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To find the millions of missed tuberculosis (TB) cases, national TB programs are under pressure to expand TB disease screening 
and to target populations with lower disease prevalence. Together with imperfect performance and application of existing diag-
nostic tools, including empirical diagnosis, broader screening risks placing individuals without TB on prolonged treatment. These 
false-positive diagnoses have profound consequences for TB patients and prevention efforts, yet are usually overlooked in policy 
decision making. In this article we describe the pathways to a false-positive TB diagnosis, including trade-offs involved in the 
development and application of diagnostic algorithms. We then consider the wide range of potential consequences for individuals, 
households, health systems, and reliability of surveillance data. Finally, we suggest practical steps that the TB community can take to 
reduce the frequency and potential harms of false-positive TB diagnosis and to more explicitly assess the trade-offs involved in the 
screening and diagnostic process.
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To achieve ambitious targets to reduce incidence and deaths 
due to tuberculosis (TB), global and national policies empha-
size the need to diagnose and treat a larger fraction of the 10.4 
million individuals who develop TB disease each year [1, 2]. For 
this reason, national tuberculosis programs are under pressure 
to expand access to TB screening and diagnosis [3]. Similarly, 
the need for more sensitive diagnostic tools to detect patients 
earlier in the course of their disease and care-seeking process 
has been highlighted, but increased sensitivity may come at the 
cost of reduced specificity [4, 5].

Current TB policy discussions, program targets, and indica-
tors usually do not consider the risk of false-positive TB diag-
noses [2, 6, 7], despite recognition of the issue in World Health 
Organization (WHO) recommendations of systematic screen-
ing programs [8].

In this article we describe how false-positive diagnoses 
are part of TB clinical practice, along with their conse-
quences for individuals, households, health systems, and 

surveillance data. Our aim is to enable comprehensive dis-
cussions on the trade-offs involved for expanded TB screen-
ing programs. We then propose concrete actions that can be 
undertaken to mitigate the negative effects of false-positive 
TB diagnosis.

Definition of False-positive TB Diagnosis

We define a false-positive TB diagnosis as one where an indi-
vidual, who does not have active TB disease, incorrectly 
receives a diagnosis of TB disease. In this vein, we use the term 
“false-positive” (a term widely used in clinical epidemiology) 
to suggest the absence of active TB disease, not the absence of 
symptoms or the absence of other non-TB illness (eg, bacterial 
pneumonia, obstructive lung disease). Importantly also, we use 
this term also to apply only to the diagnostic process itself, not 
the individual undergoing diagnosis, as the latter may be stig-
matizing [9, 10].

Path Toward False-positive TB Diagnosis

Figure  1 outlines the screening and diagnostic pathway for 
TB. A  screening population is composed of individuals with 
and without TB. Some individuals without TB may have an 
underlying illness that presents with similar symptoms to those 
of TB. A  diagnostic algorithm, with imperfect sensitivity and 
specificity, is then applied to the screening population. All 
those diagnosed with TB (correctly or not) are eligible to start 
treatment and should be notified as part of national and global 
surveillance.
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The proportion and the underlying reasons for false-positive 
TB test results vary, and are highly setting-dependent as local 
guidelines and policy will dictate different diagnostic algorithms 
in different populations. Differences in background prevalence 
of TB or comorbidity patterns (eg, human immunodeficiency 
virus [HIV], silicosis) as well as human performance and labo-
ratory capacity can influence test performance and result inter-
pretation. A key example is empirical (or “clincal”) diagnosis, 
where TB is diagnosed (and treatment is started) in the absence 
of a recorded positive bacteriological test. Empirical diagno-
sis accounted for 43% of all cases reported to WHO globally 
in 2017 [7]. Decisions to treat empirically are based on a mix 
of symptomatic presentation, comorbidities, chest radiogra-
phy and other ancillary tests, nonresponse to other therapeu-
tic maneuvers (eg, trials of broad-spectrum antibiotics), and 
individual clinician assessment—all of which vary from one 
population (and one provider) to the next. Empirical diagnosis 
is a critical part of the diagnostic arsenal, especially in low-re-
source settings where health workers may see a high number 
of TB patients to inform their clinical judgement. However, the 
limited data available suggest that the sensitivity and specificity 
of empirical diagnosis are both highly variable and suboptimal. 
A multicountry diagnostics trial found that sensitivity ranged 
from 16% to 44.4% and the specificity ranged from 86.9% to 

95.3% across study sites, and was significantly influenced by 
coverage of chest radiography [11].

