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Basal ganglia deepbrain stimulation restores
cognitive flexibility and exploration-
exploitation balance disrupted by NMDA-R
antagonism

Nir Asch 1,2 , Noa Rahamim3, AnnaMorozov3, Uri Werner-Reiss 3, Zvi Israel4,
Rony Paz 2 & Hagai Bergman 1,3,4

Learning thrives on cognitive flexibility and exploration. Subjects with schi-
zophrenia have impaired cognitive flexibility and maladaptive exploration
patterns. The basal ganglia-dorsolateral prefrontal cortex (BG-DLPFC) network
plays a significant role in learning processes. However, how this network
maintains cognitive flexibility and exploration patterns and what alters these
patterns in schizophrenia remains elusive. Using a combination of extra-
cellular recordings, pharmacological manipulations, macro-stimulation tech-
niques, and mathematical modeling, we show that in the nonhuman primate
(NHP), the external segment of the globus pallidus (GPe, the central nucleus of
the BG network) modulates cognitive flexibility and exploration patterns
(experiments were done in females only). We found that chronic, low-dose
administration of N-methyl-D-aspartate receptor (NMDA-R) antagonist,
phencyclidine (PCP), decreases directed exploration but increases random
exploration, as seen in schizophrenia. In line with adaptive working-memory
reinforcement-learning models of the BG-DLPFC network, low-frequency GPe
macro-stimulation restores the balanceof both exploration types.Ourfindings
suggest that exploration-exploitation imbalance reflects abnormal BG-DLPFC
activity and that GPe stimulation may restore it.

The ability to learn and adapt in changing environments (cognitive
flexibility) provides a significant evolutionary advantage. The
exploration-exploitation (E-E) balance is key for adaptive behavior,
much like excitation-inhibition balance in neural circuits. Exploration
enhances learning, while exploitation optimizes decisions based on
known information. Exploration, driven by behavioral policy and
environmental state, facilitates learning by exposing individuals to
unfamiliar or uncertain elements. As a meta-behavioral policy, cogni-
tive flexibility enables learning through exploration, which occurs in
two forms: directed exploration, focused on information-seeking, and

random exploration, introduced stochastically into decision-
making1–5. These strategies complement each other—directed
exploration is crucial when knowledge is limited or evolving, while
random exploration helps avoid suboptimal solutions when knowl-
edge is abundant. Notably, random exploration is not purely sto-
chastic; it varieswith behavioral state, increasing in safe conditions and
shifting to exploitation during perilous periods6.

Research on the neural mechanisms subserving learning and
cognitive flexibility has chiefly focused on the DLPFC and the BG7–11.
These well-integrated regions12–14 are recognized as the major
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underlying neural circuitry of goal-directed (probably governed by the
cortico-cortical network) and implicit/habitual (hypothesized to be
controlled by sub-cortical structures, e.g., the basal ganglia network)
learning paradigms7,15–17. The GPe, the central nucleus of the main axis
of the BG network, connected to both input and output BG layers17–19,
and the DLPFC3,20,21 are, therefore, possible hubs for controlling the E-E
balance. The BG has been suggested to function as a generator of
random exploration22,23, as well as an active gating mechanism, dyna-
mically regulating the cortical working memory (WM) system23–25.
Memory is critical for the exploitation of learned knowledge and the
efficient exploration of new options. Therefore, the dynamic gating of
incoming stimuli into WM considerably influences the E-E balance.

Subjects with schizophrenia exhibit impaired cognitive
flexibility26 in tasks like reversal learning and multiple-arm bandit,
showing reduced directed exploration and increased random
exploration27,28. These deficits are linked to WM impairment and
DLPFCdysfunction29,30, as well as hyperactivity and enlargement of the
GPe, which correlates with symptom severity31,32. The increased ran-
domexplorationmay stem fromanoveractive “exploration generator”
(the GPe)33 or WM deficits.

To better understand the neural mechanisms underlying cogni-
tive flexibility and the E-E balance in both healthy and schizophrenia-
relevant states, we recorded neurobehavioral activity in two female
African green monkeys (Chlorocebus aethiops sabaeus, ~4 kg) across
three distinct stages: (1) the naïve state, before any drug administra-
tion; (2) under the effect of PCP, anNMDA-Rantagonist, during 28days
of chronic administration (using a subcutaneous osmotic pump) to
induce learning and memory deficits34 associated with the negative
and cognitive symptomsof schizophrenia35–39; and (3) post-PCP, after a
washout period of at least two weeks following PCP discontinuation.

These NHPs were extensively trained on a deterministic three-
armed bandit (reversal-learning) task while neural activity was recor-
ded from the GPe and DLPFC (Fig. 1a, b), two cytoarchitectonically
preserved regions that are highly similar across primates40. Unlike
probabilistic tasks3, this design allowed us to better distinguish
directed from random exploration. We defined exploration following
reward omissions as directed (seeking a new cue-reward association)
and exploration after rewarded choices as random (despite no
prediction-outcomemismatch). By examining DLPFC-GPe dynamics in
the naïve state and under PCP, we investigated how NMDA-R

Fig. 1 | Experimental setup and healthy behavioral performance. a Top - MRI of
the non-human primates’ (NHPs) brain and recording chamber. The red arrow
points to the dorsolateral prefrontal cortex (DLPFC). Middle, extracellular
recordings of DLPFC exemplary neuron (left) and 100 randomly chosen super-
imposed spike waveforms of the recorded cell (right). Bottom, Raster display and a
post-stimulus time histogram (PSTH) of the neuron’s firing during 60 trials around
choice selection (two seconds before and two seconds after). Bottom—The same as
the top image, but for the external segment of the globus pallidus (GPe). b Top—
Task design. NHPs had to identify the hidden association change and learn the new
association. The first line represents an association change trial (AC) in which the
NHP is unaware of the change of the new association and, therefore, chooses the
wrong cue. The second line represents the next trial in the block in which the NHP
changes its choice to another incorrect choice. In the third line, the NHP changes
again, this time receiving a reward. The fourth line represents the following block,

where the association changes without the NHPs’ knowledge. The NHP then
chooses the same stimulus as before, but this time receives no reward. Bottom—A
table showing the amount (and proportion) of recorded trial types for both brain
regions. Rows indicate what happened in the previous trial (trial n) and columns
indicate the current trial (n + 1). Text color coding indicates the fraction of recorded
cells within each category of the total sum. For example, our neural data set of
perseveration trials consists of 389 DLPFC and 700 GPe recordings, constituting
28% and 24% of all neural-recorded trials following an unsuccessful trial, respec-
tively, and4%and 5%ofall neural-recorded trials following same-choice trials. cTop
—The learning curve, i.e., the NHPs’ probability of choosing successfully. ‘AC’
indicates the association change trial; trials prior/post to the AC trial are of nega-
tive/positive sign, respectively. Middle—The learning slope (i.e., the derivative of
the learning curve). Inset—the learning slope across the AC trial. Bottom—Switch
probability.

Article https://doi.org/10.1038/s41467-025-60044-5

Nature Communications |         (2025) 16:4963 2

www.nature.com/naturecommunications


antagonism disrupts cognitive flexibility and E-E control, paralleling
schizophrenia-related deficits and informing potential treatments.

