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Individual differences in human 
frequency‑following response 
predict pitch labeling ability
Katherine S. Reis1*, Shannon L. M. Heald1, John P. Veillette1, Stephen C. Van Hedger2,3 & 
Howard C. Nusbaum1

The frequency-following response (FFR) provides a measure of phase-locked auditory encoding in 
humans and has been used to study subcortical processing in the auditory system. While effects of 
experience on the FFR have been reported, few studies have examined whether individual differences 
in early sensory encoding have measurable effects on human performance. Absolute pitch (AP), the 
rare ability to label musical notes without reference notes, provides an excellent model system for 
testing how early neural encoding supports specialized auditory skills. Results show that the FFR 
predicts pitch labelling performance better than traditional measures related to AP (age of music 
onset, tonal language experience, pitch adjustment and just-noticeable-difference scores). Moreover, 
the stimulus type used to elicit the FFR (tones or speech) impacts predictive performance in a manner 
that is consistent with prior research. Additionally, the FFR predicts labelling performance for piano 
tones better than unfamiliar sine tones. Taken together, the FFR reliably distinguishes individuals 
based on their explicit pitch labeling abilities, which highlights the complex dynamics between 
sensory processing and cognition.

Research on auditory object perception typically focuses on the cortical networks that organize the recognition 
process. Whether conceived of as a dual pathway1 or focused on pattern classification2, the theoretic framing is 
based on an ascending auditory recognition system in which frequency specific encoding in primary auditory 
cortex from the eighth nerve is increasingly refined in temporal cortex for abstract sound category classification 
and recognition. Much of the research on cortical auditory processing suggests that the site of auditory long-term 
memory and thus the factors that might influence representation and recognition reside in a cortical network3. 
This suggests that while subcortical mechanisms may be important in the ascending auditory pathway, given that 
these mechanisms operate below cortical memory formation and storage, they are involved in neurally-encoded 
auditory signal refinement and transmission but not specifically conditioned by experience.

However, research by Kraus and colleagues has suggested a very different view of the functional role of the 
subcortical ascending auditory system in perception. For example, their research has shown that musical exper-
tise modifies the auditory coding of pitch in a way that benefits learning tone language patterns4. In this research, 
group differences in musical experience are related to the frequency-following response (FFR) for speech stimuli 
as well as music and thus have generalized beyond the specific context of experience. Moreover, they argue that 
the group difference in the auditory brainstem response (ABR) due to musical training predicts how the groups 
learn. While it is unclear if there is descending cortical control over the brainstem response that sharpens it, or 
whether there is experiential tuning of the FFR from the bottom-up, it is important that by some mechanism, 
the ascending auditory pathway is not just a passive signal transmission line, but it is changed in processing by 
experience. Indeed, there is now substantial research showing that experience can alter encoding in the FFR 
substantially5–8, even after a relatively short period of training9.

However, it is still not clear whether the observed experience-based changes in the FFR are reflected in behav-
ior. Certainly, if auditory encoding increases the fidelity of the neural representation of frequency, frequency-
based auditory performance should improve. Musacchia et al.10 observed that neural responses attributed to the 
brainstem, including the FFR, correlated with scores in certain musical skill tasks (e.g. timbre discrimination). 
Moreover, Marmel et al.11 found that aspects of the FFR predict the ability to discriminate between pitches in a 
forced-choice task. Coffey et al.12 found that individual differences in the FFR relate to pitch perception for tones 
with a missing fundamental frequency. Carcagno and Plack9 found FFR changes following training in a pitch 
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discrimination task, but the observed changes in FFR strength were not specific to stimuli that shared relevant 
characteristics with the trained stimuli, and correlations between FFR strength and performance metrics were 
nonsignificant. While these studies support the notion that FFR features seem to relate to individual differences 
in perceptual acuity, the extent to which plasticity in early auditory structures supports cognitive abilities that 
are critical to behavior, such as categorization, remains an open question.

