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Simple Summary: Molecular signatures predictive of recurrence-free survival (RFS) and castration
resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of
current signatures is limited. This study aims to identify castration-resistant PCa (CRPC)-associated
genes and develop robust RFS and CRPC signatures. Among 287 genes differentially expressed
between localized CRPC and hormone-sensitive PCa (HSPC) samples, 6 genes constituted a signature
(CRPC-derived prognosis signature, CRPCPS) that predicted RFS. Moreover, a 3-gene panel derived
from the 6 CRPCPS genes was capable of distinguishing CRPC from HSPC. The CRPCPS predicted
RFS in 5/9 cohorts in the multivariate analysis and maintained prognostic in patients stratified by
tumor stage, Gleason score, and lymph node metastasis status. It also predicted overall survival and
metastasis-free survival. Notably, the signature was validated in another six independent cohorts.
These findings suggest that these two signatures could be robust tools for predicting RFS and CRPC
in clinical practice.

Abstract: Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance
are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signa-
tures is limited. Here, we applied the Robust Rank Aggregation (RRA) method to PCa transcriptome
profiles and identified 287 genes differentially expressed between localized castration-resistant PCa
(CRPC) and hormone-sensitive PCa (HSPC). Least absolute shrinkage and selection operator (LASSO)
and stepwise Cox regression analyses of the 287 genes developed a 6-gene signature predictive of
RFS in PCa. This signature included NPEPL1, VWF, LMO7, ALDH2, NUAK1, and TPT1, and was
named CRPC-derived prognosis signature (CRPCPS). Interestingly, three of these 6 genes constituted
another signature capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9
cohorts in the multivariate analysis and remained valid in patients stratified by tumor stage, Gleason
score, and lymph node status. The signature also predicted overall survival and metastasis-free
survival. The signature’s robustness was demonstrated by the C-index (0.55–0.74) and the calibration
plot in all nine cohorts and the 3-, 5-, and 8-year area under the receiver operating characteristic curve
(0.67–0.77) in three cohorts. The nomogram analyses demonstrated CRPCPS’ clinical applicability.
The CRPCPS thus appears useful for RFS prediction in PCa.

Keywords: prostate cancer; castration-resistant prostate cancer (CRPC); prognosis; gene signature;
recurrence-free survival

1. Introduction

Prostate cancer (PCa) is one of the most commonly diagnosed malignancies in men
worldwide [1]. For example, in 2019 alone, an estimated 174,650 new cases of PCa were
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diagnosed, and 31,620 men died of PCa in the United States [2]. While most prostate
cancers are benign, some progress to relapse or metastasize to other organs after initial
surgery and radiation therapies, presenting a series of aggressive disease characteristics
and killing patients. It is estimated that 17–33% of PCa patients who have received
radical prostatectomy will experience a biochemical recurrence, and approximately 30%
of individuals develop metastatic disease [3–8]. Androgen deprivation therapy (ADT), a
mainstay of treatment against locally advanced or metastatic PCa, suppresses the growth
of PCa via a decline in the circulating testosterone or functional inhibition of androgen
receptor (AR) [9,10]. However, most ADT-treated patients eventually develop a castration-
resistant PCa (CRPC) after 12–24 months of ADT treatment, and the median survival time
of CRPC patients is approximately 14 months [11].

Previous studies have demonstrated that some clinicopathological characteristics
can provide important prognostic information for monitoring disease progression in PCa,
including PSA (prostate-specific antigen) level, Gleason score, pathological tumor stage,
and lymph node status. However, the prediction power of these conventional markers is
often limited, especially for patients with an ambiguous clinical diagnosis or intermediate
grades or stages. With the availability of cancer genome sequences at both DNA and RNA
levels, numerous molecular indicators have been developed to predict disease progression,
including recurrence-free survival (RFS). Some of the biomarkers are based on a single
gene’s alterations, such as those of BRCA2 [12,13], miR-301a [14], AXIN2 [15], and NRP1 [16].
Some others are multi-gene-based, including the Oncotype DX (17 genes) [17], the Prolaris
(31 genes) [18], and the miRNA-based prognostic ratio MiCaP model (4 miRNAs) [19]. Such
molecular biomarkers have been shown to enhance the accuracy of PCa aggressiveness
prediction.

However, several obvious limitations for the application of such molecular biomarkers
are noticed. Firstly, most of the gene signatures were developed from a defined set of
genes related to specific cellular hallmarks of cancer, including those of autophagy [20],
hypoxia [21], matrix metalloproteinases [22], immune infiltration [23], and cell cycle [24].
Secondly, only a fraction of those signatures have been assessed for their application in pre-
dicting RFS in PCa patients with a specific clinicopathological parameter, including tumors
with the Gleason score of seven and those with or without lymph node metastasis [25,26].
PCa is highly heterogeneous, so many complicated molecular mechanisms are responsible
for disease relapse even in tumors with the same tumor stage, grade, or lymph node status.
Thirdly, some of the signatures contain many genes (e.g., 100-gene set [27]), which could
be a barrier in their clinical application. In addition, a limited number of patients have
been included in most previous studies, which may compromise the prediction power
or reliability.

Regarding the signatures for CRPC, only a small number of studies are available
and even fewer compared genome-wide expression profiles between hormone-sensitive
prostate cancer (HSPC) and CRPC. Furthermore, although many studies have developed
molecular signatures that can predict disease recurrence, none of them have been used to
distinguish CRPC from HSPC tumors.

In this study, we attempted to develop robust signatures for RFS and CRPC prediction
in PCa. We identified 287 differentially expressed genes (DEGs) between localized CRPC
and HSPC tumors from 4 GEO (Gene Expression Omnibus) datasets. Based on these
DEGs, we developed a 6-gene CRPC prognostic signature (CRPCPS) that can predict RFS.
Moreover, a 3-gene panel derived from the 6-gene CRPCPS distinguished CRPC from
HSPC with high specificity and sensitivity in both the training and validation cohorts.
This CRPCPS was further validated in another 6 independent datasets from different plat-
forms. Notably, the CRPCPS remained valid across different clinicopathological subgroups,
including tumors with the same Gleason scores, pathological tumor stage, and lymph
node status. Its robustness and applicability in clinical practice were demonstrated by
the AUC (area under the receiver operating characteristic curve) and nomogram analyses,
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respectively. The robust performance of these signatures on predicting RFS and CRPC
indicates their universal applicability in clinical practice.

2. Materials and Methods
2.1. Patient Cohorts

Four gene expression profiles of PCa, including GSE6811 [28], GSE2443 [29], GSE28680 [30],
and GSE70768 [27], were downloaded from the Gene Expression Omnibus (GEO) (http:
//www.ncbi.nlm.nih.gov/geo accessed on 5 September 2019) and used to identify DEGs
between localized CRPC and HSPC samples (Table S1). The criteria for selecting these
datasets included: (1) Gene expression data must be available for both CRPCs and HSPC
tumors, (2) both CRPCs and HSPC tumors must be derived from the primary site (metas-
tases and those with ambiguous sources were excluded), and (3) at least 5000 genes must be
included when the microarray platform is used for expression profiling. In general, a CRPC
is defined by the consecutive elevation of serum PSA levels and/or the appearance of
progressive measurable diseases such as enlargement of a primary tumor or the detection
of metastasis. Of the 5 datasets (including the GSE35988 dataset below) with CRPC tumors,
only two provided CRPC definition (GSE2443 and GSE6811), and both datasets used one
or more of the above criteria. In the other three datasets, a patient’s CRPC status was
provided without specifying how it was defined. CRPC and HSPC statuses of all patients
were retrieved from the series matrix files of all datasets.

