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Oxidative stress (OS) contributes to Alzheimer’s disease (AD) pathology. OS can be a
result of increased reactive oxygen/nitrogen species, reduced antioxidants, oxidatively
damaged molecules, and/or a combination of these factors. Scientific literature is
scarce for the markers of OS-specific for detecting AD at an early stage. The first
aim of the current review is to provide an overview of the potential OS markers in
the brain, cerebrospinal fluid (CSF), blood and/or urine that can be used for early
diagnosis of human AD. The reason for exploring OS markers is that the proposed
antioxidant therapies against AD appear to start too late to be effective. The second
aim is to evaluate the evidence for natural antioxidants currently proposed to prevent
or treat AD symptoms. To address these two aims, we critically evaluated the studies
on humans in which various OS markers for detecting AD at an early stage were
presented. Non-invasive OS markers that can detect mild cognitive impairment (MCI)
and AD at an early stage in humans with greater specificity and sensitivity are primarily
related to lipid peroxidation. However, a combination of OS markers, family history,
and other biochemical tests are needed to detect the disease early on. We also
report that the long-term use of vitamins (vitamin E as in almonds) and polyphenol-rich
foods (curcumin/curcuminoids of turmeric, ginkgo biloba, epigallocatechin-3-gallate in
green tea) seem justified for ameliorating AD symptoms. Future research on humans is
warranted to justify the use of natural antioxidants.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common dementia of the elderly (Fattoretti et al., 2018). The
discovery that memory decline often precedes other neuropathological signs of AD (Thomas et al.,
2020) has ignited an interest in the pathology of AD, especially the translational state between
normal aging and AD called mild cognitive impairment (MCI). Oxidative stress (OS) underlies
MCI (Cervellati et al., 2014a; Di Domenico et al., 2016) and neurodegenerative diseases including
AD (Dong et al., 2018). Various antioxidants have been suggested to prevent or even cure AD
(Boasquivis et al., 2018; Mohamed et al., 2018; Popli et al., 2018). Major biomarkers of oxidative
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damage in AD have been identified (Smith et al., 1997; Nourooz-
Zadeh et al., 1999; Lauderback et al., 2001; Halliwell, 2006;
Dizdaroglu et al., 2015; Milne et al., 2015; Wang et al., 2015;
Di Domenico et al., 2016, 2017; Dai et al., 2018; Ishii et al.,
2018), but only a limited data on the usefulness of these
biomarkers in the early detection of AD is available (Garcia-
Blanco et al., 2017). Several antioxidants have been proposed
for ameliorating oxidative damage in humans and non-human
models of AD (Butterfield and Halliwell, 2019). Among these,
some are preventive while others are touted to have a curative
effect in AD. A discussion on the rigor of the evidence favoring
the purported antioxidants in preventing or treating human AD
is scarce.

Therefore, our objective is to highlight potential oxidative
markers that can be used for early diagnosis of human AD and
to evaluate the evidence for the natural antioxidants currently
proposed to prevent or treat AD in humans. Primary research
on OS and antioxidants in the context of humanMCI and/or AD
was analyzed. The studies on early detection of AD, preclinical
AD, or MCI in humans in terms of oxidative damage and
the research on antioxidants useful in these conditions were
selected for review. It should be noted that the animal studies,
the discussion on effects of any non-dietary intervention like
exercise on MCI/AD (Suridjan et al., 2017), trials on synthetic
compounds with antioxidant anti-AD potential like statins (Chu
et al., 2018), data on novel or synthetic antioxidant supplements
for AD (Tadokoro et al., 2020), OS-biometal association in
MCI/AD (Balmus et al., 2017), and studies on patients with
comorbidities (Zheng et al., 2016) were deemed outside the scope
of this article.

OXIDATIVE STRESS MARKERS FOR
EARLY DETECTION OF AD

Studies have reported various products derived from proteins,
lipids, DNA, or RNA that indicate OS in the brain. For example,
OS damage to the protein can be determined by measuring 3-
nitrotyrosine, protein carbonyls, methionine sulfoxide or highly
reactive aldehydes; lipid damage by determining isoprostanes
and lipid and cyclic peroxides; DNA damage by estimating 8-
hydroxy-deoxyguanosine (8OHdG); and RNA damage has been
determined by measuring 8-hydroxyguanine (8OHG; Butterfield
and Halliwell, 2019).

