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ABSTRACT Identifying selective sweeps in populations that have complex demographic histories remains
a difficult problem in population genetics. We previously introduced a supervised machine learning
approach, S/HIC, for finding both hard and soft selective sweeps in genomes on the basis of patterns of
genetic variation surrounding a window of the genome. While S/HIC was shown to be both powerful and
precise, the utility of S/HIC was limited by the use of phased genomic data as input. In this report we
describe a deep learning variant of our method, diploS/HIC, that uses unphased genotypes to accurately
classify genomic windows. diploS/HIC is shown to be quite powerful even at moderate to small sample sizes.
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An important goal of population genetics is to accurately identify loci in
the genome which have undergone recent selective sweeps. In natural
populations with complex demographic histories this is a difficult
proposition, and thus much attention has been devoted to improving
sweep-finding methods (e.g., Nielsen et al. (2005); Lin et al. (2011);
DeGiorgio et al. (2016)). The vast majority of this work has centered
upon a “hard” sweep model of adaptation, wherein a de-novo beneficial
mutation sweeps to high frequency carrying with it its linked genetic
background (Smith and Haigh 1974; Kaplan et al. 1989). While such
hard sweeps may be important sources of adaptive evolution, there is
good reason to believe that selection from standing variation, a.k.a.
“soft” sweeps, might be equally if not more important. Indeed, both
theoretical and empirical evidence have accumulated sufficiently as to
suggest that soft sweepsmight be themore frequentmode of adaptation
in many natural populations (Hermisson and Pennings (2005); Messer
and Petrov (2013); Garud et al. (2015); Sheehan and Song (2016);
Schrider and Kern (2017) but see Jensen (2014)). Thus if we wish to

generate amore complete catalog of the genomic targets of selection, we
need to be able to reliably identify both hard and soft selective sweeps.

While this sounds straightforward at first blush, a lingering issue is
that hard sweeps can generate spurious signatures of soft and partial
sweeps in regions that are at intermediate genetic distances from the true
target of selection (Schrider et al. (2015)). This “soft-shoulder” effect
thus requires anymethod developed for finding soft or partial sweeps to
be aware of the genomic spatial context. We recently developed a
method known as S/HIC that meets this criterion and is able to find
both hard and soft sweeps in the genome with unparalleled accuracy
and robustness (Schrider and Kern (2016)). S/HIC, like several con-
temporary tools for sweep finding (e.g., Pavlidis et al. (2010); Lin et al.
(2011); Ronen et al. (2013); Pybus et al. (2015); Sheehan and Song
(2016)), utilizes supervisedmachine learning to classify individual win-
dows of the genome as sweeps. In particular S/HIC summarizes a
genomic window on the basis of a large vector of transformed summary
statistics and then uses those “features” as input to an Extra-Trees
classifier (Geurts et al. (2006)). The feature vector of S/HIC captures
spatial patterns of variation across a region of the genome by recording
the relative values of a given statistic in subwindows as a vector. While
S/HIC performs well both on simulated and empirical data, its use is
currently limited to population genomic samples with phased genotype
data as it relies on haplotype-based statistics.

Here we introduce a new version of S/HIC that alleviates this issue
that we call diploS/HIC (pronounced “deep-lo-shick”). We outline a
series of summary statistics which we calculate on unphased genotypes
across a genomic window which allow for accurate classification of
genomic windows in the context of supervised machine learning (c.f.
Schrider and Kern (2018)). diploS/HIC uses a deep convolutional
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neural network (CNN) approach to classification (LeCun et al. (2004);
Krizhevsky and Hinton (2010); Krizhevsky et al. (2012)) whereby we
represent as an image the multidimensional vector of statistics calcu-
lated from the window to be classified. Using simulation we show that
diploS/HIC retains nearly all of the power and accuracy of S/HIC.
Moreover we show that convolutional neural networks outperform
our original Extra-Trees classifier both for our original S/HIC formu-
lation and diploS/HIC.