In high-income settings, where greater resources are avail-
able, initial screening and diagnostic approach are strongly 
tilted toward increasing specificity, thus decreasing the risk 
of a false-positive diagnosis despite the low prior of TB in the 
screening population.

By contrast, TB diagnosis in a rural health center in a 
resource-limited setting will often rely on smear microscopy, 
symptoms, and clinical examinations only. Variability in the 
accuracy of empirical diagnosis—and the attendant risk of 
false-positive diagnosis—is likely to be enhanced in the highly 
heterogenous private sector. A  study in India found that TB 
diagnosis was more often reliant on clinical opinion and less on 
bacteriological confirmation [12].

As countries look to expand screening programs beyond 
individuals self-reporting to TB clinics (ie, passive case find-
ing), the screening population will likely have a lower preva-
lence of disease, either at the start, or the prevalence could drop 
after repeated rounds of screening. Table 1 illustrates how such 
a drop will also affect the rates of false-positive diagnoses, and 
why different algorithms may therefore need to be considered 
in these screening programs as compared to evaluating self-re-
ported individuals. If a standard algorithm of symptom screen, 

Figure 1. Screening and diagnostic pathway for tuberculosis (TB). From a general population, a screening population is formed from individuals with (orange) and without 
(green) TB. The diagnostic algorithm is applied to the screening population, categorizing individuals into those recommended for TB treatment (following a true-positive or 
false-positive diagnosis) or not. The contribution of false-positive TB diagnoses is mostly driven by the prevalence of TB in the screening population and the specificity of the 
diagnostic algorithm (see Table 1). The dashed arrows on the right highlight the 2 processes that new screening or diagnostic strategies aim to achieve (orange = convert 
false-negative diagnoses into true-positive diagnoses; green = convert false-positive diagnoses into true-negative diagnoses).



152 • CID 2019:68 (1 January) • Houben et al

sputum microscopy, and empirical diagnosis (Table  1, algo-
rithm 1) was used, a drop from the current approximate 10% 
prevalence among patients submitting sputum for TB diagnosis 
in healthcare settings to a high-risk screening population with 
1% prevalence (1000/100 000) can result in >70% of all TB diag-
noses being made among people who do not have underlying 
TB disease—that is, nearly 2.5 false-positive TB diagnoses for 
each true positive.

To mitigate the high probability of a false-positive diag-
nosis, screening programs could look to increase the spec-
ificity, or consider improving sensitivity to diagnose more 
true-positive cases. Figure 2A and 2B show how the positive 
predictive value (PPV; ie, the proportion of individuals with 
TB diagnosis that actually have TB disease) changes with 
sensitivity (Figure 2A) or specificity (Figure 2B). From these, 
it becomes clear that improvements in sensitivity will have 

Table 1. False-positive Tuberculosis Diagnoses in Hypothetical Screening Programs

Prevalence in Screening 
Population

Algorithm 1:
Any Symptom → 

Smear → Empirical 
Diagnosis

Algorithm 2:
Any Symptom 

or Radiograph → 
GeneXpert Assay

Impact of New Algorithm in  
Population = 100 000

PPV Ratio TP:FP PPV Ratio TP:FP
Change in No. of TB 

Diagnoses From FN to TP From FP to TN

10% 73% 1:0.37 95% 1:0.05 +2261 3767 1506

5% 61% 1:0.64 90% 1:0.11 +1369 2271 902

1% 29% 1:2.50 64% 1:0.56 +157 526 369

0.5% 17% 1:4.78 67% 1:1.13 –30 268 298

0.15% 6% 1:15.29 21% 1:3.78 –166 82 248

Formatting shows scenarios where the majority of diagnosed cases are expected to be true-positive cases (green) or false-positive TB diagnosis (red).

Algorithm 1: Individuals who are positive on screen with any symptom are tested for TB using sputum smear microscopy. A proportion of individuals with a negative smear continue to 
empirical diagnosis. The probability of being referred toward empirical diagnosis following a negative smear is negatively correlated with the prevalence of disease in the screening population 
between 80% and 5%, as the negative predictive value following a negative smear decreases.

Algorithm 2: Individuals who either screen positive with any symptom or show any abnormality on chest radiograph are tested with GeneXpert. Here we assume no empirical diagnosis so 
that individuals with no symptoms and no chest radiograph abnormality or a negative GeneXpert result are ruled out from having TB disease.