Absolute pitch (AP) or “perfect pitch” is the relatively rare ability to label a musical note without the aid of 
a reference note13 and can provide a model system for investigating individual differences in the relationship 
between auditory encoding and human performance. Given that the spectral structure of the FFR suggests that 
pitch information is successfully transferred from the cochlea to the central nervous system in all listeners14, it 
may be surprising that most humans are unable to easily utilize that information for the categorization of isolated 
notes. In contrast, relative pitch perception (categorizing notes in relation to other notes) is the norm among 
musicians. Absolute pitch possessors’ tuning standards can even be shifted after listening to “detuned” music that 
maintains relative pitch cues15,16. The presumed rarity of AP should be striking, as it is comparable to only being 
able to classify colors by their relationship to other colors and not with consistent labels such as “blue.” Absolute 
pitch has often been used as a model system for understanding the interplay between genetic and experiential 
factors in the development of stable cognitive-perceptual skills17—this is a largely unexplored parallel to the 
way in which the scalp-recorded FFR has been used to investigate the role of experience in shaping auditory 
encoding, something previously thought to be non-plastic. It could be the case that features of spectral encod-
ing in the FFR may vary between listeners who perceive the pitch of notes absolutely rather than in reference to 
other notes, supporting the different priorities of categorical processes downstream. Given that AP represents a 
distinct cognitive skill, the ability to categorize notes, it provides an excellent window into the interplay between 
low-level encoding, reflected by the FFR, and high-level perceptual categorization.

While AP has traditionally been construed as a dichotomous ability, in which subjects either have or do 
not have AP17,18, recent evidence has suggested that AP ability exists along a spectrum, where AP ability is best 
described as a continuously distributed variable19. While there is sizable variance in pitch labelling ability in the 
general population20, variables that predict continuous variation in absolute pitch perception ability are largely 
unknown and generally viewed as a consequence of cognitive factors rather than auditory ability21. The aim of 
the present study, then, is to investigate the extent to which individual differences in the FFR, reflecting low-level 
neural auditory encoding of sounds, predicts variation in pitch labelling ability, a higher-level cognitive process.

Results
Behavioral results.  There was a reasonable spread of performance on pitch performance for sine tones for 
both self-reported AP possessors (M = 0.554, SD = 0.163) and other musicians (M = 0.212, SD = 0.0960), as well 
as for piano tones (self-reported AP possessors: M = 0.984, SD = 0.0165; other musicians: M = 0.294, SD = 0.199). 
See Fig. 1A for a visualization of how the scores relate to one another. The distribution of average pitch labeling 
ability was approximately M = 0.769, SD = 0.0814 for self-reported AP possessors and M = 0.253, SD = 0.134 for 
other musicians. Performance on the pitch adjustment task (measures auditory working memory precision by 
requiring participants to hold in mind a target note for some period of time prior to manually adjusting the final 
tone to match the target) for self-reported AP possessors was M = 2.978, SD = 2.507, and M = 3.311, SD = 0.822 
for other musicians (see Fig. 1B). Finally, just-noticeable difference (JND) task (assesses one’s ability to behav-
iorally discriminate between two tones of varying frequency) performance for self-reported AP possessors was 
M = 0.849, SD = 0.0715, and M = 0.782, SD = 0.0918 for other musicians (see Fig. 1C).

Figure 1.   Spread of Behavioral Data. Individual data points are provided for individual subjects. Red circles 
represent individuals who self-report as an AP possessor, while turquoise triangles represent other musicians. 
(a) Comparison of performance on the AP sine tone conservative measure compared to performance on the AP 
piano tone conservative measure. (b) Performance on the pitch adjustment task. (c) Performance on the just-
noticeable-difference task.
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While previous research has found that there is a positive relationship between tonal language experience 
and AP ability22, we did not find such a relationship here for both the AP piano tone conservative measure 
(t(11.1) = 0.55, p = 0.59) and the AP sine tone conservative measure (t(10.5) = 0.74, p = 0.48). We also found no 
significant difference between subjects who identified their primary instrument as fixed-pitch and not fixed-pitch 
on both performance on the AP piano tone conservative measure (t(9.7) = − 0.50, p = 0.63), and AP sine tone con-
servative measure (t(9.3) = − 0.66, p = 0.53). In other words, effects reported in past research—such as that lessons 
on piano or other fixed-pitch instruments enhance AP abilities23 or that personal musical histories are reflected 
by individual performance on absolute pitch recognition tasks24—are not significantly present in our sample.