METHODS AND MODEL

Coalescent simulation
diploS/HIC is a supervised machine learning classifier that uses co-
alescent simulation to generate training data. All of our simulations in
this paper are performed using discoal (Kern and Schrider (2016)),
though other simulators could be used provided they are flexible
enough to simulate the evolutionary scenarios described below.
We simulated under a number of demographic scenarios and selec-
tive scenarios both with constant population size and with the
very strong population growth we observed in Anopheles gambiae
from Burkina Faso (Anopheles gambiae 1000 Genomes Consortium
(2017)). These simulations were performed under five sample sizes,
n ¼ f20; 40; 60; 80; 100g haploid chromosomes. Command lines for
each scenario are given in Table S1. For simulations with selective
sweeps we sampled from a uniform prior of population scaled selection
coefficients (a ¼ 2Ns). For each combination of sample size, demo-
graphic history, and rage ofa, we simulated large chromosomal regions
that we later split into 11 subwindows (as in Schrider and Kern (2016)).
We simulate hard sweep training examples by generating 2 · 103 sim-
ulationswherewe conditioned upon a fixation in the exact center of our
region (i.e., the middle of the 6th subwindow). Linked-hard training
examples are generated by simulating 2 · 103 sweeps where the selected
site is at the center of each of the remaining 10 subwindows flanking the
central window. For soft sweep and linked-soft training examples we
follow this same procedure but add a uniform prior on the frequency, f,
at which amutation is segregating at the time it becomes beneficial such
that f � Uð0:0; 0:2Þ: Most simulations under constant population
sized varied the time of fixation of the beneficial allele, t, over a uniform
range t � Uð0; 0:025Þ in units of 4N generations, although where
noted we fix t ¼ 0: Our simulations using Anopheles gambiae demog-
raphy were done with a more recent distribution of fixations times,
t � Uð0; 0:0004Þ: Finally we generate 2 · 103 simulations without

sweeps but with the same demographic history as selected training
examples.

Fromthese simulationsabalancedsetwithequal representationof all
five classes (neutral loci, hard sweeps, soft sweeps, loci linked to hard
sweeps, and loci linked to soft sweeps) to be used formachine learning is
created through sampling without replacement. This constitutes the
training set for our classifier. The simulation procedure is then repeated
to generate an independent test set of ≳103 examples per class on which
to benchmark trained classifiers.

The diploS/HIC feature vector and associated
summary statistics
Our original version of S/HIC used as a feature vector the transformed
values of 11 summary statistics calculated in 11 sub-windows centered
upon the window to be classified (Schrider and Kern (2016)). These
statistics were p (Tajima (1983)), ûw (Watterson (1975)), Tajima’s D
(Tajima (1989)), ûH and Fay and Wu’s H (Fay and Wu (2000)), the
number of distinct haplotypes, average haplotype homozygosity, H12

andH2=H1 (Garud et al. (2015)), Zns (Kelly (1997)), and the maximum
value of v (Kim and Nielsen (2004)). These statistics are then normal-
ized across subwindows to capture the relative shape of a given statistic
across the larger region such that the value of some statistic x in the ith
subwindow is xi ¼ xi=

P
jxj: If the minimum value of x is negative, the

elements of the vector are rescaled such that xi ¼ xi 2minðxÞ: Classi-
fication of genomic windows then proceeds using an Extra-Trees clas-
sifier (ETC), and windows were identified as belonging to one of five
classes: a hard sweep, a soft sweep, a window linked to a hard sweep, a
window linked to a soft sweep, or a “neutral” window unlinked to a
sweep. Given our choice of summaries, S/HIC relies upon phased
haplotype data (e.g., H12; Zns) and a polarized site frequency spectrum
(SFS) (Fay andWu’sH and ûH), though the latter can be removed with
little loss of power (data not shown).

To relax these constraints we set out to design a feature vector that
would allow for genomicwindows tobe classified into ourfive classes on
the basis of a set of statistics that could be calculated from unphased
genotype data. In particular we aim to capture quantities that describe
three axes of the data: the SFS, haplotype structure in the region (we will
only have partial information about this), and linkage disequilibrium
(LD).

Unphased data do not lead to difficulties in summarizing the SFS, so
we use three summary statistics: p (Tajima (1983)), ûw (Watterson
(1975)), and Tajima’s D (Tajima (1989)). Describing the haplotype

Figure 1 Genotype distance distribution
summaries for soft and hard sweeps. We
simulated 2· 103 sweeps under constant
population size with moderately strong
selection (a � Uð250;2500Þ), in which
the fixation of the beneficial allele
happened immediately prior to sam-
pling (i.e., t ¼ 0). The relative magni-
tude of the variance, skew, and
kurtosis of the distribution of pairwise
genotype distances, gkl; across sub-
windows of a larger simulated region
is shown for soft and hard sweeps
respectively.
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structure and LD from unphased data are more difficult. Let the geno-
type vector of the kth individual be xk ¼ fxk0; xk1; . . . ; xkmg where
individual k has been genotyped atm loci and xki 2 f0; 1; 2g according
to the number of non-reference (minor) alleles individual k has at locus
i. We define the genotype distance, gkl; between two individuals k and l
such that gkl ¼

Pm
i¼01xki 6¼xli:We note that gkl is an underestimate of the

true sequence divergence, and thus only provides a lower bound on
haplotype distance. While that is so, moments of the distribution of
pairwise gkl comparisons for a sample prove informative for differen-
tiating among our sweep and neutral classes of loci. In particular we use
the variance, the skewness, and the kurtosis of the gkl distribution as
summary statistics.