Results
Naïve behavior and associated neural activity patterns
Two NHPs were trained to acquire and reacquire their response to
novel visual cues in a between-block design (Fig. 1b). First, they had to
identify the spatial cue associated with the reward outcome. Once
learned (reaching apredefined success criterion; 12–15 successful trials
out of a maximum of the last 25 trials. Criterion selected randomly for
eachblock to avoid identification of the temporal rule), the association
changed (AC), and a new block began without any external sign. Thus,
in the first trial of every block (AC trial), the NHPs experienced a pre-
diction outcome mismatch, in which choosing the previously correct
cue did not elicit a reward. Sinceour task is deterministic andourNHPs
were excessively trained, they had to initiate directed exploration to
increase their knowledge of the task and maximize their gain. The
NHPs rapidly identified the AC and initiated directed exploration in
73% of the AC + 1 trials (Fig. 1c, bottom). During directed exploration,
the NHPs showed fast learning dynamics expressing well-functioning
WM, usually avoiding previously selected erroneous cues in search of
the new association (Fig. 1c and Supplementary Fig. 1a, b). An optimal
learning agent would find the correct response with an average of 1.5
trials. The NHPs found the cue associated with a rewarding outcome
within 3:11 ±0:04 trials (mean ± SEM). Once the new correct cue was
identified, the NHPs exploited their newly acquired knowledge to
maximize their gain, completing the learning phase (defined as three
sequential successful trials) within 5:44±0:05 trials. Post-learning and
during the learning plateau, the NHPs achieved amean success rate of
93% (Fig. 1c top). Their response times further reflected their cognitive
effort, lengthening during the learning phase and shortening there-
after (Supplementary Fig. 1a-lower subplot). The NHPs performed a
total of 1673 blocks during theneuronal recording sessions in thenaïve
state. The average number of trials per block was 18.8 trials (ranging
between 13 and 40).

To complete the task successfully, our NHPs had to identify suc-
cess, associate it with cue choice, carry the information across trials,
and act accordingly. We, therefore, tested whether either brain area
encodes reward by comparing their activities in response to rewards
and reward omissions. We found that both brain regions elevate their
firing rate (FR) in response to reward omissions (Fig. 2a-left and Sup-
plementary Fig. 2b). This elevation is then carried to the subsequent
trial, transiently before cue choice in the DLPFC, and spanning the
entire subsequent trial in theGPe (Fig. 2a-right). Similarly, both regions
elevate their FRs before the cue choice in exploratory (directed and
random together) compared to non-exploratory (perseveration and
exploitation together) trials (Fig. 2b).

Cue choice should be based on the success of the previous trial.
Switching from the previous choice at the n + 1 trial (directed or ran-
dom exploration) or not (exploitation or perseveration) is dependent
on the outcome of the n-trial (Fig. 1b). Assuming optimal behavioral
policy, the NHPs should maintain the same choice (exploitation) fol-
lowing a successful trial and switch to a different cue (directed
exploration) following an unsuccessful trial (Fig. 2c). Like all biological
creatures, our NHPs were imperfect. They did not explore after every
prediction outcome mismatch (perseveration errors occurred after
21.8% of unsuccessful trials). Neither did they exploit after every con-
gruent prediction outcome (random exploration occurred after 2.25%
of successful trials). Alternatively, they may employ random explora-
tion to test the optimality of their current behavioral policy. Even
though both areas elevated their FRs before choice following an
unsuccessful trial (Fig. 2a), neither expressed a significant difference
between directed exploration and perseveration (Fig. 2d and Supple-
mentary Fig. 3 and 4). In contrast, the GPe elevated its activity before
the choice of random exploration compared to exploitation in trials

following success, whereas the DLPFC did not (Fig. 2e). In sum, both
regions significantly elevated their FRs in trials following an unsuc-
cessful trial leading to either directed exploration or perseveration,
while the GPe also elevated its activity before random exploration
choices (Fig. 2f).

To further disentangle the GPe and DLPFC correlates of the NHPs’
behavior in the deterministic three-armed bandit task, we expanded
our analysis from a single trial comparison to several trials and com-
pared the neural dynamics to the behavioral ones during the learning
phase (Fig. 3). We found that both regions encode the reward pre-
diction error by their dynamic of discharge rates (Fig. 3a). Additionally,
the dynamics of GPe activity highly correlated with switch probability
(exploration),whileDLPFC activity correlated onlymarginally (Fig. 3b).
Switch probability (especially in the early part of the block) is strongly
associated with the prediction-outcome relationship of the previous
trial. Nonetheless, while directed exploration is driven by the
prediction-outcome mismatch of the preceding trial, its direction is
determined by new predictions based on the memory of past events’
outcomes. A switch can either be successful or unsuccessful. While
choosing successfully in the first trial after reversal is a sheer chance,
switching successfully later in the block demands higher WM effort,
remembering previously chosen incorrect trials and predicting the
location of the correct stimulus cue. Hence, we compared the corre-
lation between both regions’ neural activity and all switch probability
types: general, successful (associatedwithWM load), and unsuccessful
switch probabilities (Fig. 3b-right). The DLPFC was highly correlated
with the likelihoodof a successful switch anddidnot correlatewith the
chance of an unsuccessful switch. The GPe, on the other hand,
exhibited significant correlations with both successful and unsuc-
cessful switch probabilities.

Learning dynamics depend on two key factors: exploration
initiation and prediction accuracy—the faster these processes, the
quicker the learning. To assess this, we compared neural activity with
the learning slope (i.e., the derivative of the learning curve).While both
regions correlated with learning speed, the DLPFC showed a much
stronger correlation with the learning slope (Fig. 3c) than with switch
probability (Fig. 3b). These findings suggest that DLPFC activity
enhances memory efficiency, while GPe activity regulates exploratory
behavior. Supporting this, GPe units responded similarly to all choice
stimuli, whereas DLPFC units showed amore distinct response pattern
for each stimulus (Supplementary Fig. 4a).

We then compared the activity dynamics of the two regions
throughout the task. While their concurrent activities only marginally
correlated, comparing their activities in subsequent trials (i.e., com-
paring the correlation between GPe activity in trial ‘n’ with DLPFC
activity in trial ‘n + 1’) exhibited a strong correlation (Fig. 3d). These
neuronal correlates show that GPe activity increases mainly after
prediction-outcome mismatch and remains elevated in the following
trial, as well as before directed and random exploratory actions. The
DLPFC, on the other hand, increases its activity transiently, mainly
before cue choice in subsequent trials associated with WM load and
the prediction of the following optimal action process.

To directly examine DLPFC-GPe interactions, we analyzed con-
current local field potential (LFP) activity during task performance
across all states. First, we examined naïve state LFP activity during the
task in three frequency bands: theta (4–7Hz), beta (13–30Hz), and low
gamma (30–40Hz) (Supplementary Fig. 5). While all three bands
showed increased activity in response to reward, only theta activity
increased before cue choice in both brain regions (Fig. 4a, Supple-
mentary Fig. 5). Cross-correlation analysis of the mean theta-band fil-
tered LFP envelopes around cue choice revealed a strong correlation
between the two regions without a significant lag (Fig. 4a, middle).

We applied Granger causality analysis to assess the causal influ-
ence between the two regions. This method quantifies how much of
one region’s LFP variance can be predicted by the other, providing a
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measure of directional connectivity. Additionally, performing this
analysis in the frequencydomain allows us to identify causal influences
specific to distinct brain rhythms41. We analyzed the causality between
the GPe and the DLPFC LFPs using a nonparametric variant of the
Granger causality test42. This analysis revealed that while both regions
exerted causal influence on each other, the GPe had a significantly
stronger causal effect on the DLPFC than vice versa in the theta fre-
quency band (Fig. 4a, bottom).