For model development, RNA sequencing (RNA-seq) data of 499 PCa patients and
corresponding clinical information in the Cancer Genome Atlas (TCGA) were obtained
from the UCSC (University of California, Santa Cruz) Xena public data hub (https://
xenabrowser.net/ accessed on 22 July 2018). Of these 499 samples, 63 did not have recur-
rence information and thus were excluded for analysis. The remaining 436 PCa samples
were randomly divided into the training set (n = 305) and the internal validation set (n = 131).
An additional 6 cohorts were enrolled as the external validation sets, including those of
the Belfast (GSE116918, n = 248) [31], MSKCC (The Memorial Sloan Kettering Cancer
Center, n = 140) [32], CPC-GENE (Canadian Prostate Cancer Genome Network, GSE84042,
n = 73) [33], Cambridge (GSE70768, n = 106) [27], Stockholm (GSE70769, n = 92) [27], and
GSE54460 (n = 91) [34]. All expression profile data were from either the GEO database or the
cBio Cancer Genomics Portal (https://www.cbioportal.org/ accessed on 11 October 2019).
The clinicopathological information for the enrolled cohorts is summarized in Table 1.

Table 1. Characteristics of patient cohorts used for the analysis of recurrence-free survival (RFS).

Characteristics
Training Cohort Validation Cohort

TCGA
(n = 305)

TCGA
(n = 131)

Belfast
(n = 248)

MSKCC
(n = 140)

CPC-GENE
(n = 73)

Cambridge
(n = 106)

Stockholm
(n = 92)

GSE54460
(n = 91)

Age (year) (%)
≤65 216 (70.8) 92 (70.2) 87 (35.1) 117 (83.6) 57 (78.1) 81 (76.4) NA 67 (73.6)
>65 89 (29.2) 39 (29.8) 161 (64.9) 23 (16.4) 16 (21.9) 25 (23.6) NA 24 (26.4)

Median follow-up time
(months) 30.8 25.9 82 45.5 71.3 29.7 58 59.5

Recurrent events (%) 35 (11.5) 17 (13.0) 56 (22.6) 36 (25.7) 16 (21.9) 19 (17.9) 45 (48.9) 40 (44.0)
Tumor stage (%)

T1/T2 121 (39.7) 54 (41.2) 127 (51.2) 86 (61.4) 40 (54.8) 33 (31.1) 47 (51.1) 75 (82.4)
T3/T4 178 (58.4) 76 (58.0) 96 (38.7) 54 (38.6) 33 (45.2) 73 (68.9) 42 (45.7) 15 (16.5)

Not available 6 (2) 1 (0.8) 25 (10.1) 0 (0) 0 (0) 0 (0) 3 (3.3) 1 (1)
Lymph node status (%)

N0 216 (70.8) 92 (70.2) NA 105 (75) NA 77 (72.6) 18 (19.6) NA
N1 40 (13.1) 22 (16.8) NA 12 (8.6) NA 6 (5.7) NA NA

Not available 49 (16.1) 17 (13) NA 23 (16.4) NA 23 (21.7) 74 (80.4) NA
Gleason score (%)

≤7 182 (59.7) 80 (61.1) 141 (56.9) 127 (90.7) 73 (100) 97 (91.5) 75 (81.5) 80 (87.9)
>7 123 (40.3) 51 (38.9) 107 (43.1) 13 (9.3) 0 (0) 9 (8.5) 15 (16.3) 11 (12.1)

Not available 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (2.2) 0 (0)
PSA level (ng/mL)

≤10 249 (81.6) 102 (77.9) 50 (20.2) 114 (81.4) 57 (78.1) 79 (74.5) 62 (67.4) 61 (67)
>10 3 (1) 5 (3.8) 198 (79.8) 24 (17.1) 16 (21.9) 26 (24.5) 28 (30.4) 27 (29.7)

Not available 53 (17.4) 24 (18.3) 0 (0) 2 (1.4) 0 (0) 1 (1) 2 (2.2) 3 (3.3)
Radiation therapy (%)

No 256 (83.9) 107 (81.7) NA NA NA NA NA NA
Yes 37 (12.1) 17 (13.0) NA NA NA NA NA NA

Not available 12 (3.9) 7 (5.3) NA NA NA NA NA NA

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://xenabrowser.net/
https://xenabrowser.net/
https://www.cbioportal.org/


Cancers 2021, 13, 917 4 of 27

Table 1. Cont.

Characteristics
Training Cohort Validation Cohort

TCGA
(n = 305)

TCGA
(n = 131)

Belfast
(n = 248)

MSKCC
(n = 140)

CPC-GENE
(n = 73)

Cambridge
(n = 106)

Stockholm
(n = 92)

GSE54460
(n = 91)

Targeted therapy (%)
No 262 (85.9) 109 (83.2) NA NA NA NA NA NA
Yes 31 (10.2) 14 (10.7) NA NA NA NA NA NA

Not available 12 (3.9) 8 (6.2) NA NA NA NA NA NA
Surgical margins (%)

Positive NA NA NA 107 (76.4) NA 83 (78.3) 50 (54.3) 54 (59.3)
Negative NA NA NA 33 (23.6) NA 23 (21.7) 42 (45.7) 32(35.2)

Not available NA NA NA 0 (0) NA 0 (0) 0 (0) 5 (5.5)

TCGA: The Cancer Genome Atlas; MSKCC: The Memorial Sloan Kettering Cancer Center; CPC-GENE: Canadian Prostate Cancer Genome
Network; NA: not available; Age: age at diagnosis; Tumor stage: pathological tumor stage; N0: without lymph node metastasis; N1: with
lymph node metastasis; PSA: prostate-specific antigen.

For CRPC diagnosis analysis, we used the GSE70768 dataset [27] from the DEG
analysis above, which included more tumor samples than other datasets. We also included
the GSE70769 dataset [27], which had a large number of HSPC tumors and used the
same expression profiling platform as the GSE70768 dataset. For validation, dataset
GSE35988 [35] was used, and metastatic CRPC tumors in the validation dataset (GSE35988)
were also included due to primary CRPC tumors’ rarity. The design and workflow of this
study are shown in Figure 1.

Figure 1. The workflow of the study. CRPC: castration-resistant prostate cancer; RRA: Robust Rank
Aggregation; LASSO: Least absolute shrinkage and selection operator; DEGs: differentially expressed
genes; UVA: Univariate Cox regression analysis; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of
Genes and Genomes; RFS: recurrence-free survival; CRPCPS: CRPC-derived prognostic signature;
GSVA: Gene set variation analysis; SMOTE: synthetic minority over-sampling technique; ROC:
receiver operating characteristic.