Figure 1 shows mean values of the normalized subwindow gkl dis-
tribution moments from constant size population simulations of hard
and soft sweeps (see figure legend for details). While each of these
moments contains information about the location of a sweep, the kur-
tosis in particular adds information as to whether a given sweep is soft
vs. hard. Here we are using this for diploid genotype data, however we
note that a similar summary of haploid data (i.e., the higher order
moments of haplotype distances) might add excellent information for
sweep classification from phased data.

We also summarized the frequency distribution of multilocus
genotypes in a manner analogous to the haplotype frequency
summary statistics of Messer and Petrov (2013) and Garud et al.
(2015). The simple idea here is to treat the multilocus genotype as a
population genetic entity, sometimes referred to as the “diplotype”.
We recorded four summaries: the number of distinct genotype
vectors, and then the multilocus genotype equivalents of H1; H12;
and H2=H1; call them J1; J12; and J2=J1: The normalized values of J1;
J12; and J2=J1 across simulated genomic regions that contain either a
soft or hard selective sweep are shown in Figure 2. Each of these
statistics adds useful information for detecting hard sweeps, how-
ever they are less sensitive to soft sweeps than the gkl distribution
introduced above. Thus, these statistics may be useful for discrim-
inating between hard and soft sweeps. Finally, to summarize pat-
terns of linkage disequilibrium we computed the equivalents of Zns

(Kelly (1997)) and v (Kim and Nielsen (2004)) using genotypic LD
rather than gametic LD calculated according to Rogers and Huff
(2009).

Thus our complete feature vector for diploS/HIC consists of 12 sum-
mary statistics calculated ineachofour11sub-windows (132 in total):p,
ûw; and Tajima’s D, the variance, the skew, and the kurtosis of gkl; the

Figure 3 Average-case images for neutral regions, soft sweeps, and hard sweeps. Here we show the average images for three classes of training
data, neutral regions, soft sweeps, and hard sweeps, that are used as input to our convolutional neural network for classification. Individual
subwindows of the region to be classified are shown in columns. Rows represent each of the 12 summary statistics (see text). The upper end of the
color scale has been truncated at 0.25 for visualization. These two images represent the average image from a set of 2 · 103 simulations with
parameter values as described in Figure 1.

Figure 2 Multilocus genotype frequency
spectrum statistics for soft and hard
sweeps.We simulated 2 · 103 sweeps un-
der constant population size with moder-
ately strong selection (a � Uð250;2500Þ)
and in which the fixation of the beneficial
allele happened immediately prior to sam-
pling (i.e., t ¼ 0). The relative magnitude
of the number of diploid genotypes, J1;
J12; and J2=J1 across sub-windows of a
larger simulated region is shown for soft
and hard sweeps, respectively.
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number of multilocus genotypes, J1; J12; J2=J1; unphased Zns; and the
maximum value of unphased v.

Sweep finding as image recognition
In our original implementation of S/HIC we used an Extra-Trees
classifier to classify genomic windows on the basis of a large vector
of summary statistics that had been transformed to capture spatial
information.While the classifierwas thus able touse spatial information,
the actual implementationwas completely naive to any notion of spatial
structuring among subwindows. In an effort to utilize spatial relation-
ships of summary statistics among windows more effectively, we
reasoned that we might be able to represent our transformed summary
statistics as an image that we could then train a convolutional neural
network (CNN) to recognize. As before, we record our vector of
12 summary statistics across 11 subwindows in which our central
window is the one to be classified. Putting summary statistics on rows
and subwindows on columns we then arrive at an image representation
of a locus on the basis of our collection of summary statistics (Figure 3).
In Figure 3 we present averages across each class and in Supplemental
Figure S1 we show examples of several individual simulation images;
note that any given individual realization shown in Supplemental
Figure S1 can differ substantially from the mean. These are the raw
material that are used for training our CNN classifier.