PCP Impairs E-E balance and learning while altering DLPFC-GPe
neural dynamics and information flow
We then examined the effect of chronic, low-dose PCP treatment on
neural activity and concurrent task performance. PCP was given by
mini-osmotic pumpat a daily dose of 1.68mg/kg for 28 days. Under PCP
administration, the NHPs exhibited noticeable negative symptoms.
While in their shared cage, their social interactions were significantly
reduced. They did not take part in grooming activities and mostly kept

to themselves. Motorically, they were slower. Nonetheless, they main-
tained their coordination and ability to move, run, jump, and climb.
Notably, PCP detrimentally affected the NHPs’ ability to perform the
task, resulting in reduced directed exploration, slower learning,
increased random exploration, and a lower success rate plateau
(Fig. 5a–c). The NHPs’ tendency to initiate directed exploration in the
AC+ 1 trial slightly decreased from 73% in the naïve state to 69% under
PCP administration. More robustly, their ability to produce reliable
predictions based on past choices decreased to chance level during
directed exploration. This performance did not improve with task
progression and accumulation of knowledge, as indicated by their
reduced ability to successfully switch during the learning phase (Fig. 5a,
right inset, andSupplementary Fig. 6a). Consequently, the identification
of the new correct response (Supplementary Fig. 6a-bottom), and the
achievement of the learning criterion (Fig. 5b), were delayed. Overall,
the NHPs showed a significant decrease in directed exploration beha-
vior and a significant increase in random exploration behavior (Fig. 5c),

Fig. 2 | GPe and DLPFC encoding of exploration-exploitation behavior.
a dorsolateral prefrontal cortex (DLPFC) (top, 12,035 recorded trials of 325 neu-
rons) and external segment of the globus pallidus (GPe) (bottom, 17,327 recorded
trials of 233neurons)mean ± SEMz-normalizedfiring rates (FRs) around the reward
outcome of trial N and subsequent cue choice in trial N + 1. The shaded gray area
indicates thewindow for calculating themeanFR, as shown in the bar graphs on the
right. Left—FRs around the reward outcome in trial N for successful (blue, reward)
and unsuccessful (red, no reward) trials, with a z-score baseline from the two sec-
onds before reward claiming. Right—FRs around cue choice in trial N + 1, with a
z-score baseline from the two seconds before trial initiation. p-values are from two-
tailed t tests comparing FRs. b DLPFC (top, 12,035 recorded trials of 325 neurons)
and GPe (bottom, 17,327 recorded trials of 233 neurons) mean± SEM z-normalized
FRs around cue choice in exploratory trials (green, cue switch) and non-exploratory
trials (orange, same cue as previous trial). p-values are from two-tailed t tests
comparing FRs. c Trial type definitions: (1) Directed exploration—following
unsuccessful trials with a choice switch. (2) Perseveration—following unsuccessful
trials without a choice switch. (3) Random exploration—following successful trials

with a choice switch. (4) Exploitation—following successful trials without a choice
switch. Colors match those in panels (a) and (b).dComparison of DLPFC (top, 1373
recorded trials of 325 neurons) and GPe (bottom, 2963 recorded trials of 233
neurons) FRs around choice selection in directed exploration and perseveration.
Bar graphs show themean ± SEM FR during the two seconds preceding cue choice.
p-values (Bonferroni corrected for multiple comparisons) are from two-tailed t
tests. e Comparison of DLPFC (top, 10,662 recorded trials of 325 neurons) and GPe
(bottom, 14,364 recorded trials of 233 neurons) FRs in random exploration and
exploitation. Bar graphs show the mean± SEM FR during the two seconds before
choice selection. p-values (Bonferroni corrected for multiple comparisons) are
from two-tailed t tests. f Left—Mean± SEMDLPFC and GPe FR leading to cue choice
in the four trial types. Right—FR ratio relative to exploitation trials. p-values (Bon-
ferroni corrected for multiple comparisons) are from two-tailed t-tests comparing
FRs between random exploration, perseveration, directed exploration, and
exploitation trials. Each bar chart is overlaid with 100 randomly selected data
points falling within one standard deviation of themean. For the full distribution of
data points, please see Supplementary Fig. 3.
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leading to slower learning and a reduced learning plateau success rate
(Fig. 5a). Furthermore, the response times for stimulus choice selection
increased throughout the block (Supplementary Fig. 6b), probably
indicating the NHPs’ growing uncertainty or reduced motivation.
Response times for claiming reward outcomes no longer correlated
with task performance (Supplementary Fig. 6c). Finally, following the
cessation of PCP treatment, the NHPs’ performance improved across all
parameters (Fig. 5a–c and Supplementary Fig. 6).

Comparing the neural dynamics and behavioral choices
throughout the task allowed for a complementary understanding of
the PCP-induced neuro-behavioral changes. Under the effect of PCP,
DLPFC activity encoded the reward prediction error better but no
longer correlated with the learning slope (Fig. 5d-top). On the other
hand, GPe activity no longer reliably encoded the reward prediction
error; however, it remained correlated with the probability of making
exploratory actions, although with a slightly reduced correlation value
(Fig. 5d bottom). Furthermore, DLPFC activity leading to cue choice,
decreased, whereas GPe activity increased (Fig. 5e). Next, we com-
pared the activities of both regions leading to cue choice in post-
successful and post-unsuccessful trials (Fig. 5f). We found that DLPFC

activity in both trial types decreased and, notably, the neural activity
was no longer discriminative between post-successful and post-
unsuccessful trials (Fig. 5f, and Supplementary Fig. 6d). Conversely,
GPe activity remained discriminative between the two trial types
(Supplementary Fig. 6d). While GPe activity during post-unsuccessful
trials showed a non-significant increase, GPe activity in post-successful
trials increased fourfold (Fig. 5f), corresponding to the rise in random
exploration probability. This heightened GPe activity and exploratory
behavior may reflect an altered decision-making process, potentially
resembling the hypervigilance or heightened awareness observed in
early-stage psychosis. These neuro-behavioral changes in GPe activity
and exploration patterns support the correlation found in the naïve
state betweenGPe activity and exploratorybehavior. A ceiling effect of
the increased GPe activity may contribute to the reduced correlation
between switch probability and GPe activity under the PCP effect. We
further explored the neural changes induced by PCP during rest and
found a significant increase in LFP gamma activity (Supplementary
Fig. 7) and a decrease in GPe ‘pause’43 duration, which persisted
(Supplementary Fig. 8). These results are consistent with the observed
effects of Ketamine44 and REM sleep45 on the GPe pausing activity.

Fig. 3 | The dynamics ofGPe activity correlatewith exploratory behavior, while
DLPFC activity lags and correlates with task knowledge. a mean ± SEM dorso-
lateral prefrontal cortex (DLPFC, top) and external segment of the globus pallidus
(GPe, bottom) firing rate (FRs) of the two seconds ensuing reward outcome (purple
and brown, respectively) with the probability of reward omission (black). Correla-
tion values between switch probability and neural activity and their corresponding
p-values are represented by ‘r’ and ‘p,’ respectively.bMean ± SEMDLPFC (top) and
GPe (bottom) FRs of the two seconds preceding choice selection with the non-
humanprimates’ (NHPs’) probability of switching to a newkey (left), the probability
of switching to the new rewarded key (making a successful switch, finding the new
association, right topfigure), and theprobability of switching to an unrewarded key
(unsuccessful switch, right bottom figure). c Mean ± SEM DLPFC (top) and GPe

(bottom) firing rate of the two seconds preceding choice selection with the NHPs’
learning slope (black line).d Correlation betweenmeanDLPFC and GPe firing rates
(recorded during the two seconds leading to choice selection) during the first ten
trials. Left—Comparing DLPFC activity in trial N with GPe activity in trial N + 1.
Middle—Comparing DLPFC and GPe concurrent activities. Right—Comparing
DLPFC activity in trial N + 1 with GPe activity in trial N. eCorrelation values between
DLPFC and GPe activities calculated from −4 (DLPFC activity precedes GPe activity
by four trials) to +4 (GPe activity precedes DLPFC activity by four trials) trials lag.
Bar colors correspond with the correlation color text of subplot (d). All correlation
calculations were made using Pearson’s correlation and p-values, Bonferroni cor-
rected for multiple comparisons.
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Finally, We examined the effect of PCP on theta-band dynamics
and connectivity between the DLPFC and GPe (Fig. 4b, c). PCP reduced
and delayed GPe theta activity around cue choice (Fig. 4b top). Cross-
correlation of theta-band filtered LFPs from the GPe and DLPFC
showed zero lag (Fig. 4b middle), while Granger causality analysis
revealed a stronger causal influence of the DLPFC on the GPe under
PCP compared to the naïve state.