Electrophysiology results and predictive modeling.  The FFR to the piano tone 
(r = 0.26, t(999) = 31.49, p = 9.18e-152) and the FFR to the unfamiliar complex tone (r = 0.27, t(999) = 31.91, p = 1.31e-
154) both predict pitch-labelling performance better than chance, but not significantly differently from one 
another (t(1994.81) = − 1.19, p = 0.234). Both the piano tone FFR (t(1875.59) = 38.81, p = 2.42e-242) and complex 
tone FFR (t(1840.56) = 39.16) perform significantly better than the speech-evoked FFR (r = − 0.15), which per-
forms significantly worse than chance (t(999) = − -22.71, p = 2.29e-92).

The Lasso regression yielded the following sparse models, reported with regression coefficients in normalized 
units for easy comparison across models. Note, in Eq. (3), that the Lasso regression selected harmonics near the 
formant frequencies of the spoken /da/ to include in the model; while this is encouraging with respect to the 
Lasso technique picking out relevant predictors, the speech model does not perform above chance, so we caution 
against attempting to interpret the presence or absence of particular parameters in the model.

The piano tone FFR predicts AP classification performance for both piano tones (r = 0.29, t(999) = 31.11, 
p = 4.11e-149) and sine tones (r = 0.08, t(999) = 12.26, p = 2.69e-32). However, the model does predict significantly 
better on piano tone performance (t(1729.47) = 19.22, p = 8.70e-75), suggesting a more specific effect of auditory 
encoding on pitch classification ability.

The frequency-following responses to the piano tone predicts AP performance better than the behavio-
ral measures (age of music onset, tonal language experience, pitch adjustment and just-noticeable-differ-
ence scores) are able to (t(1980.05) = − 16.22, p = 1.16e-55), with the latter only performing slightly, albeit 
significantly, above chance (r = 0.09,  t(999) = 11.69, p = 1.06e-29). Notably, combining the behavioral and 
electrophysiological predictors (r = 0.21) yields a model that is worse than that based on only electrophysi-
ological predictors (t(1982.98) = − 4.52, p = 6.55e-06), but does do better than the behavioral data alone 
(t(1997.86) = − 12.23, p = 3.08e-33). This suggests that the behavioral measures contain little information about 
pitch labelling ability that is not already captured by the FFR. Interestingly, the behavioral-only model (see Eq. 6) 
removed all predictors except for the just-noticeable-difference score, a measure of perceptual discrimination 
ability, indicating that the other behavioral measures do not provide additional information about pitch label-
ling ability.

Discussion
Though previous work has shown that individual changes in the FFR can arise as a result of past experience, such 
as musical training, the exact relationship between the FFR and behavior has remained ambiguous. Individual 
differences in the FFR have been related to performance on certain perceptual discrimination tasks12 and such 
differences have been shown to emerge following training in such a task9, but these individual differences were 
not specific to task-relevant spectral features and studies that relate auditory encoding to performance rarely 
compare the magnitude of FFR differences across stimuli from different domains. This omission is particularly 
problematic, as many known FFR effects persist across auditory domains; for example, musical training seems 
to impact the FFR encoding of speech sounds, leading some researchers to argue that experience-dependent 
changes in the FFR are generally domain-nonspecific25.