Oxidative Damage to Proteins
Elevated levels of protein carbonyls and 3-nitrotyrosine in the
MCI lymphocyte mitochondria (Sultana et al., 2013) and in
the frontal cortex (Ansari and Scheff, 2010) and hippocampus
of MCI and AD (Scheff et al., 2016) indicate that OS damage
to proteins is an early sign of AD. Oxidative inactivation of
several proteins in the hippocampus leads to the progression
of AD from MCI (Butterfield et al., 2006a). The oxidatively
modified proteins in the cerebrospinal fluid (CSF) of MCI,
as determined by redox proteomics, remain oxidized in the
disease progression to AD (Di Domenico et al., 2016). Both
MCI and AD patients show increased plasma levels of advanced
oxidation protein products (Chico et al., 2013). Increased

carbonyl groups content in the plasma of early AD subjects
have been reported (Puertas et al., 2012). Carbonyl proteins
in the plasma can be roughly three times higher in MCI/AD
relative to the age-matched healthy controls (Greilberger et al.,
2010; Table 1).

The specificity of plasma carbonyl proteins is still
questionable since one cannot differentiate between AD
and other dementias like vascular dementia based on carbonyl
proteins alone (Polidori et al., 2004). Likewise, caloric restriction
itself reduces oxidative damage to the brain proteins, measured
by protein carbonyl levels (Forster et al., 2000). Further
investigations are warranted that record patient’s dietary habits
whilst evaluating the link between plasma carbonyl proteins and
early AD.

Role of Lipid Peroxidation
The plasma, CSF, and urine of MCI subjects exhibit higher
levels of isoprostane 8,12-iso-iPF(2alpha)-VI, a marker of in vivo
lipid peroxidation, as compared to cognitively normal elderly
controls (Pratico et al., 2002). Plasma and whole blood levels
of thiobarbituric acid reactive substances, an index of lipid
peroxidation, are likewise high in early AD (Puertas et al.,
2012; Martinez de Toda et al., 2019). Lipid hydroperoxides
are the unstable products of lipid peroxidation that undergo
non-enzymatic decomposition to generate aldehydes like
malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE);
latter form covalent adducts to alter physiological proteins.
High serum hydroperoxide levels are associated with MCI
and AD (Cervellati et al., 2013, 2014a). The OS detected in
the serum (high hydroperoxides with low residual antioxidant
power) is more pronounced in MCI and AD as compared to
vascular dementia (Cervellati et al., 2014b; Table 1), highlighting
the specificity of certain lipid peroxidation outcomes in early
detection of AD.

Elevated levels of MDA and 4-HNE have been reported in
the brains of subjects with MCI or early AD (Keller et al., 2005;
Butterfield et al., 2006b; Greilberger et al., 2008; Reed et al., 2008;
Lopez et al., 2013; Scheff et al., 2016). Mitochondria isolated
from MCI lymphocytes show increased levels of HNE-bound
proteins (Sultana et al., 2013). Plasma production of MDA shows
a gradation: AD > MCI > healthy controls (Torres et al., 2011)
and blood MDA levels have been correlated with the progression
of MCI into AD (Baldeiras et al., 2010; Table 1). It should
be noted that covalent adducts of 4-HNE are elevated in the
brain and body fluids of other neurodegenerative diseases as well
including Parkinson’s disease and amyotrophic lateral sclerosis
(Di Domenico et al., 2017), necessitating future research on the
patterns of MDA and 4-HNE that could distinguish AD from
other dementias and neurodegenerative diseases.

The level of F2-isoprostanes, indicating lipid peroxidation, is
enhanced in the brain and CSF of MCI and AD patients, but
plasma and urinary isoprostanes are normal in AD (Markesbery
et al., 2005; Irizarry et al., 2007). A prospective population-
based study failed to confirm the association between systemic
isoprostanes and the risk of AD (Sundelöf et al., 2009).
Despite being touted as ‘‘gold standard’’ biomarker of lipid
peroxidation (Butterfield and Halliwell, 2019), the diagnostic
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TABLE 1 | Oxidative markers for early detection of Alzheimer’s disease.

Author, year Groups Sample Key result

Ansari and Scheff (2010) HC = (n = 10)
MCI (n = 8)
Mild-to-moderate
AD (n = 4)
Late-stage AD
(n = 9).

Brain tissue Elevated levels of protein carbonyls and 3-nitrotyrosine in the frontal
cortex of MCI and AD in a disease-dependent manner.