2.2. Gene Expression Data Preprocessing

The series matrix files and their platform annotation information were downloaded,
and probes with missing values for more than half of the samples or detected with more
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than one gene were excluded for analysis. Due to the variation in gene symbols across dif-
ferent microarray platforms, probes were assigned to their Entrez identification numbers for
analysis according to each platform’s annotated files. If multiple probe sets corresponded
to the same Entrez identification number, they were integrated using the arithmetic mean
to account for a gene’s expression level. Quantile normalization was then performed for
mining DEGs. For the TCGA dataset, genes with an expression level of 0 (not detected) in
>10% of patients were removed.

2.3. Identification of CRPC-Associated Genes

The R package “limma” (version 3.44.1) [36] was applied to identify DEGs between
localized CRPC and HSPC tumors. A p-value smaller than 0.05 was used as the cut-off
point for initial DEG identification. Due to the high variability among different microarray
platforms, gene integration analysis with the R package “RobustRankAggreg” (Robust
Rank Aggregation (RRA), version 1.1) [37] was used to select more robust DEGs from the
initial DEGs obtained in the previous step. Genes with |log2 (fold change)| > 0.5 and
p < 0.05 in the RRA analysis were considered as the CRPC-associated genes. Subsequently,
the R package “RCircos” (version 1.2.1) [38] was used to visualize the expression patterns
of different microarrays and chromosomal locations for the top 100 DEGs sorted by their
p-values. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were performed by the R package “clusterProfiler” (version
3.14.3) [39]. GO terms or KEGG pathways with p < 0.05 were considered statistically
significant and visualized by “dotplot”.

2.4. Construction and Validation of a CRPC-Derived Prognostic Signature (CRPCPS)

The 436 PCa patients in the TCGA dataset were randomly assigned to training (n = 305)
and internal validation cohort (n = 131) at a 7:3 ratio. Univariate Cox regression analysis
was performed to assess genes associated with RFS in the TCGA training cohort. The CRPC-
associated genes significantly associated with RFS (p < 0.05) were considered the candidate
gene set. Subsequently, the least absolute shrinkage and selection operator (LASSO)
method [40] by glmnet (version 4.0.2) R package for variable selection in a Cox regression
model was used to reduce the dimensionality, and a forward and backward variable
selection procedure [41] via the ‘stepAIC’ function from the R package ‘MASS’ (version
7.3.53) was further conducted to select the optimal gene combination with the lowest
Akaike information criteria (AIC) as a CRPC-derived prognostic signature (CRPCPS).

Subsequently, a patient’s risk score for RFS was built based on a linear combination
of the regression coefficient derived from the multivariate Cox regression model and
the expression level of the optimized genes (i.e., the signature genes). The risk score was
computed as follow: Risk score = (gene1 expression × gene1 coefficient) + (gene2 expression
× gene2 coefficient) + . . . + (gene N expression × gene N coefficient). PCa patients were
classified into high-risk and low-risk groups by the best cut-off values determined by the
function “surv_cutpoint” of the survminer (version 0.4.8) R package. The Kaplan–Meier
(K-M) method and log-rank test were applied to assess differences between the high-risk
and low-risk groups via the ‘survfit’ and ‘survdiff’ functions of the R package ‘survival’
(version 3.2.7) [42].

Model performance was evaluated by discrimination and calibration [43]. Discrimi-
nation was assessed using Harrell’s concordance index (C-index) adjusted through 1000
bootstrap resamples by the “validate” function of rms (version 6.0.1) R package. The
time-dependent receiver operating characteristic (ROC) curve performed by survival-ROC
(version 1.0.3) R package [44] was used to assess the efficiency of the CRPCPS. Bias-
corrected calibration for 3-, 5-, and 8-year RFS probability using 1000 bootstrap resamples
was further applied to visualize the consistency between actual and estimated RFS proba-
bilities by the rms (version 6.0.1) R package (https://hbiostat.org/R/rms/ accessed on 12
October 2020). The predictive model was then validated in the internal TCGA validation
cohort and another six independent cohorts.

https://hbiostat.org/R/rms/
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The integrated area under the curves (IAUC) of the model (i.e., CRPCPS) was com-
pared to another three published transcriptomic signatures [20,45,46] by survcomp (version
1.36.1) package. The prediction error was estimated by the pec (version 2020.11.17) R pack-
age (https://cran.r-project.org/web/packages/pec/ accessed on 21 November 2020).

2.5. Construction of a Diagnostic Model for CRPC

To investigate whether the CRPCPS could be applied for predicting CRPC occurrence,
two datasets from the GEO database, GSE70768 and GSE70769, were pooled together, and
the combined dataset was then adjusted for batch effect through the “ComBat” function of
sva (version 3.34.0) R package [47] and assigned as the training set. Logistic regression [41]
was applied to the training set to build a logistic regression model, with all CRPCPS genes
as covariates. Due to a small percentage (6%) of CRPC samples in the training set, which
leads to a learning bias to the majority class, SMOTE (synthetic minority over-sampling
technique) was used to deal with the so-called class imbalance problems, as previously
reported [48] by DMwR (version 0.4.1) R package. The forward stepwise selection was then
applied to the model to generate the final diagnostic model. For each gene in the diagnostic
model, its unbiased coefficient estimate (from the training set) was multiplied by the gene’s
expression level. All genes’ multiplications were added to generate the CRPC-diagnosis
score for a tumor. The predictability of the model was then evaluated by area under the
curve (AUC) of ROC. Calibration was examined by using the Brier score [49] and the
Spiegelhalter z test [50].

Another transcriptional profile from the GEO database, GSE35988, which included 59
HSPC and 35 CRPC samples, was used for the validation of the model.

2.6. Establishment and Assessment of the Nomogram

To further evaluate the usefulness of the CRPCPS, we used patients with detailed clin-
icopathological information in the TCGA dataset, including the age at diagnosis, Gleason
score, pathological tumor stage, and lymph node status. Serum PSA level was excluded
because few patients had a higher pre-operation PSA level (PSA > 10 ng/mL). All clin-
icopathological characteristics were evaluated as categorical variables. Univariate and
multivariate Cox regression analyses were performed to a variant’s association with RFS.
The same TCGA training cohort described above was used to establish a nomogram for
predicting 3-, 5-, and 8-year RFS rates of PCa patients. The same TCGA validation cohort
and the entire TCGA cohort were used for validation. ROC curve and calibration plot were
constructed using rms (version 6.0.1) R package to evaluate the nomogram’s efficiency.

2.7. Functional Enrichment Analysis

To explore the potential molecular events involving CRPCPS, the gene set variation
analysis (GSVA) (version 1.34.0) R package [51] was applied to gene sets that were dif-
ferentially expressed between the high- and low-risk groups and involved in biological
processes and signaling pathways. Two gene sets in the MsigDB v7.1 database (http://
www.broad.mit.edu/gsea/msigdb/ accessed on 28 May 2020), i.e., c5.bp.v7.1.symbols.gmt
and c2.cp.kegg.v7.1.symbols.gmt, were downloaded and used as reference gene sets [52].
An adjusted p-value of 0.05 was set as the cut-off point for significant enrichment.