In both scenarios, we assume that the prevalence of smear-positive TB disease is negatively correlated with the prevalence of disease in the screening population between 60% and 40% 
to reflect expanding case detection toward the general population, therefore detecting earlier disease. The screening and specificity values were obtained from [8] and [11].

Abbreviations: FN, false negative; FP, false positive; PPV, positive predictive value (ie, % of individuals with TB diagnosis who actually have TB disease); TB, tuberculosis; TN, true negative; 
TP, true positive.

Figure 2. Change in positive predictive value by varying sensitivity (A) or specificity (B). Figures show relationship between positive predictive value (% of individuals with 
tuberculosis [TB] diagnosis that actually have TB disease) and prevalence of disease in screening population for combinations of sensitivity and specificity. A, Lines show 
how relationship changes if specificity for algorithm 1 (see Table 1) remains constant at 97% but sensitivity increases. B, Lines show how relationship changes if sensitivity 
remains constant at 53% but specificity increases or decreases.
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limited impact on the PPV, and that prevalence in the screen-
ing population is the key driver. However, the PPV is much 
more dependent on small increases or declines across a nar-
row range in specificity (Figure 2B).

Ideally, diagnostic algorithms in screening programs would 
improve both sensitivity and specificity, for example, resem-
bling the protocols used in prevalence surveys (Table 1, algo-
rithm 2). However, even with an algorithm of 99.0% specificity, 
a screening population with a 0.5% prevalence (500/100 000) 
of TB would lead to the number of false-positive TB diagnoses 
outnumbering true-positive diagnoses.

It is important to note that these scenarios use best availa-
ble, but sometimes weak, current estimates for the sensitiv-
ity and specificity of all tests, including empirical diagnosis 
[8]. However, in the absence of wide application of improved 
diagnostic tools, the stronger the external push to increase the 
number of TB diagnoses (whether by using more sensitive tests 
or empirically treating more people), the more specificity will 
become compromised, and the higher the number of false-pos-
itive diagnoses will be.

CONSEQUENCES OF FALSE-POSITIVE TB DIAGNOSIS

The Individual

False-positive diagnoses for TB are usually considered to have 
minimal long-term health implications for patients. However, 
they can lead to substantial negative consequences—conse-
quences that generally will not be later corrected. Specifically, 
patients testing false positive for active TB will almost invari-
ably be recommended for a treatment course that currently lasts 
a minimum of 6 months. Not only does TB treatment carry a 
nonnegligible risk of adverse clinical events (for example, at 
least a 1 in 50 risk of clinically relevant hepatotoxicity) [13], 
but patients also incur substantial costs. Even when clinical ser-
vices are provided to the patient for free (as is the case in many 
settings), patients still incur high nonclinical costs, including 
transportation, food, childcare, and lost wages. In a system-
atic review of patient costs including 14 studies in low-income 
countries, the mean direct patient cost (plus productivity loss) 
was estimated at $248 per patient [14]; a second systematic 
review estimated that total patient costs of TB averaged 58% of 
annual patient income, with half of those costs occurring after 
treatment [15]. In addition, undergoing TB treatment (espe-
cially when directly observed and in poor structural conditions) 
often results in damaging social consequences—including 
stigma, isolation from families, gender discrimination, loss of 
hope, and disrespect [16].

Less well studied are the consequences of missing other con-
ditions that may be falsely diagnosed as TB. One small study 
has suggested an increase in mortality among HIV-infected 
Ugandan adults with false-positive TB microscopy results [17], 
though this result was not statistically significant. Underlying 

conditions in individuals falsely diagnosed as having TB can 
range from bacterial pneumonia to lung cancer [18]. In the case 
of pneumonia—potentially the most common missed diagno-
sis—rifampin has some activity against the most common bac-
terial pathogens isolated [19], but other antimicrobial regimens 
are more effective. Many of these “missed” conditions are more 
rapidly progressive or fatal than tuberculosis itself, meaning 
that in many such cases, the consequences of delayed diagnosis 
resulting from a false-positive TB diagnosis will be equally (if 
not more) clinically devastating than those of false-negative TB 
diagnoses.

In contrast to perceptions around false-positive diagnoses, 
the consequences of false-negative diagnoses of TB are often 
portrayed as being fatal. As a result, studies of relative harms 
often suggest that a large number of false-positive diagnoses 
should be tolerated to avert a single false-negative diagnosis 
(with ratios as high as 30:1) [20]. However, indirect evidence 
suggests that most individuals with TB initially diagnosed as 
false-negative often later start treatment—either empirically or 
through other diagnostic tests. For example, results from clin-
ical trials suggest that the advantages of using more sensitive 
diagnostic testing with the Xpert MTB/RIF assay relative to 
sputum smear microscopy is at least partially counterbalanced 
by existing practices of empirical treatment (ie, treatment of 
patients testing false negative by Xpert) [21–24].