(1)Complex tone : ŷlogit = 6.7× 10−18
− 0.33F0 + 0.017H5

(2)Piano Tone : ŷlogit = − 5.1× 10−18
− 0.063F0 − 0.45H1 + 0.28H4

(3)Speech : ŷlogit = 1.9× 10−17
+ 0.15F0 − 0.021H6 + 0.022H12

(4)Piano Tones : ŷlogit = −3.3× 10−17
− 0.013F0 − 0.46H1 − 0.0044H3 + 0.25H4

(5)Sine Tones : ŷlogit = 4.4× 10−17
− 0.089H1 + 0.0012H4

(6)Behavioral : ŷlogit = 8.7× 10−18
+ 0.023JND

(7)Combined : ŷlogit = −5.2× 10−17
− 0.39H1 + 0.18H4 + 0.20JND − 0.0038age_onset

(8)FFR : ŷlogit = −5.1× 10−18
− 0.063F0 − 0.45H1 + 0.28H4
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The present study provides compelling evidence for the domain specificity of individual differences in FFR 
spectral features. While our data replicate previous findings that FFRs to domain nonspecific stimuli can predict 
scores in an auditory task, as the predictive performance of our model deviates from chance for all stimuli, we 
find robust differences between the predictive power of FFRs to different stimuli. We find that the FFRs to tones 
predicts performance substantially better than to speech stimuli, seemingly corresponding to the subjects’ experi-
ence attending to the pitch of notes regardless of the familiarity of their timbres. In contrast, the FFR to the piano 
tone, a familiar timbre, does not seem to predict pitch-labelling ability for piano tone stimuli any better than the 
FFR to the complex tone, so instrument-specific advantages in brainstem encoding do not seem to account for 
well documented own-instrument advantage effects in the AP literature23,24. Our subjects do, however, gener-
ally perform better on the piano tones than on the sine tones, consistent with past literature, so the observed 
timbre-familiarity advantage may originate from later auditory processing or during subsequent categorization.

Importantly, we find that the FFR to the piano tone predicts subjects’ ability to label the pitch of piano tones 
significantly better than it does the pitch of sine tones. This finding points toward a view of FFR plasticity as 
a mechanism that can support domain-specific auditory skills above and beyond the domain-general effects 
previous researchers have observed.

Notably, individual differences in early sensory encoding, as reflected by the FFR, are able to predict con-
tinuous variance in AP ability. Since the variation in pitch labelling ability has largely gone unexplained since 
researchers have argued that AP should be considered as a graded (rather than dichotomous) ability20 this finding 
is novel. It has long remained an open scientific question why humans can place some types of stimulus character-
istics into stable, barely changing categories (such as color) but less so others (such as pitch); understanding the 
relationship between individual differences in low-level sensory coding and in the higher-level cognitive ability 
to consistently categorize perceptual stimuli promises to shed light on broader theories of semantic memory, 
concepts, and categories26.

It is tempting to conclude that the mechanism for our observed effect is a difference in stimulus encoding 
in subcortical structures that covaries with AP ability; indeed, this is how the FFR literature has historically 
interpreted such results7,10,25. Of course, our ability to draw definitive conclusions from our results is limited by 
the nature of a between-subject design in noninvasive electrophysiology studies using correlation. A predictive 
relationship between the scalp-recorded FFR and AP ability need not be caused by a true change in auditory 
encoding in the FFR’s source structures; since part of the FFR is thought to originate subcortically, any anatomi-
cal difference between those far-field sources and the recording electrode that covaries with AP ability27 could 
mediate the observed effect by altering volume conduction through the brain. However, such an anatomical dif-
ference would affect the scalp recorded FFR similarly for different stimuli, and we observe robust differences in 
predictive power between stimuli. Individual differences in brain anatomy could conceivably have a compound-
ing influence on some true effect if, for example, changes in white matter density or microstructure, which may 
affect volume conduction, support higher fidelity phase locking to the acoustic stimulus. While this situation 
would suggest some true effect exists, it makes estimating the effect size from a scalp-recording tenuous, since 
the true effect could be correlated with a confounding factor. Lastly, since the FFR is now thought to originate 
from a distributed network of cortical and subcortical sources rather than solely from the auditory brainstem 
as previously thought28, a differential contribution of cortical sources, close to the recording electrode, and 
subcortical sources could account for any attenuation or amplification of power in the FFR. It seems difficult 
to tease apart this alternative from the traditional explanation with the minimalist recording montage used in 
most FFR experiments, but this distinction may be addressable in future research using high density electrode 
montages29. Nonetheless, a shift in the relative contribution of different source regions, rather than an overall 
change in phase-locking to the stimulus, would still speak to the overall hypothesis that differences in early audi-
tory encoding support higher-level cognitive abilities in a domain-specific manner.

The fields of FFR research and AP research share a common interest in how long- and short-term experience 
interact with less malleable aspects of nervous system development, such as genetics, to alter the encoding of 
sound. While the mechanisms of AP have traditionally been construed as cognitive, the present study suggests 
that real variance in pitch labelling ability may be attributable to low-level sensory encoding differences, as 
reflected in the FFR30. Conversely, individual differences in the FFR appear to be much more dependent upon the 
development of specialized skills and the particular domain of auditory experience than previously thought. As 
many fields in the behavioral sciences are now discovering, it may not be possible to fully understand cognition 
or perception without considering their dynamic interaction.