Convolutional Neural Network
To classify genomic regions into one of our five classes (a hard sweep, a
soft sweep, a window linked to a hard sweep, a window linked to a soft
sweep, or a “neutral” window unlinked to a sweep) diploS/HIC uses a
deep convolutional neural network (CNN) trained from simulation
data. CNNs are characterized by having one or more “convolutional”
layers in their networks whose purpose is to capture essential features of
an image by sliding a receptive field of specified size across the image an
then computing dot products between the original image values and
that of the convolutional filter. CNNs are incredibly powerful tools for

image recognition because they reduce the number of parameters
necessary for deep learning on images while maintaining enough of
the complexity of the original data for accurate classification or regres-
sion (LeCun et al. (2004); Krizhevsky and Hinton (2010); Krizhevsky
et al. (2012)).

diploS/HIC uses a CNN architecture that attempts to capture
relationships between windows at multiple physical scales. To do this
our input image is used as input to three different branches of a CNN,

Figure 5 Multiclass classification accuracy for diploS/HIC and related
classifiers. Here we compare the multiclass classification accuracy of
four related classifiers across a variety of sample sizes: the original S/
HIC classifier (“ETC_haploid”), a S/HIC classifier which uses a CNN
rather than an ETC (“CNN_haploid”), our new classifier for unphased
data trained with an ETC (“ETC”), and finally our new classifier training
with a CNN (“CNN”). Note the y-axis has been truncated to better
display the separation between methods.

Figure 4 Convolutional neural net-
work structure of diploS/HIC. The
CNN takes a single image as input
and then passes that image to three
three convolution layer units each with
different filter sizes to capture varia-
tion in the image at different physical
scales. Each convolution unit consists
of two convolution layers followed by
a max pooling and a dropout layer.
The outputs from the convolutional
units are then concatenated and fed
to two fully connected dense
layers, each themselves followed
by dropout. Finally a softmax acti-
vation layer is applied to get a
categorical classification.

1962 | A. D. Kern and D. R. Schrider



each of which has two dimensional convolution layers with different
sized filters (see Figure 4). Each of these convolutional layers slides a
“receptive filter,” basically a focal window, across the input image,
taking dot-products between filter weights (i.e., the fitted parameters
of the network layer) and the input itself. Doing this at multiple scales
simultaneously allows us to capture how summary stats are responding
across the physical chromosome more effectively. The top-most “con-
volutional unit” has two 3 · 3 convolutional layers, where as the other
two convolutional units have 2 · 2 filters that are dilated such that the
receptive filter is rectangular–the middle unit uses a 1 · 3 dilation and

the bottom unit uses a 1 · 4 dilation (c.f. Yu and Koltun (2015)). In
experiments that we do not show here, this structure was found to
outperform simpler CNNs that did not attempt to capture multiscale
information. Moreover, while the two dimensional convolution struc-
ture implies that the summary statistic row ordering might matter, we
experimented with different permutations and observed no discernible
effect on accuracy. Indeed removing any dependence of row order by
changing the convolutional filters to sizes of 12· 3 and 12· 2 respec-
tively yields no difference in performance (Table S2). Each of the con-
volutional units used consists of two convolutional layers with ReLu

Figure 6 ROC curves showing
the true and false positive rates
for various classifiers. Here we
show ROC curves for the binary
classification task of Hard and
Soft vs. linked and neutral re-
gions. ROC curves are shown
for both unphased and phased
data classifiers as well as for
the two machine learning algo-
rithms considered. Each panel
represents a different sample
size of haploid chromosomes
from n ¼ f20;40; 60;80;100g.
Note the scale of the x and y
axes does not run from (0,1)
but instead is zoomed in to
show what little separation
among methods there is.
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activations, followed by a max pooling layer (to reduce the dimen-
sionality of the representation), which itself is followed by a dropout
layer to control overfitting by regularizing the network through set-
ting a subset of weights to zero stochastically. This combination of
convolutional layers followed by pooling and dropout layers is quite
standard in image recognition (see O’Shea and Nash (2015) for an
approachable introduction). At this point in the network the outputs
from all three convolutional units are flattened and concatenated and
then fed to a series of two fully connected dense layers, between which
we again utilize dropout layers, before finally arriving at a softmax
activation layer that outputs categorical class membership probabil-
ities (Figure 4).

We trained the diploS/HIC CNN using simulations generated as
described above. In general both training and independent test sets
consisted of 2· 103 simulations per class unless otherwise specified.
Optimization of the CNN parameters was performed using the
Adam algorithm (Kingma and Ba (2014)) tracking as our objective
function the accuracy of the classifier on a validation set. Optimi-
zation epochs were run until the validation accuracy stopped im-
proving beyond a difference of 0.001 between epochs. In practice
this training was quite rapid, with generally less than 20 epochs
needed until stopping.