Thus, while much of the TB literature has focused on the 
potential consequences to patients of false-negative diagnoses, 
the implications of false-positive diagnoses—from life-threat-
ening side effects to social stigmatization to morbidity and mor-
tality from other conditions—may be no less dire. The relative 
harm of false-positive vs false-negative diagnosis is an import-
ant consideration in, for example, decisions to screen for TB 
in lower-risk populations or to use more sensitive, less specific 
tests (eg, Xpert Ultra) [25].

Household

Households of individuals who receive false-positive diagnoses 
are also negatively affected. Prolonged treatment for TB leads 
not only to additional healthcare-related expenditures but also 
to loss of income for the household, which can cause house-
holds to experience catastrophic costs [15, 26]. Such a descent 
into poverty will have a substantial and long-term impact on all 
household members including education, income, and health 
[27].

Health System

Recent modeling analyses have focused on the impact of 
resource constraints in the health system on the ability to imple-
ment ambitious interventions, including constraints on health-
care staff and beds in the multidrug-resistant TB wards [28–30]. 
In the context of limited drug supply and healthcare workers, 
treating patients who received false-positive TB diagnoses may 
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substantially worsen care for patients in other segments of the 
healthcare system.

Surveillance and Burden Estimation

Program performance will be overestimated in the presence of 
false-positive diagnosis, as treating patients with a false-posi-
tive diagnosis will have no impact on the TB epidemic. As 
highlighted by Table 1, reported notifications can easily be mis-
leading as an indicator for the success of an expanded screen-
ing strategy—an increased number of notifications may simply 
represent a dramatic increase in the number of false-positive 
diagnoses.

In addition, those notified and initiating treatment are 
assumed to have been at risk of dying due to TB. If a substantial 
proportion of this cohort does not have TB disease (and instead 
has less serious conditions), observed mortality rates may be 
artificially low, leading to overestimates of treatment success 
both on country and global level.

Such unintentional misrepresentations can, when revealed 
through, for example, prevalence surveys, undermine faith from 
domestic and international funders of the national TB response.

These issues also affect burden estimation and reporting at 
the global level. Current TB estimation methods by WHO and 
Institute for Health Metrics and Evaluation do not consider 
false-positive diagnoses, and instead assume that all notified 
cases represent patients with a true-positive diagnosis [31, 32]. 
As a consequence, the inclusion of false-positive diagnoses arti-
ficially increases official incidence estimates and leads to an 
underestimation of the gap between incident cases and those 
notified for treatment [7, 32].

WHAT CAN BE DONE

Acknowledge the Problem

The first step will be to explicitly include the challenge of 
false-positive TB diagnosis in TB policy discourse. In these 
discussions, policy bodies should explicitly consider false-pos-
itive TB diagnosis as a challenge that already inflates reported 
TB notifications, and acknowledge that these distortions may 
increase further as new ambitious programs are rolled out. In 
addition, efforts should be made to estimate the proportion of 
false-positive TB diagnoses in surveillance data as part of coun-
try-level reporting to the WHO Global TB Programme and the 
Global Fund Against AIDS, Tuberculosis and Malaria. As mul-
tiple high-level indicators for policy evaluation and advocacy 
may be strongly affected by false-positive diagnosis, an explicit 
evaluation of the potential bias introduced in different settings 
would be sensible.

To inform such and future evaluations, a concrete step 
could be to generate a quantitative estimate for the sensitivity 
and specificity of the diagnostic algorithms as applied in each 
country, and then to use those estimates to inform estimates 

of false-positive diagnoses (as in Table  1). While heterogene-
ity in diagnostic test performance and implementation is likely, 
strengthening the current data through, for example, program-
matic reviews and national strategic planning is of high value. 
Outcomes could include identified opportunities for improve-
ment (eg, in the protocol for empirical diagnosis) and data 
strengthening, better estimates of the proportion of false-pos-
itive TB diagnoses, and more realistic estimates of country pro-
gram performance.

Evaluate Trade-offs in Screening Programs

As outlined in the previous section, false-positive TB diagnoses 
follow from the trade-off between potential positive and nega-
tive effects of real-life screening and diagnostic processes. We 
propose that rather than focusing solely on the positive poten-
tial of new screening strategies, new strategies should be evalu-
ated through a comprehensive conceptual framework that also 
acknowledges the potential negative consequences of false-pos-
itive diagnosis.