Materials and methods
Participants.  Thirty-five individuals participated in the experiment, four subjects were removed (one for 
non-compliance on tasks, one for hardware issues at the time of experimentation, one for failure to meet hear-
ing criteria, and one for a pre-existing neurological condition). Absolute pitch possessors (N = 16) and musically 
matched subjects (N = 15) were recruited from the Chicagoland area. By including subjects that are expected to 
show a range of pitch perception ability, we hope that our sample is representative of the population distribu-
tion of absolute pitch ability described by Van Hedger et al.20. Of the 31 remaining subjects, which included 
both males and females (16 females) with varying amounts of musical training, the average age was M = 21.6, 
SD = 3.01. The self-reported absolute pitch possessors reported to play an instrument for M = 15.88, SD = 3.77, 
years, while the other musicians reported to play an instrument for M = 14.73, SD = 4.48, years (t(27) = 0.765, 
p = 0.451). Three self-reported absolute pitch possessors and seven musically matched subjects were tonal lan-
guage speakers. 13 self-reported absolute pitch possessors and 10 musically matched subjects identified their 
primary (synonymous here with first) instrument as being a fixed-pitch instrument (piano).
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The study procedure was approved by the Social and Behavioral Sciences Institutional Review Board at the 
University of Chicago, and all research was performed in accordance with such guidelines. Informed consent 
was received from each subject.

FFR acquisition and preprocessing protocol.  All recordings were conducted in a soundproof semi-
electrically shielded booth. Brainstem electroencephalography recordings were collected while participants were 
presented with auditory stimuli that were presented binaurally via fitted earbuds attached to Etymotic Research 
ER-3a insert tube phones at 65–75 dB. Alternating polarity presentation was used to reduce the presence of the 
cochlear microphonic (CM) in the recorded signal. Each stimulus type was presented 3000 times, 1500 times for 
each polarity. During recording participants were allowed to watch a silent film, as is common for ABR studies31. 
Stimuli were presented using Psychtoolbox (Matlab Psychtoolbox-3; psychtoolbox.org).

Horizontal montaging32 was used using Ag–AgCl electrodes. Electrode placement included a ground elec-
trode on the center of the forehead, an active electrode placed at Cz, and linked reference electrodes placed on 
both the left and right mastoid. Impedances from Cz, each mastoid individually, and the mastoids together were 
taken prior to experimentation, with a maximum of 5 k Ohms allowed. BrainVision PyCorder software (Brain-
Products) was used to record brainstem responses with an online filter of 0.1 to 3000 Hz.

Preprocessing in BrainVision Analyzer 2.2.0 proceeded as follows. Filtering parameters were dictated by 
the properties of the stimuli. The EEG recordings in response to the piano and complex stimuli were bandpass 
filtered (Butterworth 12 dB octave roll-off) from 100 to 2000 Hz, whereas /da/ stimuli were bandpass filtered 
from 70 to 2000 Hz. All stimuli had an additional notch filter of 60 Hz applied.

We then applied an absolute threshold detection (± 700 mV) on the recorded audio channel via a Boolean 
expression that selectively finds the negative and positive peak of the start of a stimulus, and marks whichever 
occurs first. It is vital to use an absolute threshold rather than solely a positive or negative threshold in order to 
not correct for phase differences between inverted and non-inverted stimuli. By preserving such phase differ-
ences, we are able to shift our analysis to mainly examine the ABR portion of the recorded signal rather than the 
cochlear microphonic (CM), as the ABR is insensitive to phase differences while the CM is not. Segmentation 
procedures were dependent on the length of the stimulus. Piano and complex tones were 200 ms in length, and 
the /da/ stimulus was 80 ms in length. As a result, piano and complex segments were defined to start 50 ms prior 
to stimulus onset and last 250 ms post stimulus onset, /da/ segments were defined to start -10 ms prior to the 
stimulus onset and last 120 ms post stimulus onset.

Trials that had been contaminated by unwanted artifacts (those that exceeded a strict amplitude threshold 
of 35 µV) were removed from the dataset. A baseline correction transformation was performed on the 10 ms 
preceding the /da/ stimulus, and 50 ms preceding the piano/complex stimuli.