2.8. Statistical and Other Computational Analyses

All statistical analyses were conducted using the R software (Windows version
3.6.3; https://www.r-project.org/ accessed on 7 March 2020), and Bioconductor (ver-
sion 3.10) [53]. The univariate and multivariate Cox proportional hazards regression
analyses were performed using the ‘coxph’ function of the “survival” (version 3.2.7) R
package [54,55]. The heatmaps, boxplots, forest plots, and calibration plots were drawn
using the R software. Statistical differences between the two groups were assessed us-
ing the Wilcoxon test. All statistical tests were two-sided, and p < 0.05 was considered
statistically significant.

https://cran.r-project.org/web/packages/pec/
http://www.broad.mit.edu/gsea/msigdb/
http://www.broad.mit.edu/gsea/msigdb/
https://www.r-project.org/
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3. Results
3.1. Integrated Screening for Robust CRPC-Associated Genes

Four GEO datasets were used for the identification of robust CRPC-associated genes
(Table S1). Using the “limma” R package, we normalized expression data from datasets
GSE6811, GSE2443, GSE28680, and GSE70768, and identified 2588, 1331, 2221, and 10,786
DEGs between localized CRPC and HSPC tumors respectively, with a cut-off of p < 0.05
(Figure 2a). Integration of these DEGs by the RRA method resulted in 287 DEGs (|log2FC|
≥ 0.5, p < 0.05), 93 of which were upregulated and 194 downregulated in CRPCs (Table S2).
Of these 287 CRPC-associated genes, 35 were identified in one previous study [29], 47
were identified in another study [28], and the remaining 207 have not been identified in a
genome-wide analysis (Figure S1), which is marked in bold in Table S2.

The top 20 upregulated and the top 20 downregulated genes in CRPC are shown
as hierarchical cluster heatmaps (Figure 2b). For the top 100 DEGs between CRPC and
HSPC, their expression patterns across the four datasets used for analysis, along with their
chromosomal locations, are shown in a circos plot (Figure 2c). The location of these 100
DEGs involves all chromosomes except for the Y chromosome. The top 5 upregulated genes
included COL5A2, THBS2, CDC20, COL1A1, and COL3A1, and they are located on chro-
mosomes 2, 6, 1, 17, and 2, respectively. The top 5 downregulated genes (MSMB, DUSP1,
CCN1, MT1X, and TRPM8) are located on chromosomes 10, 5, 1, 16, and 2, respectively.

GO enrichment and KEGG pathway analyses were performed to further elucidate the
potential biological function and the promising signaling pathways involving the entire 287
DEGs. Several biological processes were highly enriched in the GO analysis, including the
extracellular matrix organization, the epithelial cell proliferation, the response to steroid
hormones, and the regulation of ERK1 (Extracellular signal-related kinase 1) and ERK2
cascades. In the KEGG pathway analysis, the DEGs participated in diverse hormonal
signaling pathways, including parathyroid hormone’s synthesis, secretion, and action,
cortisol synthesis and secretion, aldosterone synthesis and secretion, and some cancer-
associated pathways such as the PI3K-Akt (Phosphatidylinositide 3-kinases-protein kinase
B) signaling pathway, focal adhesion pathway, and several others that are involved in small
cell lung carcinomas (Figure 2d).

3.2. Development of a CRPC-Derived Six-Gene Signature That Predicts RFS

As described in the Section 2, the univariate Cox regression analysis was performed
to assess genes associated with RFS in the TCGA training cohort (Table 1), and 24 of the
287 CRPC-associated DEGs were identified for a significant association with RFS in PCa
(p < 0.05) (Table S3). These 24 genes were further analyzed using the LASSO Cox regression
method in the training cohort, which minimized the potential overfitting problems and
determined the minimum criteria. Nine of the twenty-four genes remained in the model
at the optimal tuning parameter (λ) (log (lambda.min) = 0.02273839) (Figure 3a,b). For
the nine genes, multivariate Cox regression analysis was used to fit them into an initial
model. A forward and backward variable selection was then applied and resulted in
the appropriate gene combination of 6 genes (NPEPL1, VWF, LMO7, ALDH2, NUAK1,
and TPT1) (Table 2). Kaplan–Meier analysis demonstrated that patients with a higher
expression level of ALDH2, LMO7, or TPT1 had a better RFS than those with a lower
level (Figure 3c, p < 0.05). For NPEPL1, NUAK1, or VWF, a higher expression level was
associated with an increased risk of recurrence (Figure 3d, p < 0.05).
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1 
 

Figure 2. Identification of differentially expressed genes (DEGs) between localized CRPC and HSPC samples from 4
unrelated cohorts. (a) Volcano plots of datasets GSE6811 and GSE2443 (upper panel), and GSE28680 and GSE70768 (lower
panel) from the GEO database. DEGs with |log2 (Fold change)| > 2 would be listed, additionally. (b) Heatmap of the top 20
downregulated and the top 20 upregulated genes from an integrated analysis of 4 datasets. Each column represents a dataset
and each row a gene. The number in each rectangle represents the value of log2 (fold change). The gradual color ranging
from blue to red represents the changing process from down- to up-regulation (CRPC vs. HSPC). (c) Circular visualization of
expression patterns and chromosomal positions of the top 100 DEGs. The 4 prostate cancer (PCa) microarray datasets from
the GEO database are represented in the inner circular heatmaps. Red, blue, and white indicate upregulated, downregulated,
and absent genes in a given dataset, respectively. The outer circle represents chromosomes, and lines coming from each
gene point to their specific chromosomal locations. The top five upregulated and downregulated genes ordered by p-value
were marked in red and blue, respectively. (d) GO enrichment (upper panel) and KEGG pathway (lower panel) analyses of
differentially expressed genes (DEGs) between localized CRPC and HSPC samples. CRPC: Castration-resistant prostate
cancer; HSPC: Hormone-sensitive prostate cancer; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
The size of each dot represents the count of genes, and the color represents the p-value.
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2 

Figure 3. Identification of CRPC-associated genes that correlate with recurrence-free survival (RFS) in PCa. (a) Partial
likelihood deviance of different numbers of variables revealed by the LASSO regression model. The red dots represent the
partial likelihood deviance values. The grey lines represent the partial likelihood deviance ± standard error (SE). The two
vertical lines on the left and right represent optimal values by minimum criteria and 1-SE criteria. The proper log (Lambda)
value was chosen by 10-fold cross-validation via minimum criteria. LASSO: least absolute shrinkage and selection operator
method. (b) LASSO coefficient profiles of the 24 CRPC-associated genes. (c) The Kaplan–Meier survival curves showing
patients with higher expression levels of ALDH2 (left), LMO7 (center), and TPT1 (right) had a favorable prognosis in PCa
(p < 0.05). (d) The Kaplan–Meier curves showing higher expression levels of NUAK1 (left), NPEPL1 (center), and VWF
(right) indicated poor prognosis in PCa (p-value < 0.05).

Table 2. Identification and chromosomal location of the six CRPCPS genes and their association with
recurrence-free survival (RFS) in prostate cancer.