Arce-Varas et al. (2017) HC (n = 44)
MCI (n = 43)
AD (n = 53)

Plasma and peripheral
mononuclear cells

Decreased SOD is observed in MCI and AD, pointing to the importance
of considering extracellular and intracellular blood compartments in
evaluating oxidative stress

Baldeiras et al. (2010) MCI (n = 70) Serum MDA levels have been correlated with the progression of MCI into AD
Cervellati et al. (2013) HC (n = 99)

MCI (n = 134)
AD (n = 101)

Serum High hydroperoxides levels associated with MCI and AD

Cervellati et al. (2014a) HC (n = 118)
MCI (n = 111)
AD (n = 105)

Serum High hydroperoxide levels associated with MCI and AD.
Antioxidant capacity in AD and MCI is lower than that of HC

Cervellati et al. (2014b) HC (n = 48)
MCI (n = 103)
AD (n = 89)

Serum High hydroperoxides with low residual antioxidant capacity are more
pronounced in MCI and AD as compared to HC.

Chico et al. (2013) HC (n = 63)
MCI (n = 34)
AD (n = 85)

Plasma Both MCI and AD patients have increased levels of advanced oxidation
protein products.
APOE4 carriers MCI have reduced plasma SOD activity relative to
non-APOE4 carriers.
Plasma reducing capacity AD < MCI < HC

Di Domenico et al. (2016) HC (n = 6)
MCI (n = 6)
AD (n = 6)

CSF Oxidatively modified proteins in the CSF of MCI remain oxidized in
disease progression to AD

Du et al. (2019) HC (n = 832)
MCI (n = 113)

Serum IMA is a potential biomarker for oxidative stress in MCI

Greilberger et al. (2010) HC (n = 15)
MCI (n = 6)
AD (n = 10)

Plasma Carbonyl proteins in plasma can be roughly three times higher in
MCI/AD relative to HC.

Lopez et al. (2013) HC (n = 33)
MCI (n = 18)
AD (n = 36)

Blood MDA levels MCI > HC
SOD activity AD < HC

Mangialasche et al. (2013) HC (n = 86)
MCI (n = 86)
AD (n = 81)

Serum Higher levels of gamma-tocopherol, beta-tocotrienol, total tocotrienols,
and gamma-tocopherol/cholesterol ratio are associated with a lower
risk of MCI or AD in the older adults

Martinez de Toda et al.
(2019)

HC (n = 30)
MCI (n = 20)
AD (n = 20)

Blood Higher TBARS and lower glutathione peroxidase and reductase
activities in both sexes can be a marker for prodromal AD

Nunomura et al. (2012) HC (n = 5)
MCI (n = 6)
AD (n = 5)

Brain tissue Oxidized RNA nucleoside 8OHG in the neurons of the cerebral cortex is
an age-associated phenomenon, but a more prominent RNA damage
correlates with MCI and AD

Picco et al. (2014) HC (n = 23)
MCI (n = 28)
AD (n = 34)

Brain and plasma SOD activity and brain glucose metabolism AD < MCI < HC

Puertas et al. (2012) HC (n = 46)
MCI (n = 46)

Plasma Carbonyl groups content, thiobarbituric acid reactive substances (index
of lipid peroxidation) MCI > HC
Plasma glutathione levels and antioxidant enzymes such as glutathione
peroxidase, catalase, and superoxide dismutase (SOD) HC > MCI

Rita Cardoso et al. (2014) HC (n = 29)
MCI (n = 31)
AD (n = 28)

Red blood cells and
plasma

Antioxidant selenium levels
HC > MCI > AD

Scheff et al. (2016) HC (n = 48)
MCI (n = 15)

Brain Increased protein carbonyls, 4-hydroxynonenal and 3-nitrotyrosine in
hippocampus enhances the likelihood of AD-like pathology

Sultana et al. (2013) HC (n = 10)
MCI (n = 12)

Blood Elevated levels of protein carbonyls and 3-nitrotyrosine, and
4-hydroxy-2-nonenal-bound proteins in MCI lymphocyte mitochondria
relative to HC

Torres et al. (2011) HC (n = 26)
MCI (n = 33)
AD (n = 29)

Red blood cells and
plasma

Plasma production of MDA and catalase activity AD > MCI > HC
Glutathione reductase/glutathione peroxidase ratio HC > MCI > AD

AD, Alzheimer’s disease; APOE4, Apolipoprotein E4; CSF, Cerebrospinal fluid; HC, Healthy control with no cognitive impairment; IMA, Ischemia-modified albumin; MCI, Mild cognitive
impairment; MDA, malondialdehyde; 8OHG, 8-hydroxyguanosine; SOD, superoxide dismutase; TBARS, thiobarbituric acid-reactive substances.
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use of isoprostanes is tricky because of their non-specificity:
isoprostanes have been potential biomarkers for many diseases
including obesity, genetic disorders and cancers (Irizarry et al.,
2007; Milne et al., 2015).