Discontinuation of PCP restored the NHPs’ learning and neural
dynamics around cue choice towards those observed during the naïve
state (Fig. 5a–d). Concomitantly, GPe LFP theta oscillatory activity—
linked todecision processes46, attention, andWM47,48, no longer lagged
behind DLPFC activity and once again exerted a stronger causal
influence on it (Fig. 4c). Interestingly, LFP gamma activity associated
with attention and WM47,48, but also with dissociative states such as
following ketamine administrations and dreams49,50, increased sub-
stantially in both regions (Supplementary Fig. 7). Compared to the
naïve state, post-PCP GPe activity during post-unsuccessful trials sig-
nificantly increased (Fig. 5f-left). On the other hand, GPe elevated
activity during post-successful trials was found to be insignificant
(Fig. 5f-right). These results correspond to the observed increase in
directed exploration probability and contrary to the decrease in ran-
dom exploration probability (Fig. 5c). Furthermore, DLPFC activity

correlated again with the learning slope, further increasing its corre-
lation with prediction-outcome mismatch probability, and the NHPs
regained their ability to produce accurate predictions. GPe activity, on
the other hand, did not regain its ability to encode the reward pre-
diction error but regained its high correlation with exploratory choi-
ces. Behaviorally, post-PCP, the NHPs initiated directed exploration
faster, making better predictions for finding the correct cues, thus
resulting in faster learning.

In summary, PCP reduced directed exploration and increased
random exploration while impairing the NHPs ability to predict the
correct cue. Neuronally, DLPFC activity slightly decreased. Its cor-
relation with reward omission probability increased but no longer
correlated with the learning slope. On the other hand, GPe activity
increased. It did not correlate with the probability of reward omis-
sion but remained correlated with the likelihood of exploratory
actions. Furthermore, GPe activity increased significantly during
trials following success, similar to the increase in random explora-
tion and contrary to the decrease in directed exploration. Impor-
tantly, GPe LFP theta activity lagged, and the causal relationship
between the two brain areas was reversed. Surprisingly, post-PCP,
the NHPs’ performance improved, making better predictions for the
correct cue, increasing the probability of making directed

Fig. 4 | LFP theta activity around cue choice alters under PCP administration.
a Analysis of local field potential (LFP) theta activity around cue choice in the naive
state. Top—Mean theta-band (4–7Hz) filtered LFP activity of the external segment
of the globus pallidus (GPe, brown) and dorsolateral prefrontal cortex (DLPFC,
purple), along with their corresponding envelopes. Middle—Mean ± SEM of the

cross-correlation between the theta-band filtered envelopes of theDLPFC and GPe,
computed across all individual envelope pairs. Bottom—Mean ± SEM of the Gran-
ger causality analysis of theta-band activity around cue choice (two seconds before
until two seconds after) across the two brain regions. b The same as subplot a for
the phencyclidine (PCP) period. c The same as subplot a for the post-PCP period.
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exploration and reducing the likelihood of making random
exploration. Neuronally, the causal relationship between the two
areas returned to its naïve pattern. The DLPFC regained its correla-
tion with the learning slope, while the GPe showed a substantial
increase in activity, strongly correlating with switch probability but
not with reward omissions. These findings, shown separately for
each NHP (Supplementary Fig. 9), led us to hypothesize that GPe
activity is imperative for maintaining balanced exploratory strate-
gies by modulating attentional control over access to WM in the
DLPFC23. Due to these findings and since the GPe has a low density of
NMDA-R51, we propose that the increase in GPe activity under PCP
administration was intensified by DLPFC dysfunction and impaired
WM and predictive ability (e.g., compensatory mechanism). The
subsequent rise in GPe activity post-PCP and the restoration of
predictive skills (WM) led to improved behavioral outcomes.

Computational modeling
We initially employed a basic reinforcement learning (RL) model in
which expected state-action values V ðs,aÞ are updated based on
reinforcement history for each stimulus-action pair. However, even at
the highest learning rate constant (α = 1), the model failed to learn fast

enough (Supplementary Fig. 10a). To overcome this limitation, we
used features attributed toWM in the followingmodels. First, we used
a full state-action update (FSA) model. This model updates all possible
stimulus-action pairs, unlike the basic RL model, which only updates
the chosen pair. Here, WM encodes observed events, inferring values
for unchosen stimuli based on the selected choice. This memory
retention immediately influences behavior, accelerating learning and
aligning with the NHPs’ behavioral results (Supplementary Fig. 10a
top). A different feature of WM that may be beneficial for learning
speed is forgetfulness. We, therefore, implemented a decay in the
model (ϕ) so that after the RL update, all state-action values are
degraded at thebeginningof the following trial52,53. Adding a forgetting
process (without a full state-action update) to the basic model
improved learning speed, replicating the NHPs’ behavioral results
(Supplementary Fig. 10a bottom).

Adaptive learning models - Next, we aimed to model the high
correlation observed between GPe activity and switch probability. We
hypothesized that a switch should occur when the surprise is high or
when knowledge is scarce. Therefore, we set the learning rate para-
meter αt to represent the model’s surprise level and examined its
relationship with recorded GPe activity (See the methods section for

Fig. 5 | PCP robustly affects behavior, DLPFC, and GPe activity. a Left—non-
human primates’ (NHPs) mean ± SEM learning curves in the naïve (black), phen-
cyclidine (PCP, red), and post-PCP (blue) conditions. The inset shows associated
learning slopes. Right—Average switch probability throughout the task, with the
inset showing the probability of choosing the correct stimulus in the first six trials
following a switch (a dashed gray linemarks the chance level).b Learning criterion:
average and SEM with 100 randomly selected data points overlaid. of the trial
number when learningwas achieved, defined as three consecutive successful trials.
p-values represent the significance (Bonferroni corrected) of the two-tailed t test
comparing learning criterion under PCP effect and post-PCP with the naïve state.
c Left—Directed exploration probability, mean ± SEM (switch probability after an
unsuccessful trial, with a total of 3202 trials in the naïve state, 5040 under the PCP
effect, and 355 after PCP withdrawal). Right—Random exploration probability
(switch probability after a successful trial, total of 18,869 trials in the naïve state,
13,159 under PCP effect, and 2715 after PCPwithdrawal). Insets showdata on a 0-1 Y-
axis. p-values represent the significance (Bonferroni corrected) of the two-tailed t-
test comparing directed and randomexploration probabilities in PCP and post-PCP
conditions to the naïve state. d Left—Pearson’s correlation of the dorsolateral

prefrontal cortex (DLPFC, top) and external segment of the globus pallidus (GPe,
bottom) activity with the probability of reward omission. Right—Correlation of
DLPFC activity with learning slope (top) and GPe activity with switch probability
(bottom). A total of 14,332 trials in the GPe and 10,708 trials in the DLPFC were
recorded in the naïve state; 8291 trials in the GPe and 5034 trials in the DLPFC were
recorded under the PCP effect; and 1788 trials in the GPe and 1858 trials in the
DLPFC were recorded after PCP withdrawal. e DLPFC (top) and GPe (bottom)
mean ± SEM FR around choice selection (time zero). f Left: Mean ± SEM activity in
DLPFC (top) and GPe (bottom) during the 2 s preceding choice selection (shaded
gray in e) following unsuccessful trials, across naïve (black), PCP (red), and post-
PCP (blue) conditions. Right: Same, for successful trials. p-values from Bonferroni-
corrected two-sample t tests compare each condition to naïve. Trial counts for
unsuccessful trials: naïve—1373 DLPFC/2,963 GPe (325/233 neurons); PCP—1749
DLPFC/3291GPe (178/149neurons); post-PCP—163DLPFC/192GPe (45/33 neurons).
For successful trials: naïve—10,662DLPFC/14,364GPe; PCP—4804DLPFC/8355GPe;
post-PCP—1464 DLPFC/1251 GPe. Each bar chart is overlaid with 100 randomly
selected data points falling within one standard deviation of the mean. For the full
distribution of data points, please see Supplementary Fig. 3.
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the complete mathematical derivation):

αt =C �
1� P rt js,a

� �

1 +P rt js,a
� �

 !σ

ð1Þ

whereC is a constant, C 2 0, 1ð � allowing to shift αt baseline level and σ
is the SD of choice probabilities. Thus, when knowledge about the
correct cue is low or when the level of surprise is high, αt increases.