Stimuli.  The piano stimulus was sampled from an acoustic piano and produced with Reason software (Pro-
pellerhead, Stockholm). The complex tone was generated in Adobe Audition, and the /da/ stimulus was gener-
ated by the implementation of a Klatt synthesizer. The fundamental of the complex tone was 207.65 Hz (G#3). 
The fundamental of the piano tone was 261.63 Hz (C3). The F0 of the /da/ was 100 Hz. The complex tone stimu-
lus had a fundamental frequency of 207.65 Hz, and consisted of the 3rd, 7th, 8th, and 10th harmonics. An F0 
of 100 Hz for our speech stimulus was based on prior auditory brainstem work10, and we chose fundamental 
frequencies for our piano and complex tone stimuli that were in a comfortable middle octave for music listening 
and is conveniently within the register of most commonly played instruments.

Prescreening.  Participants were administered a sixty second hearing screening using a Welch-Allyn Oto-
scope equipped with an audiometer. Participants had to detect the occurrence of four tones (500, 1000, 2000, 
and 4000 Hz), which were presented at random intervals to prevent guessing. Participants were also checked via 
otoscope to make sure their ear canals were free from debris and that their eardrums were intact.

Experimental design and statistical analyses.  For each subject, we began the experimental ses-
sion with several questionnaires, where we assessed their musical experience (Absolute Pitch Questionnaire 
and Musical Experience Questionnaire) and tonal language experience (Language Experience Questionnaire). 
Afterwards, participants were screened for normal hearing. (Air conduction thresholds < 40 dB, see Prescreen-
ing subsection) We then recorded EEG responses to a piano tone, a complex tone with an unfamiliar timbre, 
and a spoken /da/. (See Stimuli and FFR Acquisition Protocol subsections, above, for more details and Fig. 2 for 
stimuli power spectra.).

Then, each subject completed an explicit pitch labelling (AP) assessment. The AP assessment consisted of 
two different paper-pen AP tests. Both tests presented tones across a range of different octaves. The average score 
of these two tests is what we refer to here as the AP test score, or pitch labelling ability (see Fig. 3C–E for full 
distribution of AP test scores, and Fig. 4C,D for the performance distribution broken down by piano and sine 
AP scores). Presentation of the stimuli was controlled by E-prime software.

Subjects subsequently completed a just-noticeable-difference (JND) assessment, which was used to examine 
how well participants could behaviorally discriminate between two tones. Tones were presented in four blocks 
of 20 trials each. A standard 1000 Hz tone was used, and in the first block, one of the notes deviated by 56 cents 
from the 1000 Hz tone. In the second block, the notes deviated by 28 cents, in the third block the notes devi-
ated by 14 cents, and in the fourth block the notes deviated by seven cents. On half of the trials the two tones 
presented were the same 1000 Hz tone. For a given trial, participants needed to determine whether the two tones 
were the same 1000 Hz tone or if they were two different tones. This assessment was also graded on a 100% scale. 
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Figure 2.   Power Spectra of Stimuli and of Frequency-Following Responses. The nearest integer frequency to 
the harmonics of the stimulus is marked on each plot, except for the speech stimulus, in which every other 
harmonic is marked to avoid visual clutter. The EEG spectra are corrected for 1/f frequency drop-off here for 
visualization, but uncorrected values were used for analysis.

Figure 3.   Performance of Lasso Regression Models Using FFR to Different Stimuli as Predictors. (a, b) For each 
model, a correlation between the model’s predictions and true AP sine and piano performance was computed 
on a test set (data points not seen by the model during training) for each of 1000 cross-validation runs as an 
estimate of how well the model generalizes. See Eqs. (1–3) for final model specifications. (c) Predicted AP sine 
and piano performance values based on complex tone FFR plotted against actual, observed AP performance. 
Red dots represent subjects who self-reported as AP possessors. (d) Predicted AP performance values based 
on piano tone FFR plotted against observed AP performance. Red dots represent subjects who self-reported 
as AP possessors. (e) Predicted AP performance values based on speech /da/ FFR plotted against observed AP 
performance. Red dots represent subjects who self-reported as AP possessors.
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Individual differences in JND task performance should reflect differences in fine grained pitch processing. This 
task was administered using E-prime software.

