 144).

To date, there are two well-characterized prototypic AIEC
strains: LF82 and NRG857c (85, 136, 145). The prototype
AIEC strain LF82 colonizes the intestinal mucosa and induces
proinflammatory cytokines during acute DSS-induced colitis
(103–105). In this model, flagellin (ligand for TLR5 and NLRC4)
is necessary for the AIEC strain LF82 to exacerbate DSS-
induced mouse colitis, while the nonflagellated LF82 mutant
strain behaves like the nonpathogenic E. coli strain K12
(103). Mechanistically, it has been shown that its adhesion is
mediated by binding of the type 1 pili of AIEC to the host
glycoprotein carcinoembryonic antigen–related cell adhesion
molecule (CEACAM) 6 on the intestinal epithelial cells (IECs)
(104, 146). Barnich and colleagues reported that CD patients with
ileal disease have an abnormal ileal expression of CEACAM5
and 6, and that only CEACAM6 acts as a receptor for AIEC
(146). Intriguingly, in vitro studies demonstrated that CEACAM6
expression is increased in cultured IECs after infection with
AIEC, indicating that AIEC promotes its own colonization
through induction of CEACAM6 expression in the host (146). In
addition to these mechanisms, it has been shown that bacterial
adhesion to IECs is mediated via chitin-binding domains in
bacteria, encoded by bacterial chitinase ChiA, that interact with
human chitinase CHI3L1 expressed on IECs in inflammatory
conditions (105) (Table 1).

As well as LF82, a human CD isolate of AIEC strain
NRG857c was used to develop a chronic AIEC infection
mouse model to study intestinal inflammation and fibrosis (85).
Like the S. enterica ser. Typhimurium infection model, mice
were pretreated with oral streptomycin prior to infection with
NRG857c (85). After NRG857c infection, this model showed that
ileal and colonic inflammation involves Th1 and Th17 immune
responses (85). The resulting inflammation leads to cecal and
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colonic fibrosis in multiple mouse strains, in varying degrees,
and progresses to transmural fibrosis (85). This model shares
significant similarities with CD (Table 1).

Our laboratory has shown that persistent intestinal
colonization of AIEC strain LF82 potentiates the development
of intestinal fibrosis in conditions of Salmonella-induced or
DSS-induced colitis (66) (Figure 2). In this model, flagellin
produced by AIEC, a principal component of bacterial flagella,
is a key molecule that promotes the expression of interleukin
1 receptor–like 1 (IL1RL1, also known as ST2) in intestinal
epithelial cells (IECs), which depends on flagellin ligands TLR5
and NLRC4 on IECs (66). Further, it has been shown that ST2
expression in IECs augments IL-33 signaling, thereby promoting
intestinal fibrosis, as the blockade of IL-33–ST2 signaling by
anti-ST2 antibody significantly ameliorates intestinal fibrosis
(66). Therefore, therapeutic approaches that target AIEC or its
downstream IL-33–ST2 signaling pathway would benefit CD
patients with intestinal fibrosis (Table 1).

MICROBIOTA-TARGETED THERAPY FOR
INTESTINAL FIBROSIS

Accumulating evidence suggests that interventions against the
gut microbiota may regulate the prognosis of intestinal fibrosis
in CD. However, we have not had any therapeutical options
using microbiota-targeted interventions that specifically treat
intestinal fibrosis (147). Although we have various strategies
that modulate the gut microbiota (e.g., antibiotics, probiotics,
fecal microbiota transplantation [FMT]), it is challenging to
evaluate the effects of interventions on intestinal fibrosis.
This is due to the unavailability of quantification methods
for intestinal fibrosis. Albeit several diagnostic tools, such
as ultrasound, computer tomography, magnetic resonance,
and gastrointestinal endoscopy, are available to estimate the
developmental status of intestinal fibrosis in CD, there are
no modalities to quantify the degree of intestinal fibrosis
without conducting the surgical resection of the affected
intestine (147). In addition, because intestinal fibrosis gradually
progresses in CD in several decades, a much longer time
should be required to certificate its effectiveness of action.
Another possible reason is that it is also challenging to
target pathobionts selectively without affecting other bacteria
in the healthy intestine. Although antibiotics have provided
significant advances in therapies for infectious diseases, several
bacterial species susceptible to the agents will be affected by
the treatment.

On the other, there are some success stories of “microbiota-
targeted therapy” in fields other than intestinal fibrosis. For
instance, several researchers reported that FMT could be a
promising treatment to induce remission in UC with active
disease (148, 149). In addition, probiotics may be the candidate
for the treatment because it has suppressed UC relapse (150).
These data might indicate that microbiota-targeted therapy is
promising, and therefore we hope that practical application of
microbiota-targeted therapies for intestinal fibrosis come on the
stage in the near future.

CONCLUSION

The cellular and molecular mechanisms of intestinal fibrosis are
the focus of intense investigation. Clearly, patients who suffer
from intestinal fibrosis need novel and more effective treatments
that target this common, often severe, complication of CD.
Compared to the enormous advances in the development of
new therapies to control intestinal inflammation, such as anti-
TNFs, anti-integrins, and kinase inhibitors, progress to develop
therapeutic modalities that may prevent or reverse intestinal
fibrosis in CD is limited. As reviewed, the gut microbiota
may have a considerable impact on the pathophysiology of
intestinal fibrosis in CD. Of note, several animal models enable
the investigation of the precise role of the gut microbiota
in the development of intestinal fibrosis. Also, technical
advances provide access to the global data associated with the
alterations of gene expression and gut microbial composition
during the process of intestinal fibrosis. These research tools
may identify specific microbes or microbial components and
virulence factors that affect intestinal fibrosis development.
A rational identification of microbes and microbial factors
could lead to effective therapies for preventing and attenuating
intestinal fibrosis.
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