Oxidative Damage to Nucleic Acids
Nucleic acid damage also occurs early in AD.
Significantly elevated levels of 8OHG and 4,6-diamino-5-
formamidopyrimidine have been reported in the post-mortem
MCI brains relative to the age-matched controls (Wang et al.,
2006). Oxidized RNA nucleoside 8OHG in the neurons of
the cerebral cortex is an age-associated phenomenon, but a
more prominent RNA damage correlates with MCI and AD
(Nunomura et al., 2012). Peripheral leukocytes from MCI and
AD patients show enhanced oxidative DNA damage including
higher amounts of oxidized purines and pyrimidines relative
to the healthy controls (Migliore et al., 2005). Certain nuclear
(but not mitochondrial) oxidative phosphorylation genes are
upregulated in the hippocampus of MCI patients relative to both
AD and normal controls (Mastroeni et al., 2017). What pattern
of oxidative damage and gene expression can best distinguish
AD at an early stage from other dementia is an open question.

Reduced Antioxidant Defenses
In addition to oxidative damage, reduced antioxidant defenses
have been reported in MCI and early AD (Rinaldi et al., 2003;
Baldeiras et al., 2010; Chico et al., 2013). Plasma glutathione
levels and antioxidant enzymes such as glutathione peroxidase,
catalase, and superoxide dismutase (SOD) are significantly
decreased in early AD (Torres et al., 2011; Puertas et al.,
2012). Apolipoprotein E4 (APOE4) is the major genetic risk
factor in AD. The E4 carriers MCI exhibit significantly reduced
plasma SOD activity relative to non-APOE4 carriers (Chico
et al., 2013). Plasma SOD activity follows gradation: healthy
controls > MCI > AD (Picco et al., 2014). Decreased SOD has
also been reported in blood peripheral mononuclear cells of MCI
and AD patients (Arce-Varas et al., 2017; Table 1). In other
words, reduced antioxidant potential can be detected in both the
extracellular and intracellular blood compartments.

Serum analysis of MCI and AD patients have revealed
a low residual antioxidant power (Cervellati et al., 2014b).
Albumin is considered a major endogenous antioxidant in
serum because of its free radical-trapping ability. OS in MCI
and AD can increase the serum levels of ischemia-modified
albumin (IMA), a form of albumin in which the N-terminal is
structurally changed (Du et al., 2019). The levels of selenium,
an essential trace element, were found to be lower in both MCI
and AD relative to the controls, but plasma selenium was the
lowest in the AD group (Rita Cardoso et al., 2014; Table 1).
Higher serum levels of gamma-tocopherol, beta-tocotrienol,
total tocotrienols, and gamma-tocopherol/cholesterol ratio are
associated with a lower risk of MCI or AD in the older adults
(Mangialasche et al., 2013). Levels of 5-nitro-gamma-tocopherol,
a marker of vitamin E damage, show a significant positive
correlationwith protein carbonyls, protein-conjugatedHNE, and
protein-bound 3-nitrotyrosine (Sultana et al., 2013) in MCI and
AD (Table 1).

The limited specificity of OS and antioxidant markers must
be kept in view. The serum, urine, or CSF concentrations of
these biomolecules are associated with several cardiometabolic
conditions (Vona et al., 2019) as well. Therefore, OS markers
must always be combined with family history and other imaging
techniques to detect AD at early stages.