Subjects then performed a pitch adjustment assessment (administered using MATLAB), which was based on 
a task reported by Heald et al.33. In this task, participants were required to adjust the frequency of a probe sine 
tone to match a previously presented target sine tone. The target tone was briefly presented (200 ms) and then 
immediately masked by noise (1000 ms). Following the noise, a secondary tone (200 ms) was presented. The 
participants were then asked to try to adjust the secondary tone to match the target tone by adjusting the pitch 
either up or down. Ten target tones were tested from 471.58 Hz (end point − 80 cents B4) to 547.99 Hz (end 
point + 80 cents C5), across the B4 and C5 categories. Participants either started above or below these categories 
(i.e., the location of the secondary tone). Participants were able to adjust the probe tone by adjusting the pitch 
drawn from a stimulus series. They could adjust the probe either by 10 or 20 cent steps. Given the masking of the 
target tone, matching performance on this task is designed to measure auditory working memory precision, as it 
is necessary for participants to hold in mind the target note despite the white noise and intermediary adjustment 
tones. This interpretation of this task is similarly held by Kumar et al.34 and Van Hedger et al.21.

The FFR was computed from the EEG responses as follows. Preprocessing was done using BrainVision Ana-
lyzer 2.2.0. (See FFR Acquisition and Preprocessing Protocol subsection above.). This preprocessed data was then 
exported from BrainVision Analyzer 2.2.0 to .mat files. (All analyses after this point were scripted in MATLAB 
and in R; all code, from preprocessing to the generation of figures, can be found at https://​github.​com/​apex-​lab/​
ap-​ffr.) In order to maintain an equal number of trials for inverted and noninverted stimuli, we randomly subsam-
pled trials from whichever stimulus polarity (inverted or noninverted) had more trials so that, for each subject, 
we were left with an equal number of trials of each polarity. Then, all remaining trials (of both polarities) were 
averaged for each subject and stimulus type (piano, complex tone, speech) to obtain the FFR. This is frequently 
recommended in the FFR literature35 for the purpose of averaging out any stimulus artifact and attenuating the 
contribution of the cochlear microphonic (see FFR Acquisition and Preprocessing Protocol subsection). Next, we 

Figure 4.   Predictive Performance of Piano FFR on Sine Tones and Piano Tones separately. (a, b) Correlation 
between the predicted pitch labelling performances and the true pitch labelling performances on a test set are 
shown for 1000 cross-validation runs. The FFR to the piano tone predicts pitch labelling performance for piano 
tones better than it does for sine tones. (c) Predicted pitch labelling performance on the piano tones plotted 
against actual, observed pitch labelling performance. Red dots represent subjects who self-reported as AP 
possessors. (d) Predicted pitch labelling performance on the sine tones plotted against observed pitch labelling 
performance. Red dots represent subjects who self-reported as AP possessors.

https://github.com/apex-lab/ap-ffr
https://github.com/apex-lab/ap-ffr
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applied a Hanning taper to the window corresponding to the duration of each stimulus and computed the power 
spectrum of each FFR over that window. We then exported the power of each subject’s FFR at each harmonic of 
its eliciting stimulus (up to 1500 Hz, see Fig. 2) for analysis in R. (These files are available for researchers who 
wish to reproduce our analyses.)

We then assessed whether the FFRs elicited by stimuli from a variety of auditory domains (piano, speech, and 
a novel complex periodic signal) were predictive of pitch labelling performance on the score (accuracy) of both 
AP tests. The reason for focusing on predictive performance, rather than relying on null hypothesis significance 
testing for inference, is that in principle all the harmonics of a stimulus (and thus the FFR) contain information 
about pitch. In order to avoid making any assumptions about which harmonics to include but not allow our 
analysis to suffer from problems inherent to high-dimensional regression (the “curse of dimensionality,” Fried-
man, 1997)36, we employed the Lasso regression technique to fit sparse generalizable models to our data. We 
describe the Lasso regression technique in some detail below in the Model Fitting subsection below.