Entrez ID Gene Symbol Full Name Location HR p-Value

79716 NPEPL1 Aminopeptidase Like 1 20q13.32 2.564 0.01
7450 VWF Von Willebrand Factor 12p13.31 2.091 0.043
4008 LMO7 LIM Domain 7 13q22.2 0.433 0.022
217 ALDH2 Aldehyde Dehydrogenase 2 Family Member 12q24.12 0.416 0.024

9891 NUAK1 NUAK Family Kinase 1 12q23.3 2.884 0.005
7178 TPT1 Tumor Protein, Translationally-Controlled 1 13q14.13 0.354 0.006

CRPCPS: CRPC-derived prognostic signature; HR: Hazard Ratio.
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For each patient, a risk score or a CRPCPS score was constructed based on the multi-
plication of a gene’s expression level with its corresponding regression coefficient derived
from the multivariate Cox regression model, i.e., CRPCPS score = (0.5932 × NPEPL1 ex-
pression level) + (0.4505 × VWF expression level) + (−0.3704 × LMO7 expression level)
+ (−0.3399 × ALDH2 expression level) + (0.3545 × NUAK1 expression level) + (−0.6515
× TPT1 expression level). In the TCGA training cohort, the patients were stratified into
high- or low-risk groups using the best cut-off value (Figure 4a). The number of recur-
rent patients increased with the rise of the CRPCPS score (Figure 4b). Consistently, the
expression levels of NPEPL1, VWF, and NUAK1 were upregulated, and the expression
levels of LMO7, ALDH2, and TPT1 were downregulated (Figure 4c). Kaplan–Meier analysis
demonstrated that patients in the low-risk group had prolonged RFS compared to those in
the high-risk group (p < 0.0001) (Figure 4d). The training cohort’s calibration plot showed
an excellent agreement of 3-, 5-, and 8-year RFS probabilities between the predicted out-
comes and actual observations (Figure 4e). The predictive accuracy of the CRPCPS was
further evaluated by the time-dependent ROC in this cohort, with 3-, 5-, and 8-year AUCs
of 0.769, 0.736, and 0.764 respectively, which were significantly larger than those of Gleason
scores and pathological tumor stages (Figure 4f). The C-index was 0.743 (95% confidence
interval (CI): 0.639, 0.847) in the training cohort, and the optimism-corrected C statistic
with 1000 bootstrap replications was also 0.743.

3.3. Development of a CRPC Diagnostic Model Based on the CRPCPS Genes

To investigate the potential use of the six genes for predicting CRPC occurrence, the
area under the receiver operating characteristic (ROC) curve (AUC) was applied to evaluate
each of the six genes’ diagnostic effectiveness. In the training cohort, five in six genes
(NPEPL1, LMO7, VWF, NUAK1, and TPT1) could efficiently distinguish CRPC from HSPC
samples with an AUC value greater than 0.7 (Figure S2a), four of which demonstrated
a promising discrimination performance in the validation cohort (Figure S2b), and these
findings were consistent with their aberrant expression in CRPC samples (Figure 5a).

In addition, a logistic regression model was fitted to build the CRPC-diagnosis score in
the training cohort after overcoming the data imbalance problem by the synthetic minority
over-sampling technique (SMOTE), and the forward stepwise selection further optimized
the model to a 3-gene panel (NPEPL1, LMO7, and TPT1) (Table S4). This 3-gene CRPC
diagnostic model showed high accuracy in distinguishing CRPC from HSPC samples in
both the training and validation cohorts, with AUC values of 0.96 and 0.93, respectively
(Figure 5b). Although the diagnostic model’s calibration curves for CRPC prediction in
the training and validation cohorts displayed some departure between prediction and
observation (Figure 5c), the CRPCPS showed low Brier scores (0.03 and 0.09 for the training
and validation cohorts, respectively), and the Spiegelhalter z test yielded a nonsignificant
statistic (p = 0.86 and 0.76 for the training and validation cohorts, respectively).

3.4. Validation of the CRPCPS in Independent Patient Cohorts

The prognostic value of the CRPCPS was first validated in the internal validation
cohort, which contained 76 patients with a high risk and 55 patients with a low risk, defined
by the CRPCPS scores (Figure S3a). An increase in the CRPCPS score correlated with the
upregulation of NPEPL1, NUAK1, and VWF but the downregulation of ALDH2, LMO7,
and TPT1 (Figure S3a). The findings are also consistent with those from the training cohort,
as patients in the high-risk group had a higher possibility of relapse than those in the
low-risk group (p = 0.0038, Figure 6a, left panel). Although the CRPCPS’ AUCs are smaller
than those of the Gleason score, they still displayed good discrimination in the internal
validation cohort (all were greater than 0.65, Figure S3b). The same conclusion remained
valid in the entire TCGA cohort, which combined the training cohort and the internal
validation cohort (Figure 6b, left panel, and Figure S3c). AUC values of the CRPCPS at 3, 5,
and 8 years in the entire cohort were similar to those in the training cohort (Figure S3d).
The 3-, 5-, and 8-year calibration plots of the internal validation cohort and the entire TCGA
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cohort resulted in a satisfactory concordance between the predicted and observed RFS
probabilities (Figure 6a,b, right panel). Additionally, the C-index of the CRPCPS reached
0.70 with 1000 bootstrap iterations (95% CI: 0.56, 0.83) in the internal validation cohort and
0.73 (95% CI: 0.65, 0.82) in the entire TCGA cohort.

Figure 4. Construction of the CRPC-derived prognosis signature (CRPCPS) in the TCGA training cohort for predicting RFS
in PCa. (a–c) Distribution of CRPCPS score, patients’ recurrent status, and expression pattern of the six CRPCPS genes in
the TCGA training cohort, respectively. (d) Kaplan–Meier curves of recurrence-free survival (RFS) according to CRPCPS
score in the TCGA training cohort. (e) Calibration curves of the CRPCPS for predicting RFS probability at 3, 5, and 8 years
in the TCGA training cohort. (f) Receiver operating characteristic (ROC) curves of the CRPCPS score, Gleason score, and
pathological tumor stage were performed to evaluate the predictability of RFS at 3 (left), 5 (center), and 8 years (right) in the
TCGA training cohort.

We also validated the CRPCPS in 6 completely independent datasets (Table 1). Again,
patients in the low-risk group defined by the CRPCPS score had significantly longer RFS
than those in the high-risk group in five of the six cohorts. Patients in these cohorts
had received different therapies, including definitive radiotherapy in the Belfast cohort
(GSE116918, n = 248, p = 0.009, Figure 6c), and radical prostatectomy in the MSKCC cohort
(n = 140, p < 0.0001, Figure 6d), the Stockholm cohort (GSE70769, n = 92, p < 0.0001,
Figure 6e), and the GSE54460 cohort (n = 91, p = 0.018, Figure 6f). The CPC-GENE cohort
(GSE84042, n = 73) only had expression data for five of the six genes (VWF, LMO7, ALDH2,
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NUAK1, and TPT1), but patients of high- and low-risk groups defined by the five genes’
CRPCPS scores still had significantly different RFS (p = 0.025, Figure 6g). In the Cambridge
cohort (GSE70768, n = 106), the prognostic significance of CRPCPS was borderline (p = 0.057,
Figure 6h). The calibration plots from the six external validation cohorts also indicated
a good agreement between the estimations and the observations (Figure 6). In addition,
the C-index was 0.68 (95% CI: 0.57, 0.78) in the MSKCC cohort, 0.66 (95% CI: 0.57, 0.75) in
the Stockholm cohort (GSE70769), and 0.62 (95% CI: 0.49, 0.75) in the Cambridge cohort.
Less ideal C-index was observed in the Belfast cohort (C-index: 0.59; 95% CI, 0.52–0.67), the
GSE54460 cohort (C-index: 0.58; 95% CI, 0.50–0.67), and the CPC-GENE cohort (C-index:
0.55; 95% CI, 0.44–0.74).