We implement ourCNNusing the open source packageTensorFlow
(Abadi et al. (2016)) and its associated higher level python API Keras
(Chollet et al. (2015)).

Data Availability
Our software for performing the diploS/HIC feature vector calculation
and deep learning is available from https://github.com/kern-lab/.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6097337.

RESULTS
We were first interested in examining how using a CNN with diploS/
HIC affected classification accuracy in comparison to the Extra-Trees
classifier we had used with S/HIC. For this we generated constant
population size simulations with moderately strong selection,
a � Uð250; 2500Þ; where the beneficial mutation had fixed immedi-
ately prior to sampling (i.e., t ¼ 0) across five different sample sizes of
n ¼ f20; 40; 60; 80; 100g haploid chromosomes. The complete param-
eterization of these simulations is given in Table S1. We were also
interested in characterizing the difference between using unphased
and phased data in both S/HIC implementations. Our expectation
was that phased data should add significant information to the classi-
fication task we are interested in. Figure 5 shows accuracy of four
classifiers as a function of sample size. Those classifiers are the original
S/HIC classifier (labeled “ETC_haploid”), a CNN classifier which uses
the original S/HIC feature vector (“CNN_haploid”), and our new,
unphased data feature vectors trained with either a CNN (labeled
“CNN”) or an ETC (“ETC”). A few trends are notable. First, it is clear
that phased data add useful information for classification– both of our

Figure 7 Confusion matrices of subwindows across a recombining chromosome. On the y-axis the location of the classified subwindow relative to
the sweep is shown while the x-axis shows the predicted class for each subwindow from diploS/HIC. These results are from simulations using the
same parameter set as in Figure 6, using a sample size of n ¼ 60 haploid chromosomes.
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phased (haploid) classifiers are more accurate than our our unphased
classifiers. Second, our unphased classifiers themselves are performing
quite well even at small sample size (for instance � 83% accuracy at
n ¼ 10 diploid individuals). Third, the convolutional neural network
approach adds a bit of accuracy, although the gains aren’t dramatic.
While that is so, the size of the training set used here, 2000 examples per
class, is quite small for deep learning, thus we might expect to see a
greater difference between the CNN and the ETC approaches if we were
to increase the size of our training set. These trends generalize to
stronger and weaker selection although accuracy varies across these
cases (see Figures S2 and S3).

We next turn our attention to a slightly more realistic scenario in
which the beneficial mutation of interest has not fixed immediately
before sampling the population, but instead fixed within some uniform
range of time before sampling. We generated simulations as before,
under constant population size and moderately strong selection,
a � Uð250; 2500Þ; but allowing the time of fixation, t, to vary such
that t � Uð0; 0:025Þ: To characterize performance of the classifier
under this regime, in Figure 6 we show ROC curves (i.e., true positive
vs. false positive rates) for our classifiers’ abilities to distinguish between
sweeps, both hard and soft, vs. unselected regions, in this case both
neutral and linked regions. At all sample sizes we have excellent dis-
criminatory power for this binary classification task. This is also the
case for stronger and weaker selection (Figures S4 and S5). Across each

of these scenarios considered diploS/HIC is surprisingly competitive
with our original, phased data implementation. This suggests that for
sweep finding diploS/HIC will be a very useful tool in datasets without
information on phase.

ROC curves show one aspect of our diploS/HIC classifier, but
perhaps more illuminating is the examination of classification in a
spatial context (i.e., along a recombining chromosome). To do this we
visualize the confusionmatrix for 10 subwindows surrounding a central
subwindow that has undergone either a hard or soft sweep. Simulated
subwindow examples are then classified as belonging to one of
five classes (hard sweep, soft sweep, linked to a hard sweep, linked to
a soft sweep, or neutral) and the fraction of each such classifica-
tion is recorded. Figure 7 shows such a confusion matrix for a con-
stant size population with moderately strong selective sweeps,
a � Uð250; 2500Þ; and for an intermediate sample size of n ¼ 60
haploid chromosomes. For this sample size and parameterization dip-
loS/HIC performs quite similarly to our original haploid S/HIC imple-
mentation with greater than 86% of sweep windows identified correctly
and with a false positive rate of� 5%: The original S/HIC had a both a
slightly higher accuracy on sweeps (� 87:5%) and false positive rate
(� 6:7%) on the same test scenario (but with a slightly smaller sample
size of n ¼ 50; see Schrider and Kern (2016) Figure 4).

For stronger sweeps we see qualitatively similar patterns, with an
excellent ability to localize bothhard and soft selective sweeps (Figure 8).