Here, any change in screening strategies should be evaluated 
in terms of delivering the correct diagnosis for all individuals 
evaluated for TB, including those without TB. In other words, in 
a setting where a more sensitive screening test is being consid-
ered, programs could explicitly consider the aim of increasing 
the number of individuals who receive a true-positive diagnosis 
instead of a false-negative diagnosis and balance this against the 
number of individuals who may receive a false-positive rather 
than a true-negative diagnosis. Where more specific confirma-
tory testing is being considered, it is important to consider the 
number of false-positive diagnoses that could be averted, bal-
ancing this against the number of true-positive diagnoses that 
may be missed.

The practical consequences of these choices are shown in 
Figure 2 and the final 3 columns in Table 1, where the balance 
between additional true-positive and true-negative diagnoses 
shifts notably as the prevalence of disease changes, an observa-
tion masked by simply counting the number of additional TB 
diagnoses.

With each policy decision around, for example, diagnostic 
approach or population screened, the relative health and finan-
cial cost for each diagnosis should be considered. Together, these 
will provide a comprehensive overview of the cost and benefit of 
a specific change, for example, informing the choice to try and 
replace empirical diagnosis with microbiological testing.

In this framework, the trade-offs between sensitivity and 
specificity of the diagnostic algorithm, as well as the disease 
prevalence in the screening population, become more explicit. 
Moving beyond a simple comparison of sensitivity and spec-
ificity, the potential performance of new tests or case-finding 
approaches could be simply summarized in the change in the 
ratio of false positives/true positives across different prevalences 
of disease in the target population (Table 1). Alternatively, more 
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sophisticated decision curve analyses can incorporate addi-
tional heterogeneity and complexity in given settings [25, 33].

While quantifying the consequences of each trade-off more 
comprehensively is critical, decisions regarding acceptable levels 
of false-positive diagnoses (relative to the number of true-posi-
tive diagnoses) will still need to be made. Such choices are also 
multidimensional and highly setting-specific, but explicitly 
considering these trade-offs represents an important first step.

Research

Work is needed to provide quantitative estimates for the weight 
a false-positive diagnosis should carry compared to a false neg-
ative, or example, by quantifying the costs and quality-adjusted 
life years lost through incorrect diagnoses for individuals with 
vs without TB. Such work could examine the acceptable num-
ber of false-positive TB diagnoses for one additional true-posi-
tive diagnosis, across settings. A number of papers have already 
highlighted strong discrepancies between perceived and data-
based thresholds, as well as variation between the preferences 
of clinicians, public health officials, and patients [20, 34, 35].

Another key area of research is to improve the empirical data 
underlying our current estimates of test performance, particu-
larly the accuracy of empirical diagnosis and the specificity of 
“definitive” diagnostic tests. While reviews [8] and examples of 
research exist [36], substantial uncertainty remains on the base-
line performance of key tests, particularly as implemented in 
actual field settings. One example is the specificity of sputum 
smear, which has shown great variability in recent prevalence 
surveys, with up to 43% of smear-positive cases not confirmed 
by culture [37]. Again, some of these data will be setting-spe-
cific, in particular for empirical diagnosis. But a better under-
standing of how the performance depends on specific factors 
(eg, background TB and HIV prevalence, use/availability of 
radiograph) will help inform estimates. Recent studies have also 
highlighted the value of considering urine LAM and C-reactive 
protein as part of TB screening in high-risk HIV-infected pop-
ulations [38, 39].

Test Application

False-positive TB diagnoses are not exclusively caused by sub-
optimal diagnostic accuracy, but are also driven by pre- and 
postanalytic errors and administrative errors as well as lab-
oratory errors in handling of reagents and/or maintenance of 
instruments. By strengthening domestic and international labo-
ratory networks, TB diagnostics can be embedded in well-func-
tioning systems of training and quality control to help reduce 
false-positive TB diagnoses.

CONCLUSIONS

As the TB community looks to close the diagnostic gap through 
expanded screening and improved diagnostic tools, it is import-
ant to acknowledge false-positive TB diagnoses as part of 

current reality and consequence of expanded screening efforts. 
By recognizing and addressing the size as well as consequences 
of false-positive diagnoses, we can improve clinical outcomes 
for individuals and focus the limited resources available to “End 
TB” to achieve stronger population impact.
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