Figure 5. Three-gene panel derived from the six CRPCPS genes for prediction of CRPC occurrence. (a) Box plots of the six
CRPCPS genes’ expression value in the training cohort (left panel) and validation cohort (right panel). ROC curves (b) and
calibration plots (c) of the 3-gene CRPC diagnostic model in the training cohort (left panel) and validation cohort (right
panel). H: HSPC, C: CRPC. The diagonal dotted line represents a perfect prediction by an ideal model.
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Figure 6. Performance of the CRPCPS in different validation cohorts. Kaplan–Meier plots were used to visualize the RFS
probabilities for the high-risk versus low-risk patients (left panel). The calibration curves were applied to evaluate 3-, 5-,
and 8-year RFS probabilities (right panel) in the internal validation cohort (a), the Entire TCGA cohort (b), the Belfast cohort
(GSE116918) (c), the MSKCC cohort (d), the Stockholm cohort (GSE70769) (e), the GSE54460 cohort (f), the CPC-GENE
cohort (g), and the Cambridge cohort (GSE70768) (h).

Overall survival (OS) data and metastasis-free survival (MFS) data were available for
three datasets (MSKCC, Belfast, and GSE16560 [56]). We evaluated whether the CRPCPS
predicts OS and/or MFS. As showed in Figure 7, the high-risk patients had a shorter OS
than those in the low-risk group in both the MSKCC cohort (p = 0.01, Figure 7a) and the
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GSE16560 cohort (p = 0.052, Figure 7b). Only the Belfast cohort had available MFS data,
and the CRPCPS also showed an excellent predictive ability for MFS (p < 0.0001, Figure 7c). 

3 

 
Figure 7. The association of CRPCPS with patients’ survival/metastatic status and CRPCPS’s
performance in predicting overall survival (OS) and metastasis-free survival (MFS) in different
patient cohorts. Association of CRPCPS with patients’ survival/metastatic status (left panel) and
Kaplan–Meier plot (right panel) for predicting OS/MFS in the MSKCC cohort (left, n = 140) (a), the
GSE16560 cohort (left, n = 281) (b), and the Belfast cohort (left, n = 248) (c). The differences between
the two groups were determined by the log-rank test.

3.5. The CRPCPS Is Prognostic of RFS in PCa

The univariate analysis revealed that the CRPCPS was significantly associated with
RFS in the training cohort (Figure 8a, upper panel), internal validation cohort (Figure 8b,
upper panel), and the entire TCGA cohort (Figure 8c, upper panel), with hazard ratios
(HRs) of 2.72, 2.18, and 2.51, respectively. The HRs of the CRPCPS scores for the remaining 6
cohorts ranged from 1.66 to 3.08 (p < 0.05 in all but one cohort). Multivariate Cox regression
analysis further demonstrated that the signature remained as an independent prognostic
factor after adjusting for various clinicopathologic characteristics, including age, Gleason
score, tumor stage, and lymph node status in the training cohort (Figure 8a, lower panel).
In all 9 cohorts, the CRPCPS was significant in 5 of them when variables with a sample
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size smaller than 20 were excluded for analysis, including the training cohort, the entire
TCGA cohort, the MSKCC cohort, the Stockholm cohort (GSE70769), and the GSE54460
cohort (Figure 8a,c and Table 3). When all seven variables, when available, were included
in the multivariate analysis, the CRPCPS was significant in three of the nine cohorts (i.e.,
the training cohort, the entire TCGA cohort, and the GSE54460 cohort).

Figure 8. Univariate and multivariate Cox regression analyses of the CRPCPS score, patients’ age at diagnosis, Gleason
score, tumor stage, and lymph node status in the TCGA training cohort (a), the internal validation cohort (b), and the entire
TCGA cohort (c). The blue squares represent the hazard ratio (HR), and the black lines represent the 95% CI. CI, confidence
interval. Age: age at diagnosis; Tumor stage: pathological tumor stage.

Table 3. Multivariable analysis of the CRPCPS and clinicopathological characteristics in six additional
independent datasets.

Study Variable
Multivariable Analysis

HR p-Value

Belfast CRPCPS score 1.49 (0.923–2.408) 0.103
Gleason score (>7 vs. ≤7) 1.077 (0.581–1.997) 0.814

Age at diagnosis (>65 vs. ≤65) 0.911 (0.513–1.617) 0.749
PSA level (>10 vs. ≤10) 1.202 (0.545–2.648) 0.648

Tumor stage (T3/T4 vs. T1/T2) 1.807 (0.94–3.475) 0.076
MSKCC CRPCPS score 2.150 (1.298–3.561) 0.003

Surgical margins (Positive vs. Negative) 1.034 (0.491–2.176) 0.930
Tumor stage (T3/T4 vs. T1/T2) 3.406 (1.516–7.653) 0.003

PSA level (>10 vs. ≤10) 1.351 (0.616–2.963) 0.453
Age at diagnosis (>65 vs. ≤65) 1.312 (0.562–3.060) 0.530

Stockholm CRPCPS score 2.681 (1.339–5.371) 0.005
Tumor stage (T3/T4 vs. T1/T2) 3.120 (1.567–6.218) 0.001

PSA level (>10 vs. ≤10) 1.883 (0.989–3.586) 0.054
Surgical margins (Positive vs. Negative) 1.568 (0.816–3.014) 0.178

GSE54460 CRPCPS score 1.742 (1.067–2.842) 0.026
PSA level (>10 vs. ≤10) 3.115 (1.561–6.217) 0.001

Age at diagnosis (>65 vs. ≤65) 0.919 (0.429–1.970) 0.828
Surgical margins (Positive vs. Negative) 2.708 (1.335–5.493) 0.006

CPC-GENE CRPCPS score 1.566 (0.618–3.971) 0.344
Tumor stage (T3/T4 vs. T1/T2) 3.201 (1.105–9.271) 0.032

Cambridge CRPCPS score 1.913 (0.821–4.460) 0.133
Tumor stage (T3/T4 vs. T1/T2) 1.447 (0.460–4.556) 0.527

PSA level (>10 vs. ≤10) 1.162 (0.403–3.351) 0.781
Age at diagnosis (>65 vs. ≤65) 1.723 (0.660–4.500) 0.267

Surgical margins (Positive vs. Negative) 1.339 (0.484–3.701) 0.574
CRPCPS: CRPC-derived prognostic signature; Tumor stage: pathological tumor stage; HR: hazard ratio.
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3.6. The CRPCPS Remains Prognostic in PCa Patients with a Specific
Clinicopathological Parameter

Six of the nine cohorts used in the CRPCPS’s discovery and validation analyses had
greater numbers of patients. Thus, they were used for evaluating the association between
the CRPCPS and various clinicopathological characteristics. The cohorts included the
TCGA training, internal validation cohort, the entire TCGA cohort, and three validation
cohorts (MSKCC, Cambridge, and Belfast cohort). The characteristics included tumor stage,
lymph node status, Gleason score, and age at diagnosis.