Figure 8 Confusion matrices of subwindows across a recombining chromosome with stronger selection. On the y-axis the location of the
classified subwindow relative to the sweep is shown while the x-axis shows the predicted class for each subwindow from diploS/HIC. These results
are from simulations using the same parameter set as in Figure 6 with the exception of selection which is an order of magnitude stronger,
a � Uð2500;25000Þ; and again using a sample size of n ¼ 60 haploid chromosomes.
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Simulating sweeps with a � Uð2500; 25000Þ but holding constant the
rate of recombination means that a greater portion of the chromosome
is affected by the sweep. We can see this in our increased misclassifi-
cation rate of subwindows closest to hard sweeps in Figure 8 relative
to Figure 7. Nevertheless our multiclass accuracy (the prediction accu-
racy across all data classes) on stronger sweeps is still high (� 94%;
Figure S2).

On the otherhand,when selection is comparativelyweak, a relatively
smallerportionof the chromosome is perturbedby a selective sweep and
thus sweep signatures can be harder to detect, but somewhat easier to
localize if detected. In Figure S6 we show confusionmatrices associated
with an order of magnitude weaker selection, usinga � Uð25; 250Þ: In
this scenario we have reduced sensitivity to sweeps, a slightly higher
false positive rate, and struggle to determine the mode of selection.
With weak selection diploS/HIC is less likely to identify flanking re-
gions as sweeps, though we struggle with classification of hard-linked
and soft-linked regions, misclassifying each type both as the other, or
often as neutral in the case of soft-linked sites; such errors are of minor
concern if one’s primary goal is the discrimination between sweeps and
unselected regions. Supporting this point is the fact that our binary
classifier (sweep vs. linked+neutral) has a high area under the curve
(AUC; � 0:96) even though our multiclass accuracy is lower (� 64%;
see Figure S3); thus even with very weak selection our classifier can
find sweeps.

Each of the above scenarios simulated populations with constant
population size, which is a rarity in the natural world. We thus turn
attention to themore realistic case inwhich population size has changed
inrecenthistory. Inparticularwesought tocharacterize theperformance
of diploS/HIC for samples from populations with strong growth, such
as we recently observed in a Burkino Faso population of Anopheles
gambiae (Anopheles gambiae 1000 Genomes Consortium (2017)).
We inferred using information from the site frequency spectrum that
this sample, shorthanded BFS, had experienced greater than 30-fold
growth in the past 100,000 years (Anopheles gambiae 1000 Genomes
Consortium (2017)). We simulated training sets under the BFS sam-
ple’s inferred demographic parameters (see Table S1) for a variety of
sample sizes and selection scenarios. Figure 9 shows the multiclass
accuracy of diploS/HIC (labeled CNN) and related classifiers when
testing against an independent set of simulations. As in the case of
constant population size, the general trend is that CNN-based classifiers
consistently outperform those based on Extra-Trees. Moreover in this
case diploS/HIC even tends to outperform our original implementation
of S/HIC which uses phased haplotypes. Supplementary Figures S7 and
S8 show the same comparisons for when selection is an order of mag-
nitude stronger and weaker respectively. Under this demographic sce-
nario in our stronger selection case, a � Uð25000; 250000Þ; selection
is strong relative to recombination and we lose the ability to localize
hard sweeps, resulting in a loss of accuracy. On the contrary our weak
selection scenario for Anopheles yields excellent multiclass accuracies.
As before, we prefer to visualize performance using confusionmatrices,
and in Figure 10 we show representative classifications as a function of
distance from each sweep type for simulations of BFS demography and
moderately strong sweeps.With n ¼ 60 haploid chromosomeswe have
87% accuracy and our ability to localize sweeps is quite good, although
selection in this case is sufficently strong relative to recombination such
that we have a significantmisclassification rate of windows neighboring
hard sweeps into the hard sweep category. If selection is an order of
magnitude weaker for BFS demography then our localization for those
windows neighboring sweeps improves considerably (Figure S10).
However, if selection is an order of magnitude stronger diploS/HIC
and related classifiers all struggle to accurately find hard sweeps, as for

this parameterization selection is too strong relative to recombination
(Figure S9), therefore larger window sizes would be required.