Adaptive forgetful and full state-action update models - These
models are similar to the basic forgetful and full state-action
update (FSA) models, with one key difference: the step-size para-
meter αt changes dynamically based on the need for learning. Spe-
cifically, αt adjusts in response to the model’s “surprise” and
knowledge of the current task state. This learning rate controls how
much stimulus values are updated and hence the pace of learning.
Higher αt values correspond to faster, more vigorous learning,
whereas lower values correspond to slower or evenminimal learning.
The state-action update role for the adaptive forgetful model is
therefore

V st ,at

� � V st ,at

� �
+αt × rt � V st ,at

� �� � ð2Þ

And for the adaptive FSA model is:

V schosent ,at

� � V schosent ,at

� �
+αt × rt � V schosent ,at

� �� �

V sunchosent ,at

� � V sunchosent ,at

� �
+αt 1� Rt � V sunchosent ,at

� �� � ð3Þ

In this framework, αt acts as a modulator of attention, effectively
combining elements of Mackintosh and Pearce-Hall’s attention
theories54–56. Attention is allocated based on the understanding that
spatial cues reliably predict reward outcomes, aligning with Mack-
intosh’s theory, which assigns greater attention to well-established
predictors. Conversely, when knowledge about the correct cue is low
orwhen a surprising outcome occurs, attention increases, as proposed
by Pearce-Hall’s theory, directing focus toward stimuli with uncertain
or unpredictable associations. Thesemodels are biologically plausible,
as they conserve the agent’s energy and minimize the risk of learning
insignificant or erroneous information.

Reinforcement learning + working memory, combined model—
this model integrates basic RL and WM models. To capture the tran-
sient nature of WM, we simulated it using a forgetful RL model with a
learning rate of one52. Here, an observed event, when retained, can
immediately and profoundly influence behavior but remains acces-
sible only for a relatively short duration52,53. Since the set size is small
(three stimuli) and does not change, we assume no capacity limitation.
The action selection of the RL and WM models was determined
using the SoftMax function pwm að Þ= softmax Twm,Vwm

� �
,pRL að Þ=

softmax TRL,VRL

� �
. The probability that the RL or the WM component

governs action selection is fixed by the surprise measure αt .

p að Þ=αt ×pWM + ð1� αtÞ×pRL ð4Þ

Thus, in situations requiring cognitive flexibility—when knowl-
edge is limited or surprise is high—the WM component will dominate
the action selection process. Conversely, when surprise is low and
sufficient knowledge has been accumulated, the RL component will
take precedence in determining actions.

First, we tested whether αt acts similarly to the GPe recordings in
each of the models. We, therefore, ‘forced’ the models to replicate the
NHPs’ behavioral choices and calculated the resultant αt values. We
found that αt values highly correlate with theNHPs’GPe discharge rate
in allmodels (Fig. 6a, c top, Supplementary Fig. 10c). Next, we assessed
whether the models could reproduce the observed neuro-behavioral
outcomes when faced with the behavioral task (i.e., the models were
now free tomake their own choices to solve the task). Indeed, all three

models showed a high degree of correlation with the NHPs’ behavioral
data (Fig. 6a, c, middle, Supplementary Fig. 10c). Moreover, the
models’ αt value was highly correlated with the learning slope (Sup-
plementary Fig. 10b) and switch probability (Fig. 6a, b, bottom), as was
the NHPs’GPe activity (Fig. 3b). This suggests that themodels’ αt value
may play a similar role in learning and decision-making as the NHPs’
GPe activity.

Subsequently, we investigated the three adaptive models’ capa-
city to explain the neuro-behavioral changes observed following PCP
administration. For this purpose, we increased the pseudo-
temperature T value in the adaptive FSA model and the forgetfulness
ϕ value in the adaptive forgetful and combined models and examined
the changes in the models’ behavior and αt value throughout the task
(Fig. 6b, d left columns and Supplementary Fig. 10d). This single
parameter change caused all three models to learn slower (Fig. 6b, d
left columns top) and increased random exploration probability
together with elevated αt values (Fig. 6b, d left columns bottom) fol-
lowing successful trials (mirroring the neurobehavioral results under
PCP). Conversely, directed exploration probability decreased in all
models, while αt values following an unsuccessful trial did not change
monotonically (Fig. 6b, d, middle, Supplementary Fig. 10d). These
results again mirror the NHPs’ neurobehavioral results, where the
directed exploration decreased under PCP, but GPe activity did not
significantly change (Fig. 5c, f).

Finally, we investigated themodels’ capacity to explain the neuro-
behavioral changes observed following the cessation of PCP adminis-
tration. We restored T and ϕ to their original values and systemically
increased αt modulator value, C, thus increasing its ‘baseline’ level
linearly (simulating the increase inGPedischarge rate). Consistentwith
the NHPs’ post-PCP results, all models showed that an increase in the
basal level ofαt enhances learning speed (Fig. 6b, d, top right columns)
and increases the likelihoodof directed exploration, accompaniedby a
rise in αt after unsuccessful trials (Fig. 6b, middle right columns),
mirroring the neurobehavioral findings (Fig. 5a–c, f). On the other
hand, random exploration probability decreased, accompanied by an
increase in αt value in the FSA and forgetful models (Fig. 6b bottom
right columns, Supplementary Fig. 10d), mimicking the NHPs’ results
(Fig. 5c, f), but increased in the combined model (Fig. 6b bottom right
column).

All threemodels show that αt basal level positively correlates with
learning speed and directed exploration probability. Two of the three
further show that intensifying αt is accompanied by a decrease in
random exploration probability, while the combined model predicts
the opposite result. Notably, the adaptive models indicate that
enhancing GPe activity, e.g., by low-frequency electrical stimulation of
the GPe, may confer benefits for task performance in our NHPs with
PCP-induced cognitive schizophrenia-like symptoms.

GPe stimulation restores PCP effected directed and random
exploration imbalance
To test the prediction of the adaptive models and investigate the
causal relationship between GPe activity and behavioral performance
under the influence of PCP, we conducted macro-electrode stimula-
tion of the GPe during the NHPs’ behavioral task performance. We
administered either a high-frequency (130Hz, neuronal activity
dampener57–59) or low-frequency (13Hz, activity enhancer60–62) long-
duration stimulation to the GPe of the NHPs under PCP influence. In
line with the prediction of the adaptive models, the frequency of sti-
mulation had a significant impact on task performance. High-
frequency stimulation leading to poorer performance and low-
frequency stimulation resulting in improvement (Fig. 7a). Decreasing
GPe activity by long-duration 130Hz stimulation reduced cognitive
flexibility and the probability of directed exploration, while increasing
GPe activity by low-frequency stimulation enhanced it (Fig. 7bmiddle).
Furthermore, the NHPs’ learning dynamics improved when GPe
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activity was enhanced by 13Hz stimulation, leading to faster learning
(Fig. 7a). In line with the FSA update and forgetful models, decreasing
GPe activity by 130Hz stimulation increased random exploration,
whereas increasing GPe activity by 13Hz stimulation decreased ran-
dom exploration (Fig. 7b).

The behavioral effects of the stimulation, shown separately on
each NHP (Supplementary Fig. 11), highlight the modulatory role of
GPe activity in cognitive flexibility and E-E balance. As GPe activity
intensified, cognitive flexibility improved, and exploration patterns
becamemore accurate, leading to an increased probability of initiating
directed exploration and a decreased likelihood of performing ran-
dom exploration. Conversely, reducing GPe activity resulted in lower
cognitive flexibility and less precise exploration patterns. This aligns
with the classical rate models of the basal ganglia that predict a
reduction in the GPe discharge rate following Parkinson’s dopamine
depletion63. Lower cognitive flexibility is indeed a common symptom
in all stages of Parkinson’s disease. Thus, our stimulation studies with
bidirectional effects on GPe activity and the resulting opposite effect
on directed and random exploration probabilities suggest that GPe
serves a critical function in controlling cognitive flexibility and E-E
balance33.