As expected, a higher CRPCPS score was positively associated with multiple adverse
clinicopathological features, including higher tumor stage (Figure 9a and Figure S4a–d),
higher Gleason score (Figure 9b, left panel and Figure S4e,f,h), and lymph node metastasis
(Figure 9c and Figure S4i,j). The exception was patients’ age (> vs. ≤65 years), which was
not significantly associated with the CRPCPS score in any of the six cohorts (Figure S5).

Figure 9. Associations of CRPCPS with tumor stage (a), Gleason score (b), and lymph node status (c)
in the training cohort (left panel) and the MSKCC cohort (right panel).

Furthermore, the prognostic value of the CRPCPS was evaluated in patients stratified
by tumor stage, lymph node status, and Gleason score in different cohorts. For such
evaluations, we only used the subgroups that had 50 or more patients after stratification.
Interestingly, a higher CRPCPS score was significantly associated with worse RFS in T1/T2
subgroups from three of the five cohorts (Figure 10a, left panel, and Figure S6a,b). However,
the p-values in the MSKCC cohort (Figure 10a, right panel, p = 0.16) and the Belfast cohort
(GSE116918, Figure S6c, p = 0.2) did not reach prognostic significance. The association
between higher CRPCPS score and worse RFS was also detectable in patients with T3/T4
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tumors in the training cohort (Figure 10b, left panel, and Figure S7a), the entire TCGA
cohort (Figure S7e), the MSKCC cohort (Figure 10b, right panel), the Cambridge cohort
(GSE70768, Figure S7f), and the Belfast cohort (GSE116918, Figure S7g). The internal
validation cohort was the only one not showing a significant prognosis (n = 51, Figure S7d,
p = 0.1).

Figure 10. Kaplan–Meier curves of recurrence-free survival (RFS) according to the CRPCPS score in patients stratified by
pathological tumor stage, lymph nodes status, and Gleason score. Kaplan–Meier curves were applied to patients with lower
tumor stage (T1/T2) (a), higher tumor stage (T3/T4) (b), lower Gleason score (≤7) (c), higher Gleason score (>7) (d), and
without lymph node metastasis (N0) (e), in the training cohort (left panel) and the MSKCC cohort (right panel). The tick
marks on the Kaplan–Meier curves represent the censored subjects. The two-sided log-rank test was used to determine
differences between the two curves.

Further stratified analyses revealed that CRPCPS score could distinguish different
prognoses in patients with a Gleason score of 7 or smaller (≤7) from 5 of 6 cohorts
(Figure 10a,b and Figure S7a,b,d), although a borderline prognostic significance was found
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in the Cambridge cohort (GSE70768, Figure S7c, p = 0.07). Interestingly, such an associa-
tion was also observed in patients with a Gleason score of 8 or above in multiple cohorts
(Figure 10d and Figure S7e,g).

Still, patients without lymph node metastasis (N0) in four of the five available cohorts
showed disparate RFS between high- and low-risk groups stratified by CRPCPS score
(Figure 10e and Figure S8a,b). At the same time, it was not evident in the Cambridge cohort
(GSE70768, Figure S8c, p = 0.18). The number of patients with lymph node metastasis (N1)
was too small for analysis in the entire TCGA cohort (Figure S8d).

3.7. Model Comparison

To further evaluate this 6-gene signature’s predictive performance, we compared the
CRPCPS with three published signatures in the entire TCGA cohort (n = 436) and the
MSKCC cohort (n = 140), two large cohorts that had been used in at least two of the three
published studies. In the entire TCGA cohort, the CRPCPS’ AUCs at 3, 5, and 8 years were
0.77, 0.74, and 0.73 respectively, which were greater than those in the Wang study [46]
(0.64, 0.59, and 0.60, respectively), the Shi study [45] (0.66, 0.58, and 0.62, respectively), and
the Hu study [20] (0.70, 0.57, and 0.64, respectively) (Figure S9a–c, left panel, Wilcoxon
p < 0.001). In addition, the CRPCPS had a smaller predicted error than the three signatures
in the predicted error curves (Figure S9d, left panel). In the MSKCC cohort, while the Shi
signature performed better than the CRPCPS, the CRPCPS performed better than those of
the Wang and Hu signatures (Figure S9a–d, right panel).

3.8. Nomogram Based on CRPCPS Scores and Clinicopathological Features

To establish a quantitative approach for RFS prediction, we incorporated CRPCPS
score with other clinicopathological features (i.e., age at diagnosis, Gleason score, patholog-
ical tumor stage, and lymph node status) to construct a nomogram in the TCGA training
cohort. A point was calculated for each of the factors, and the total points of all factors
were then obtained for the estimation of RFS rates at 3, 5, and 8 years (Figure 11a).

The ROC curve and calibration plot were then drawn to evaluate the reliability of the
nomogram. The AUCs for predicting RFS at 3, 5, and 8 years were 0.808, 0.757, and 0.822
respectively, in the training cohort (Figure 11b). In the internal validation cohort, the AUCs
were only available for 3 and 5 years, and both were smaller than those in the training
cohort (0.686 and 0.69, respectively) (Figure 11c). In the entire TCGA cohort, the AUCs
were 0.774, 0.74, and 0.742 respectively, for the three time points (Figure 11d). The C-index
of our nomogram with 1000 bootstrap resamples reached 0.71 (95% CI: 0.69–0.88), 0.77
(95% CI: 0.74–0.91), and 0.76 (95% CI: 0.70–0.85) in the training cohort, internal validation
cohort, and the entire TCGA cohort, respectively. In addition, the line-segment in the
calibration plots was close to the 45◦ line, indicating an excellent agreement between the
prediction and observation in the training cohort (Figure 11e), the internal validation cohort
(Figure 11f), and the entire TCGA cohort (Figure 11g).

3.9. Functional Enrichment Analysis of the CRPCPS Genes

The GO enrichment and KEGG pathway analyses were performed to explore the
biological processes and pathways associated with the CRPCPS using the gene set variation
analysis (GSVA). Patients in the training cohort were divided into high- or low-risk groups
with the CRPCPS scores. Biological processes enriched in the high-risk group included cell
cycle, heterochromatin organization, Ras signal transduction pathway, and macrophage
differentiation (Figure S10a). Those enriched in the low-risk group included metabolic
process, androgen biosynthetic and metabolic process, and response to extracellular stimuli
(Figure S10a).
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Figure 11. Nomogram construction and evaluation for predicting 3-, 5-, and 8-year RFS in PCa. (a) Nomogram construction
for the 3-, 5-, and 8-year RFS probability prediction in the TCGA training cohort. ROC curves evaluated the efficiency of the
nomogram for predicting 3-, 5-, and 8-year RFS in the TCGA training cohort (b), the internal validation cohort (c), and the
entire TCGA cohort (d). Calibration plots of the nomogram for predicting the probability of RFS at 3 (left), 5 (center), and 8
years (right) in the TCGA training cohort (e), the internal validation cohort (f), and the entire TCGA cohort (g).
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The pathways of cell cycle regulation, ABC transporters, Hedgehog signaling, Toll-
like receptor signaling, and MAPK (Mitogen-activated protein kinase) signaling were
enriched in the high-risk group (Figure S10b). In contrast, those of glycolysis gluconeogen-
esis, autophagy, and steroid hormone biosynthesis were enriched in the low-risk group
(Figure S10b).