We previously showed our S/HIC classifier to be quite robust to
demographic model misspecification (Schrider et al. (2016)), thus we
were curious to see if our new implementation should share similar
properties. A priori we expect diploS/HIC to be robust, as such robust-
ness stems from the summary statistic transform that we apply to our
input statistics, rather than some higher level property of the ML algo-
rithm. To characterize accuracy in the face of model misspecification
we used the classifiers that we had trained on constant size population
simulations (e.g., Figure 5) to make predictions from data drawn from
the BFS sample demographic model (i.e., strong population growth). In
Figure S11 we show ROC curves for both our original S/HIC and
diploS/HIC with and without model misspecification for each of a set
of five sample sizes. Both S/HIC and diploS/HIC are indeed robust to
model misspecification and while S/HIC is more accurate, owing to
its use of haploid information, diploS/HIC is more robust to such
misspecification.

Practicingpopulationgeneticistsoftenare facedwithdatacanonlybe
phased computationally, rather than through transmission or inbreed-
ing. We were thus interested in characterizing the performance of our
classifiers in the face of phasing switch errors. To explore this, we trained
haploid and diploid diploS/HIC classifiers, along with S/HIC classifiers
on data that contained no switch errors, but then tested those trained
classifiers on data which had switch errors inserted at various proba-
bilities (i.e., genotypes at heterozygous sites were flipped at a given rate).
In Figure S12 we show the accuracy of three classifiers as a function of
switch error rate. Those classifiers are the original S/HIC classifier
(labeled “ETC_haploid”), a CNN classifier which uses the original S/
HIC feature vector (“CNN_haploid”), and our unphased diploS/HIC
classifier (labeled “CNN”). As expected the accuracy of the unphased
classifier does not change with increasing switch error rate, however
both of the classifiers that make use of phase information do lose
accuracy. Thus if there is reason to believe that computational phasing
might lead to appreciable error rates we recommend that the user
should use the default, unphased version of diploS/HIC.

Figure 9 Multiclass classification accuracy for diploS/HIC and related
classifiers for Anopheles demographic history with moderate selection.
Here we compare the multiclass classification accuracy of four related
classifiers across a variety of sample sizes: the original S/HIC classifier
(“ETC_haploid”), a S/HIC classifier which uses a CNN rather than an
ETC (“CNN_haploid”), our new classifier for unphased data trained
with an ETC (“ETC”), and finally our new classifier training with a
CNN (“CNN”).
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In general we find that under a more complex history of population
growth, such as that from the BFS sample, diploS/HIC performs quite
well at finding both hard and soft sweeps and differentiating among
them. Moreover we find that diploS/HIC is quite robust to model
misspecification during training. This is the case even for reasonably
small populationsizes, althoughour smallest sample size testeddid lag in
accuracy considerably. Thus a fair degree of caution should be taken
when analyzing smaller samples (i.e., n# 20) using our method.

An application to Anopheles gabiae genome
sequence data
As an example of how diploS/HIC might be used to elucidate the
evolutionary history of an organism we here provide a targeted look
at the Gste region of the A. gambiae genome. Over the last 20 years as
part of the Roll BackMalaria initiative,mosquito populations have been
subject to large-scale application of insecticides and as a consequence
have begun to adapt to this new environment through the evolution of
resistance (Hemingway et al. (2016)). The Gste locus contains a cluster
of glutathione S-transferase genes including Gste2, which has previ-
ously been shown to be involved in detoxification of pyrethroids and
DDT (Mitchell et al. (2014)). In Figure 11 we show diploS/HIC classi-
fications of windows throughout the region at three physical scales
(10kb, 20kb, and 50kb). For computational convenience, we trained
a classifier using simulations of genetic distances that correspond

to �5kb, but predict on feature vectors from a larger region. Though
ideally simulation with a matching window size should be used, this is
acceptable for our purposes here because our feature vector itself is scale
free, and the ratio of the recombination rate to the selection coefficient
is what determines the spatial patterns of variation across a region. At
each scale a soft sweep is identified at the Gste cluster, and one can see
from patterns of Tajimas’s D, J12; and ZnS; that the signal of selection
extends for a long distance in each direction away from the sweep. This
squares nicely with the haplotype based analysis done by Anopheles
gambiae 1000Genomes Consortium (2017) which showed that numer-
ous haplotypes were under selection at Gste. We have included the
workflow of this entire empirical application as an example use case
of diploS/HIC here: https://github.com/kern-lab/diploSHIC/wiki/
A-soup-to-nuts-example.