Discussion
Exploration is an action aimed at learning through experience of
unfamiliar modalities. It can be directed by information seeking
demanded by environmental changes or randomly generated by
internal decision noise. Cognitive flexibility and exploration strategies
are intertwined and imperative for learning, and both require well-
grounded WM. The BG and the DLPFC are believed to have significant
roles in both cognitive flexibility9–11, WM23–25,64 and exploration
strategies17–21,65. The DLPFC, the center of executive functions, and the
GPe, through GPe-subthalamic and other BG main-axis loops, have
been suggested as the primary hubs controlling the E-E balance17–21,65.

Additionally, GPe may dynamically regulate WM, stored in cortical
areas, according to the changing environment and the agent’s
needs23–25. This gating is probably maintained by reducing the dimen-
sionality of the information sent from the whole cortex to the BG and
back to the frontal cortex18,23. Our results support the attention-gating
hypothesis23–25, suggesting that the GPe plays a role beyond being a
switch for exploration. The GPe may help focus attention on relevant
information and suppress irrelevant information, which is essential for
accurate exploratory strategies.

Subjects with schizophrenia have dysfunctional cortical and GPe
activities29–32. They also manifest decreased cognitive flexibility and
diminished drive for directed exploration but excessive drive for ran-
dom exploration27,28. Recently, the E-E balance has been suggested to
be a holistic and ecologically valid framework to resolve some of the
apparent paradoxes that have emerged within schizophrenia
research28. A reduction in directed exploration has been linked to
greater anhedonia66, as patients are less likely to discover that alter-
native actions could lead to more rewarding outcomes, reinforcing
their diminished motivation and pleasure. Conversely, an increase in
random exploration has been associated with positive symptoms,
particularly delusional thinking28. Excessive exploration may lead to
over-association between unrelated stimuli, contributing to the for-
mation and persistence of delusions.

Tobetter understand theneural underpinningsof theseprocesses
in the healthy state and under PCP effect causing a similar shift in the
E-E balance, we used a deterministic three-armed bandit task. We
intentionally chose a deterministic task instead of a probabilistic one
to better differentiate the two exploration types. In this setting, post-
unsuccessful exploration is aimed at information seeking, and post-
successful exploration is most likely generated by internal noise (be it
an unintentional mistake, forgetfulness, or other). Here, we show that
increased GPe activity enhances cognitive flexibility and improves
exploratory strategies (both directed and random).

Fig. 6 | Adaptive reinforcement learning models replicate neuro-behavioral
results and predict potential benefits for GPe stimulation under PCP admin-
istration. a, b Adaptive forgetful model. a Top—Comparing the non-human pri-
mates’ (NHPs) normalized recorded activity of the external segment of the globus
pallidus (GPe) firing rate (FR, solid line) with the normalized surprise measure αt

(dashed line) calculatedbasedon theNHPs’ choices. r andp indicate the correlation
coefficient and p-values using Pearson’s correlation. Middle—Comparing the
models’ and the NHPs’ learning curves. Bottom - Comparing αt value with the

models’ switch probability. b Simulating the phencyclidine (PCP) state by increas-
ing themodel’s forgetfulness (ϕ). Simulated parameters color graded fromblack to
red (ϕ=0:1� 1). Top, learning criterion.Middle—αt value after anunsuccessful trial
compared with the probability for directed exploration. Bottom—αt value after a
successful trial compared with the probability for random exploration. c The same
as (b), this time increasing the value of C, the αt modulating parameter. d–f The
sameas (a–c), here showing the results of the adaptive combined (WM+RL)model.
WM working memory, RL reinforcement learning.
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The central location of the GPe within the basal ganglia led us to
explore two hypotheses using computational models. The RL +WM
combined model posited that the GPe acts as a gatekeeper between
the striatal-based RL habitual system and the goal-directed system
of the DLPFC. In contrast, the adaptive forgetful and the FSAmodels
treated the GPe as modulating attention, without distinguishing
between these two learning systems. Both models replicated the
results well with one key difference. While the combined model
predicted a positively correlated increase in random exploration
with αt elevation, the forgetful model predicted a negatively corre-
lated decrease. We found that increasing the activity of the
GPe using low-frequency stimulation60–62 decreased random
exploration probability, thus, favoring the forgetful or the FSA
models. Of note, the exact mechanism and effect of DBS are under
open discussion.

Our findings underscore the critical role of GPe activity in reg-
ulating cognitive flexibility and the E-E balance. Consistent with the
predictions of adaptive models, the effects of GPe stimulation were
frequency-dependent: high-frequency (130Hz) stimulation impaired
task performance, reducing cognitive flexibility and directed
exploration while increasing random exploration, whereas low-
frequency (13Hz) stimulation had the opposite effect, enhancing
learning dynamics and promotingmore accurate exploration patterns.
However, a limitation of our study is that we could not examine DLPFC
neural dynamics during macro-stimulation due to recording artifacts,
preventing simultaneous assessment of its role in these effects.

Given that schizophrenia is characterized by reduced directed
exploration, contributing to anhedonia66, and increased random
exploration, which is linked to delusional thinking28, GPe stimulation
could offer a potential therapeutic strategy. By low-frequency

Fig. 7 | GPe low-frequency macro stimulation improves task performance
under PCP administration, whereas high-frequency stimulation hampers it.
Behavioral performance analysis was carried out under phencyclidine (PCP)
administration. Red - No stimulation, blue—130Hz continuous stimulation (activity
dampener), and green—13Hz continuous stimulation (activity enhancer). aTop—
Mean ± SEM learning curve. Inset shows a one-second recording during 130Hz
stimulation (green) and during 13Hz stimulation (blue), the gray bar shows 500ms
duration anda recordingof one stimulation epoch (yellow).Middle—learning slope.
Bottom—Switch probability.bTop—Mean ± SEM learning criterion (achieving three

consecutive correct choices) during 130Hz stimulation (left, blue, total of 343
blocks), no stimulation (middle, red, total of 770 blocks), and 13Hz stimulation
(right, green, total of 236 blocks). Middle—the non-human primates’ (NHPs)
Mean ± SEM probability of making directed exploration (i.e., to switch their choice
after a prediction-outcome mismatch). A total of 1762 trials during 130Hz stimu-
lation, 3,611 trials without stimulation and 771 trials with 13Hz stimulation. Bottom
—The NHPs’ Mean ± SEM likelihood of making random exploration (i.e., to switch
their choice after congruent prediction-outcome). A total of 3345 trials under
130Hz stimulation, 7939 trials without stimulation and 2681with 13Hz stimulation.
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stimulationGPe activity, directed explorationmaybe restored, helping
patients better recognize rewarding alternatives, while excessive ran-
dom exploration may be suppressed, reducing over-association
between unrelated stimuli that contribute to delusions. These results
suggest that targeted modulation of GPe activity could help rebalance
the E-E trade-off in schizophrenia, improving cognitive flexibility and
adaptive decision-making. In the future, it would be valuable to
investigate GPe activity using an alternative schizophrenia model to
further validate these findings.

Schizophrenia affects an estimated 21 million people worldwide
(0.3–0.5% of adults)67, with up to 34% being treatment-resistant68 and
having limited options after first-line therapies fail. This has driven
research into potential DBS targets, including the nucleus accumbens,
hippocampus, GPi, dorsomedial thalamus, and medial septal
nucleus69, based on DBS success in depression and obsessive-
compulsive disorder. Here, we show that low-frequency GPe stimula-
tion improves the E-E balance disrupted by PCP, aligning with studies
suggesting the GPe-GPi lamina as an optimal DBS target for
Parkinson’s70 and GPe stimulation for insomnia71. Future research
should investigate theta activity-specific parameters as biomarkers,
similar to adaptive DBS in Parkinson’s72 and obsessive-compulsive
disorder73. Still, our findings support exploring GPeDBS for treatment-
resistant schizophrenia, potentially as part of a multi-electrode strat-
egy pairedwith target for positive symptoms (e.g., the substantia nigra
or accumbens).