NATURAL ANTIOXIDANTS FOR
ALZHEIMER’S DISEASE PREVENTION
AND TREATMENT

Vitamins
Plasma antioxidant defenses are depleted in MCI and AD
(Rinaldi et al., 2003). So, antioxidant intake may be a reliable
strategy to prevent or even reverse MCI/AD symptoms. In
this regard, vitamin E (tocopherols/tocotrienols) and vitamin
C (ascorbate) is considered the scavenging and chain-breaking
molecules called direct antioxidants (Mecocci and Polidori,
2012; Polidori and Nelles, 2014). Dietary vitamin E can
dictate OS outcomes (Dong et al., 2018). Although vitamin
E supplementation cannot stop the progression from MCI
to AD, it does delay the onset of AD symptoms (Dysken
et al., 2014). Combining vitamin E with vitamin C is better at
decreasing F2-isoprostane in the CSF in mild-to-moderate AD
than the vitamin E alone (Galasko et al., 2012). The therapeutic
importance of the latter observation is yet to be explored.

The risk of AD appears to be decreased in elderly subjects with
high plasma levels of vitamin E (tocopherols and tocotrienols;
Mecocci and Polidori, 2012; Polidori and Nelles, 2014), but this
could be due to a good overall diet rather than vitamin E alone.
Almond supplementation on an empty stomach has been found
to enhanced memory in animal models of AD (Arslan et al.,
2017; Batool et al., 2018). This can partly be explained by high
amounts of antioxidants like vitamin E and selenium in almonds
(Yada et al., 2011; Arslan et al., 2017). However, a clinical study
reported that supplementation with vitamin E and selenium does
not ameliorate human dementia (Kryscio et al., 2017). The result
of this underpowered study (Kryscio et al., 2017) can be explained
by the inclusion of only one gender (men), high loss to follow-up,
and short exposure time.

Polyphenols
Polyphenolic agents, such as curcuminoids found in turmeric,
work through multiple pathways and have shown improvements
in AD symptoms in animal models (Ahmed and Gilani, 2009,
2014; Ahmed et al., 2014; Khalid et al., 2017), but results
of human trials are conflicting (Chen et al., 2018). Gingko
Biloba extract contains antioxidant flavonoids among other
chemicals. Meta-analyses of human studies have shown promise
in AD (Wang et al., 2010; Hashiguchi et al., 2015), but
the results of Gingko biloba are far from conclusive (Vellas
et al., 2012; Hashiguchi et al., 2015). Like curcumin, the
neuroprotection by flavonoid-rich foods may not entirely be
due to antioxidant effects since only a limited amount enters
the brain. The additional mechanism behind neuroprotection
includes flavonoid-induced improvement in brain vascular
function (Schaffer and Halliwell, 2012).
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Catechins flavonoids are considered the active, therapeutic
components of green tea. The ester of epigallocatechin and
gallic acid called epigallocatechin-3-gallate (EGCG) is the main
bioactive polyphenol in green tea extract that has neuroprotective
effects partly owing to its antioxidant activities (Mandel et al.,
2011; Mori et al., 2019). Green tea consumption seems to
improve cognitive performance in the healthy (Kuriyama et al.,
2006) as well as cognitively challenged elderly (Ide et al.,
2014). However, the results of a long-term clinical trial of
EGCG in the early stages of AD are yet to be published
(ClinicalTrials.gov Identifier: NCT00951834). The EGCG dose
and frequency needed for AD prevention and/or reversal must be
explored further.

Other natural antioxidants tested extensively in animal
models but only limitedly in humans for AD include: resveratrol,
a polyphenol in grapes and red wine (Rege et al., 2014; Turner
et al., 2015); blueberry extract (Papandreou et al., 2009); tannic
acid (Mori et al., 2012); and lipoic acid (Siedlak et al., 2009).

CONCLUSION

Biomolecules predicting oxidative damage before the onset
of clinical systems in AD can help in the diagnosis of this
dreaded neurodegenerative disease. AD cannot be detected at
an early stage based on oxidative markers alone because of the
limited sensitivity and specificity of available options. Among the

non-invasive choices, lipid peroxidation (high serum peroxides)
holds themost promise in the early detection of AD. It is unlikely,
however, that a single non-invasive and cheap biomarker could
detect AD at early stages. AD is a complex disease involving
multiple pathways. OS is a part of normal aging, but a high
OS can be one of the earliest signs of AD. The antioxidants
offered to tackle oxidative damage in AD have limited efficacy
partly because of the dose, duration, unbalanced monotherapy,
and the presence of blood-brain-barrier that does not allow
liberal amounts of antioxidants to enter the brain. By the
time antioxidants are prescribed in humans, it is already too
late. So, a balanced diet and lifestyle modifications can be
the only long-term solution to prevent or reverse cognitive
impairments associated with the heterogeneous disease that we
call AD.
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