DISCUSSION
Creating a complete catalog of selective sweeps in the genome of any
organism remains an elusive goal. Population genetics, as a field, requires
knowledgeof the targetsof selection forat least twoseparatepurposes.At a
broadscale,wewould like toknowaboutgenome-wideparameters suchas
the rateof selective sweepspergenerationand their associateddistribution
of selective effects. At a finer scale, we would like to know the precise
location of individual beneficial fixations, so that we can learn about the

Figure 10 Confusion matrices of diploS/HIC for an Anopheles gabiae demographic history. On the y-axis the location of the classified subwindow
relative to the sweep is shown while the x-axis shows the predicted class for each subwindow from diploS/HIC. These results are from simulations
using the parameters reflecting the population history of a BFS sample of Anopheles gambiae, using a sample size of n ¼ 60 haploid chromo-
somes. Here we have simulated sweeps with moderate selection coefficients, a � Uð250; 2500Þ.
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functional ramifications of adaptive evolution. Thus through the creation
of a catalog of selective sweeps we hope to learn both about the process of
adaptation as well as the nature of the adaptations themselves.

While methods development for sweep finding tools has a rich
history in the literature, in the past few years substantial performance
gains have come through leveraging supervised machine learning
approaches (reviewed in Schrider and Kern (2018)). In particular,
the use of machine learning has led to more powerful methods for
detecting sweeps that are robust to complicated demographic histo-
ries which had confounded earlier approaches. While this is so, nearly
all machine learning methods for finding selection require the use of
phased haplotype information for input (the sole exception being
SFSselect (Ronen et al. (2013)), which is based strictly on the site
frequency spectrum). In this report we present a new method that
we call diploS/HIC that has exceptional power for finding both hard
and soft selective sweeps and differentiating among them without
requiring phased data. diploS/HIC builds on the strategy of our earlier
method, S/HIC (Schrider and Kern (2016)), in utilizing a large vector
of summary statistics that have been transformed to capture spatial
information around a focal region to be classified. For diploS/HIC we
have introduced a number of new population genetic summary sta-
tistics that are compatible with unphased genotypes and which
are useful for detecting and discriminating between hard and soft
selective sweeps. Note that, like the original S/HIC, diploS/HIC was
designed with completed sweeps in mind, but could be extended
to handle incomplete sweeps in a straightforward manner by
simulating appropriate training data and including additional
summary statistics.

Algorithmically diploS/HIC utilizes a deep convolutional neural
network (CNN) as the basis of its classification (LeCun et al. (2004);

Krizhevsky and Hinton (2010); Krizhevsky et al. (2012)). Thus, we cast
the sweep finding problem as one of image recognition. Our goal in
doing so is to more explicitly utilize the spatial covariance structure of
summary statistics in a given region, beyond the simple spatial trans-
formation we had been using in Schrider and Kern (2016). While it
seems this has succeeded to some degree (i.e., we see that a CNN
classifier using the S/HIC feature vector outperforms our original
implementation – Figure 5) we suspect that there is still consider-
able room for improvement. First, the use of recurrent neural net-
work approaches that are specifically formulated for capturing signals
in sequential data should provide a principled way of gleaning further
spatial signal using summary statistics (Graves et al. (2013); Sutskever
et al. (2014)). Second, we imagine that improvements in using the full
information in the spatial arrangement of polymorphism surrounding
a sweep could come from abandoning summary statistic representa-
tions of loci, and instead using image recognition (i.e., CNN) ap-
proaches on images created directly from sequence alignments of a
genomic region (Chan et al. (2018); L. Flagel, personal communica-
tion). A similar approach using images of read pileups was recently
introduced for variant calling, yielding solid performance improve-
ments over competing methods (Poplin et al. (2017)).

In summary we have shown that diploS/HIC performs quite well
when compared to our previous S/HIC under both simple and more
complex population size histories. Identifying selective sweeps in
populations with non-equilibrium demographic histories remains
an important and difficult problem, particularly in cases where the
underlying demographic model is unknown or poorly estimated. For
instance it is well known that certain demographic models, such as
population growth, canmimic selective perturbations (Simonsen et al.
(1995); Jensen et al. (2005)). Here we have shown as with S/HIC

Figure 11 A large soft sweep at Gste in Anopheles gambiae. Here we show diploS/HIC classifications at three physical scales along with
associated summary statistics for a megabase region surrounding the Gste cluster on chromosome 3R for the BFS sample. diploS/HIC classifi-
cations are colored here such that windows classified as soft sweeps are dark blue, linkedSoft as light blue, and linkedHard as light red. Above the
diploS/HIC classifications we show a subset of the summary statistics used as part of the feature vector (see Methods for details).
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before it, diploS/HIC is accurate in the face of non-equilibrium de-
mography, even when misspecified. In conclusion, we believe that
diploS/HIC provides yet another powerful tool for population genet-
icists to use when phased information is unavailable.
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