Materials and Methods
Animal training and behavioral tasks
Data were obtained from two female vervet monkeys (Cercopithecus
aethiops, monkeys K and R) weighing 3.5–4 kg. All data were pooled
for bothmonkeys for all analyses.Care and surgical procedureswere in
accordancewith the National Research Council Guide for the Care and
Use of Laboratory Animals74 and the Hebrew University guidelines for
the use and care of laboratory animals in research. The study was
approved (MD-15-14412-5) and supervised by the institutional animal
care and use committee of the Hebrew University and Hadassah
Medical Center. The Hebrew University is an Association for Assess-
ment and Accreditation of Laboratory Animal Care internationally
accredited institute.

The behavioral paradigm used was a multiblock three-choice
reversal learning task (Fig. 1b). The NHPs used their right (contralateral
to the recording hemisphere) hands to touch stimuli presented on a
screen that was located ∼16 cm from their heads (Elo 1939L 19-inch
open-frame touch-monitor; Elo Touch Solutions Limited). Three
square fractal images were randomly selected as stimuli in each daily
session out of 10 possible images. The stimuli were presented in fixed
positions throughout the session, on the white screen’s left, right, and
center. Each trial began with a presentation of a black horizontal box
on the lower right corner of the screen (Fig. 1b). To initiate a trial, the
NHPs touched the black rectangle, which then disappeared. Two sec-
onds later, the three fractal stimuli appeared. All three stimuli dis-
appeared after touching (choosing) one of the three. Two seconds
later, a red horizontal box appeared on the bottom of the screen.
Touching this boxwas followedby three simultaneous results: The box
would disappear, a banana-flavored liquid reward was either delivered
or not (according to the NHPs’ choice), and an ∼80ms auditory sti-
mulus was played, obscuring any acoustic artifacts of the food pump.
The sound played independently of the trial’s outcome. Trials were
aborted if no choice was made within 30 s or the red box was not
touched within 30 s. All trials (correct, incorrect, and aborted) were
followed by a variable intertrial interval (ITI) lasting 5–8 s. For each
block, only one of the three stimuli was deterministically rewarded. No
reward was delivered for the choice of other stimuli. The NHPs had no
guiding information pointing them toward the correct stimulus. Still,
eventually, learning was established, and the probability of choosing

the correct stimulus reached a plateau (Fig. 1c). The criterion for
learning was reached once the monkey chose the rewarded stimulus
for 12–15 trials out of the last 25 (the criterion was randomly selected
per block). Once this happened, an un-cued switch in the reward sti-
mulus’s identity occurred (i.e., reversal), and a new block started. Each
daily session ended once the monkeys no longer initiated trials. After
long periods in which the monkeys did not work, the experimenter
occasionally delivered a free reward to re-motivate them. The beha-
vioral paradigm was designed and run using the Psychophysics tool-
box (Brainard et al., 1997) for MATLAB (The MathWorks, Inc.).
Monkeys were trained for 5–6 days per week and were allowed free
access to water in their home cages. Supplementary food was deliv-
ered when the monkeys did not reach the predefined daily calorie
minimum. NHPs were given free access to food on the weekends.

Surgery and MRI
The NHPs were fully trained on the task (4–5 months) before the
recording chamberwas implanted. After the training period, theywere
operated on under full anesthesia and sterile conditions. In the sur-
gery, an MRI-compatible Cilux head holder (Crist Instrument) and a
square Cilux recording chamber (AlphaOmega) with a 27mm (inner)
side, located above a burr hole in the skull, were attached to the heads
of the monkeys. The recording chamber was attached to the skull,
tilted ∼45° laterally in the coronal plane, with its center targeted at the
stereotaxic coordinates of the left GPe (Fig. 1a). All surgical procedures
were performed under aseptic conditions and general isoflurane and
N2O deep anesthesia. Analgesia and antibiotics were administered
during surgery and continued postoperatively. Recording began after
a postoperative recovery period of several days. We estimated the
stereotaxic coordinates of the recording target using MRI scans. The
MRI scan (General Electric 3 tesla system, T2 sequence) was performed
under i.m. Domitor and ketamine moderate sedation. Upon experi-
ment completion, all surgical attachments were removed from NHPs.
The NHPs were then rehabilitated and placed at the Israeli Primate
Sanctuary.

Recording and data acquisition
During recording sessions, the heads of the monkeys were immobi-
lized, and simultaneously, up to eight glass-coated tungsten micro-
electrodes (impedance 0.15–1 MΩ at 1000Hz), confined within a
cylindrical guide (1.65-mm inner diameter) were advanced separately
(EPS; Alpha- Omega Engineering) into the GPe and the DLPFC (four to
the GPe and four to the DLPFC). The electrical activity was amplified
with a gain of 20, then filtered using hardware Butterworth filters
(high-passed at 0.075Hz, two poles; low-passed at 10,000Hz, three
poles) and finally sampled at 44.6 kHz (SnR; Alpha-Omega Engineer-
ing). Cortical and GPe units were identified by stereotaxic and MRI
coordinates, electrophysiological hallmarks of the encountered
structures along the penetration, and unique characteristics, such as
GPe neurons’ high FRs and pausing behavior75. Neuronal activity was
sorted and classifiedonline using a template-matching algorithm (SnR;
Alpha-Omega Engineering). Each entry position was registered
according to the chamber’s X-Y coordinates, and brain structures were
identified electro-physiologically, creating a 3D map of the desired
brain column beneath the chamber. Cells were selected for recording
as a function of their isolation quality and optimal signal-to-noise
ratio76. For our analysis, we included only GPe andDLPFC neuronswith
isolation scores exceeding 0.8 and 0.7, respectively. We recorded a
total of 325 DLPFC and 233 GPe neurons in the naïve state, 178 DLPFC
and 149 GPe neurons in the PCP state, and 45 DLPFC and 33 GPe
neurons after PCP withdrawal.

Analysis of behavior
To evaluate the NHPs’ exploratory behavior, we categorically divided
exploration patterns into exploration-favorable (following a
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prediction-outcome mismatch) and exploitation-favorable (without
such mismatch) trials. The former are trials that followed an unsuc-
cessful trial (i.e., post-mistake) in which exploration (i.e., switch of
choice) will lead to reward, and the latter are trials that followed a
successful trial (i.e., post-correct) in which exploitation (i.e., choosing
the same stimulus as before) will lead to reward. Each category was
further subdivided into two groups, resulting in four options. (1)
Directed exploration—trials following anunsuccessful trial inwhich the
NHPs switched their choice (i.e., explored). (2) Perseveration—trials
following an unsuccessful trial in which the NHPs did not switch their
choice. (3) Random exploration—trials following a successful trial in
which the NHPs’ switched their choice. (4) exploitation –trials follow-
ing a successful trial in which the NHPs did not switch their choice.

We also evaluated the learning dynamics throughout the task,
looking at five main parameters. The learning curve, defined as the
NHPs’ success rate (i.e., the probability of choosing successfully), the
learning slope (the derivative to the learning curve), switch probability
(i.e., the probability of choosing a different cue than the choice of the
previous trial), which was further divided to successful switch prob-
ability (i.e., the probability to switch successfully—finding the correct
cue) and unsuccessful switch probability (i.e., the probability of
switching unsuccessfully). We further analyzed the NHPs’ likelihood of
success if they changed their choice (i.e., the probability of success
given that a switch was made). This analysis provides more precise
information about the NHPs’ memory of the previous states (50%
chance is a random choice).