First, we fit separate models for each FFR eliciting stimulus, predicting the pitch labelling ability across both 
AP tests (sine and piano tones). Pitch labelling ability is operationalized by awarding 1 point for correctly labelling 
a note and 0.75 points if only a semitone off, then dividing total points awarded by the number of trials. This is 
considered a relatively conservative measure, specifically with regard to identifying intermediate AP possessors, 
and has been used by a number of influential studies18,37,38. However, alternative measures of AP ability, such as 
mean absolute deviation (MAD) in semitones and raw accuracy, are provided for interested researchers in our 
open dataset. (Though we found the reported results were robust to the operationalization of AP.) Since this 
measure is [0, 1] bounded, we logit transform it before fitting the model. For each model, we compute the cor-
relation between model predictions and true pitch labelling ability on a test set for each of 1000 cross-validation 
runs. We then apply the Fisher z-transformation to these r values (since they would otherwise be [0, 1] bounded 
and therefore non-normal) and compare each model’s performance to chance (r = 0) with a one-sample t-test. We 
also compare the three models to one another to test whether the auditory domain of the FFR eliciting stimulus 
matters when predicting pitch labelling performance. Full distributions of raw and transformed r values are 
reported (Fig. 3), and regression coefficients (fit on the full dataset) are reported in normalized units for easy 
comparison between models.

In order to assess the evidence of a specific effect of low-level auditory encoding on task performance, we then 
separately fit models predicting pitch labelling performance on sine tones and pitch labelling performance on 
piano tones from the piano elicited FFRs. We compared these models to chance and to each other using t tests on 
the z-transformed r values from 1000 cross-validation runs. The full distribution of r values is reported in Fig. 4.

In total, we report 12 statistical tests. In order to control for multiple comparisons, we apply a Bonferroni 
correction, resulting in a new significance threshold of α = 0.00417 against which the reported p-values should 
be compared.

Model fitting.  While ordinary least squares regression finds regression coefficients β to minimize the loss 
function SSE(β) =

∑

i

(

ŷi − yi
)2 , where ŷ is what the model predicts, Lasso regression minimizes 

L(β) = SSE(β)+ �
∑

j

∣

∣βj
∣

∣ . The addition of a penalty term for the size of β means that the fit model will only 

include nonzero values of β (regression coefficients) if the increase in the penalty term is offset by enough of a 
decrease in the sum of squares error (SSE). In order to ensure that results are generalizable, we pick λ (which 
determines how much the model will “care” about the penalty term) to maximize model performance on data 
that the model never saw during training (a hold-out set). This ensures that the model only includes predictor 
variables that robustly help it predict new data (the predictors that we can expect to generalize outside of our 
particular sample to the target population), setting the coefficients for all other predictors to zero. In exchange 
for performing near-optimal variable selection for us, Lasso regression does not provide a p-value for each 
remaining regression coefficient, but we can derive a p-value for the full model by comparing model perfor-
mance on a test set (more data points the model did not see during training) to chance. This p-value, arguably, is 
more meaningful than those traditionally reported since it is derived from a measure of how well a model gen-
eralizes to new data, while p-values for ordinary linear regression are more prone to reach significance just 
because of noise within the sample. For more detail on the theory and practical implementation of the Lasso, see 
James et al.39.

Each time we fit a model we are actually fitting many models. First, we divide the data randomly into a training 
set (2/3 of the data) and a test set (the remaining 1/3 of the data). Next, we train models using many different val-
ues of λ (from 0.01 to 1010 ) and select the model that minimizes the leave-one-out cross-validation score over the 
training set. We then compute the performance of this model on the test set (picking the metric of our choosing 
as a “cross-validation score,” in our case r = corr

(

ŷ, y
)

 ) as a measure of how well the model predicts new data.
If using the cross-validation score for inference, one has to be concerned about whether performance on the 

test set may have been good (or bad) by mere chance, and as it happens, the random choice of test set can result 
in dramatically variable cross-validation scores (see Figs. 3, 4, 5). To account for this variability, we repeat this 
whole cross-validation procedure 1000 times for each model, each with a new, random training-test split, and 
report the full distribution of r values generated.

Data availability
The analysis code is available at https://​github.​com/​apex-​lab/​ap-​ffr, and the data used in our analyses is available 
on Open Science Framework with https://​doi.​org/​10.​17605/​OSF.​IO/​HRCVS.

https://github.com/apex-lab/ap-ffr
https://doi.org/10.17605/OSF.IO/HRCVS
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