Lastly, we evaluated the NHPs’ response times. Response times
were defined as the time it took the NHPs to 1) choose one of the three
stimuli and 2) claim the reward outcome by pressing the red rectangle
(i.e., reaction plus movement time). All data analysis was performed
using MATLAB (The MathWorks, Inc.).

Analysis of single-unit firing activity
Data analysis was conducted only for units that were stably held, well-
isolated [isolation score (24) ≥0.8 in the GPe and ≥0:7 in the DLPFC]
and unquestionably identified as either cortical or GPe units. Only GPe
units that fired ≥20 spikes per second on average were included (thus
focusing on the prototypical high-frequency discharge population).
Continuous traces showing GPe spiking activity (Fig. 1a) were obtained
using a two-pole Butterworth filter (1000–3000Hz). Resting neural
activity was recorded during the last three seconds of the inter-trial
interval (Supplementary Fig. 7). To calculate FR during the trial, we
defined a two-secondbaseline period tomeasure changes from resting
activity. This baselinewas used to generate z-scoreddynamic temporal
patterns of GPe and DLPFC activity (PSTHs). We divided each second
into ten nonoverlapping bins and calculated the spike count per bin.
This data, per trial, was used as a baseline for the PSTHs. For each
time point of the PSTH, the baseline discharge rate for that trial was
subtracted from the count per bin, and the difference was divided
by the baseline SD. We used the last two seconds of the ITI as the
baseline for all epochs (except for neuronal activity in response to
reward/reward omission). The baseline discharge rate for z-score
calculation of neuronal activity in response to reward and reward
omissions (Figs. 2a and 3a) was the two seconds preceding reward
claiming (i.e., two seconds before pressing of the red box). The
obtained values were smoothed in all cases using a 50ms-wide
Gaussian Kernel (MATLAB’s filtfilt function).

Chronic, low-dose PCP administration
A mini-osmotic pump (Alzet osmotic pump model 2ML4) was
implanted subcutaneously between the scapulae of both NHPs, pro-
viding a continuous daily dose of 1.68mg/kg for 28 days. Both NHPs
were implanted twice with at least one month washout period in
between. Post-PCP recordings started at least two weeks after pump
removals.

Macro-stimulation
Using the3Dmapconstructedduringour recording sessions,we chose
a desired stimulation position, maximizing the GPe location. We then
placed a microgrid attached to the chamber’s inner wall. Using a spe-
cially designed guiding tower (AlphaOmega) we inserted a (recording)
micro-electrode to the desired location, marked the GPe borders, and
identified its center. Placing the concentric macro-electrode (microP-
robes CEAX 200) into the head mount allowed us to insert it into the
desired location and stabilize it to the grid using dental cement. The
macro-electrode remained connected and immobilized to the cham-
ber. No sooner than three days after implantation, experimentation
resumed. The NHPs were given either 13Hz or 130Hz macro-stimula-
tion, on alternating days, during the behavioral task while we recorded
their performance.

Data analysis
Statistical analyses were performed using MATLAB version R2022b
and are described in the figure legends. The letter ‘r’ represents the
correlation coefficient for correlation analyses. The corresponding
probability value, P, is the probability of getting ‘r’ as large as the
observed value by random chance when the true correlation is zero
and was computed by transforming the correlation to create a
t-statistic. When there were multiple comparisons, the Bonferroni
correction was used (i.e., the obtained P-value was multiplied by the
number of comparisons) before significance testing (P <0.05) and is
presented as such. All data presented met the assumptions of the
statistical test used.

Computational modeling
Basic RL model - We initially employed a standard reinforcement
learning (RL) model in which expected state-action values V ðs,aÞ are
updated based on reinforcement history for each stimulus (s) and
action (a). The value for the selected action given the stimulus is
updated based on the observation of the trial’s reward outcome, rt , as
a function of the prediction error between the expected and observed
reward

V st ,at

� � V st ,at

� �
+α × rt � V st ,at

� �� � ð5Þ

In this model, the learning rate α is constant. Choices are gener-
ated probabilistically as a function of the difference in state-action
values using the SoftMax probabilistic choice function:

p choose si
� �

=
e
V ðSi Þ
TRL

P3
j = 1e

V ðSj Þ
TRL

ð6Þ

Such that the ‘temperature’T sets the level of noise in the decision
process, with large T corresponding to high decision noise with nearly
random decision and small T corresponding to low decision noise and
near-deterministic (greedy) choice of the highest-value option. Full
state-action (FSA) update model - Unlike the simple RL model, where
learning is confined to the action taken and its immediate reward, we
simulated WM as encoding an observed event, incorporating infer-
ences about the unchosen stimuli based on the choicemade (full state-
action update). Thus, when retained in memory, it immediately and
significantly influences behavior.

VWM schosent ,at

� � VWM schosent ,at

� �
+α × rt � VWM schosent ,at

� �� �

VWM sunchosent ,at

� � VWM sunchosent ,at

� �
+α 1� Rt � VWM sunchosent ,at

� �� �

ð7Þ

Forgetful RL model - A different feature of WM that may be
beneficial for learning speed is forgetfulness. We, therefore, imple-
mented a decay in the model so that after the RL update, all state-
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action values are degraded at the beginning of the following trial52,53.
Here, state-action value learning and action selection are
identical to the basic RL model with the addition of a forgetting
process over time. At the beginning of every trial, the state-action
values of all stimulus-action pairs are decayed towards their
initial values.

V s,að Þ=V s,að Þ+ϕ× V0 � V s,að Þ� � ð8Þ

Where V0 =
1
n is the initial state-action value for all pairs and n

represents the number of presented stimuli to choose from.ϕ controls
the degree of forgetfulness. Adding a forgetting process to the basic
model improved learning speed, replicating the NHPs’ behavioral
results (Supplementary Fig. 10a).

Adaptive parameter αt derivation
Wedefined P =p rt js,a

� �
as themodel assignedprobability of receiving

the reward value rt given a choice (we assumed negligible noise in the
process of perceiving reward). For example, assume that
p rt = 1js1,a1

� �
=0:98 and S1 was chosen. If rt = 1, meaning, a reward

was given then P =0:98. But if a reward was not given,
then P = 1� p rt js1,a1

� �
=p rt js2,a2

� �
+p rt js3,a3

� �
=0:02.

We then use Shannon entropy to evaluate surprise, given a choice,
and the perceived reward,� logðPÞ. To normalize the surprise value to
the range ½0, 1� we use the following function f surpriseðxÞ:

f surprise xð Þ= ex � 1
ex + 1

x = � logðPÞ

f surprise � log Pð Þð Þ= e� logðPÞ � 1
e� logðPÞ + 1

=
1
P � 1
1
P + 1

=
1� P
1 + P

f surpriseðP = 1Þ=0≤ f surpriseðPÞ≤ 1 = f surpriseðP =0Þ ð9Þ
Therefore, as the mismatch between the prediction and the out-

come is small ðP! 1Þ surprise is low, and f surprise value decreases. But
when the mismatch between the prediction and the outcome is large
(P ! 0) the surprise is high, and f surprise value increases.

To increase its value in situations of least knowledge (i.e.,
V ðS1Þ ffi V ðS2Þ ffi V ðS3Þ) we raised f surprise by the power of the standard
deviation (SD) of the value of their corresponding probabilities,
std p rt js1,a1

� �
,p rt js2,a2

� �
,p rt js3,a3

� �� �
. Such that when the SD is low,

the value will increase, and when it is high, it will not. Finally, receiving
the following parameter αt

αt =C � f surprise Pð Þ
� �σ ð10Þ

WhereC is a constant,C 2 0, 1ð � allowing to shiftαt base line level andσ
is the SD of choice probabilities.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the figshare
database, https://doi.org/10.6084/m9.figshare.27021373.

Code availability
The code for the reinforcement learning model is available on the
Code Ocean platform, https://doi.org/10.24433/CO.3920364.v1.
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