4. Discussion

This study applied an integrated approach to publicly available PCa expression
datasets to identify CRPC-associated genes and develop expression-based molecular sig-
natures to predict RFS and CRPC. Associations of developed signatures with the overall
survival, metastasis-free survival, and clinicopathological characteristics of PCa were also
evaluated. In addition, we systematically assessed the prognostic value of the CRPCPS in
PCa patients with a specific clinicopathological parameter. Another unique aspect of this
study is that both CRPC and HSPC samples used for DEGs analysis were from the primary
site (i.e., the prostate), minimizing issues related to CRPC samples from metastases because
metastasis is accompanied by many genes’ expression changes [57].

Many genes’ expression changes are associated with CRPC. We found 287 genes that
were differentially expressed between localized CRPC and HSPC samples, and 207 of them
(Table S2) were not discovered in previous studies with the same type of tumor speci-
mens [28,29]. Many cellular processes and molecular pathways involving the 287 DEGs
have been described in previous studies, including the extracellular matrix organization,
PI3K-Akt, and ERK signaling pathways, and hormonal signaling pathways [29,58–60], as
revealed by the GO enrichment and KEGG analysis (Figure 2).

With as few as six genes, the CRPCPS can predict RFS in PCa patients. Twenty-four of
the 287 CRPC-associated genes showed a significant correlation between their expression
change and RFS, according to the univariate Cox analysis (Table S3). Combined LASSO
and the forward stepwise selection analyses of the 24 genes resulted in the most robust
model with the fewest genes capable of predicting RFS, i.e., a panel of 6 genes significantly
correlates with RFS (Figures 3 and 4, Table 2). This six-gene panel was named CRPC-
derived prognosis signature (CRPCPS), and the CRPCPS score is based on the six genes’
expression levels and regression coefficients. The model was validated in eight patient
cohorts, comprising more than 1300 patients (Figure 6).

Interestingly, three of the six CRPCPS genes can effectively discriminate CRPC patients
from HSPC individuals based on their expression levels and regression coefficients, as
demonstrated by the stepwise selection analysis (Figure 5). It should be mentioned that
the CRPCPS is likely not as effective as expected in the prediction of CRPC patients’ OS
because of limited cohort sizes (n = 106, SU2C/PCF (Stand up to cancer/Prostate cancer
foundation) Dream Team cohort and GSE35988 cohort). More CRPC cohorts needed to
be included for evaluating the diagnostic value of the 3-gene model and the CRPCPS’
prognostic value for CRPC patients.

Our 6-gene CRPCPS model showed a reasonable performance in both calibration
and discrimination. In addition to CRPCPS’s validity in all eight cohorts of more than
1300 patients, the C-index was acceptable in half of the eight cohorts, suggesting an
acceptable prediction capability. The estimations and the actual observations had acceptable
agreements in all the eight cohorts at almost all time points in the calibration plots (Figure 6).
As expected, the C-index of the nomogram comprising the CRPCPS, patient’s age at
diagnosis, Gleason score, tumor stage, and lymph node status showed better discrimination
than CRPCPS alone. Therefore, the CRPCPS model performs equally well in calibration
and discrimination.

The CRPCPS also appears to be a prognostic factor for MFS and OS, as it could
effectively divide patients into subgroups with disparate MFS and OS. Although this
conclusion needs further validation in additional datasets, the CRPCPS is associated with
recurrence and metastasis (Figure 7).
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The CRPCPS is prognostic of RFS in PCa patients and can predict RFS in PCa patients
with a specific clinicopathological parameter. For example, multivariate analysis demon-
strated that the CRPCPS score was an effective risk factor for RFS prediction independent
of multiple known prognostic factors in five of nine PCa cohorts (Figure 8 and Table 3).
Multivariate analyses of RFS further demonstrated that the CRPCPS’ hazard ratios (HRs)
were 2.72 (95% CI: 1.66, 4.48) in the training cohort and 2.03 (95% CI: 1.41, 2.92) in the entire
TCGA cohort (Figure 8). Similar HRs were found in three of the seven additional validation
cohorts, including the MSKCC cohort (HR = 2.15; 95% CI: 1.30–3.56), the Stockholm cohort
(HR = 2.68; 95% CI: 1.34–5.37), and the GSE54460 cohort (HR = 1.74; 95% CI: 1.07–2.84)).
These findings suggest that the CRPCPS is capable of RFS prediction in PCa. The CRPCPS
score was significantly correlated with the Gleason score, tumor stages, and lymph node
metastasis (Figure 9). In addition, the CRPCPS remained prognostic when patients were
stratified by different Gleason score, tumor stage, or lymph node status (Figure 10 and
Figures S6–8). Furthermore, an enhanced predictive capability was detected after inte-
grating the CRPCPS with the Gleason score, tumor stage, lymph node status, and age at
diagnosis into a nomogram (Figure 11).

The performance of this 6-gene CRPCPS was improved when compared to some
previously reported models. For example, the CRPCPS showed a more promising discrimi-
nation capability than two of the three published transcriptomic signatures, consisting of
3, 9, or 22 genes [20,45,46] (Figure S9). We noticed that none of the genes from the three
published signatures [20,45,46] were in the 287 CRPC-associated genes identified in our
study (Table S2). One of the published signatures was entirely based on genes implicated
in the autophagy process [20], whereas the two others were based on genes’ association
with the Gleason score and biochemical recurrence-free survival status.

The biological mechanisms underlying the CRPCPS’s prognostic value appear to
involve multiple established oncogenic signaling pathways. After patients were divided
into the high- and low-score groups according to their CRPCPS scores and the GSVA
analysis was applied, the most enriched biological processes or signaling pathways in
the CRPCPS-high group are mostly oncogenic. For example, the processes of cell cycle
progression, stem cell division, and macrophage were enriched (Figure S10). Interestingly,
androgen biosynthetic and fatty acid metabolic processes were highly enriched in the
low-risk groups (Figure S10).

The pathways of Hedgehog signaling, MAPK signaling, Toll-like receptor signaling,
and cell adhesion signaling were also enriched in the high-risk group. Previous studies
have demonstrated that Hedgehog signaling and MAPK signaling are activated in more
advanced localized PCa or enzalutamide-resistant PCa [61–63]. The Toll-like receptor and
the cell adhesion signaling pathways have also been implicated in CRPC [64,65]. Adhesion
molecules are well-known for their role in the epithelial-to-mesenchymal transition, which
is considered a critical step in PCa disease progression. These signaling pathways’ acti-
vation in the high-risk group may help explain why patients in the high-risk group have
shorter RFS than those in the low-risk group.

Regarding the six genes that constitute the CRPCPS, including VWF, LMO7, ALDH2,
NPEPL1, NUAK1, and TPT1, two of them have been implicated in PCa. One is ALDH2
(aldehyde dehydrogenase 2), a stem cell marker that promotes cell proliferation and
doxorubicin resistance when overexpressed in cancer cells [66]. ALDH2’s expression is
associated with OS in lung adenocarcinoma, hepatocellular carcinoma, and upper tract
urothelial carcinoma [67–70]. In PCa, ALDH2 is expressed at a lower level in CRPC than
localized tumors, and patients with higher ALDH2 expression have a better prognosis [71],
which is consistent with our finding in the current study. Another gene is TPT1, a direct
target gene of p53 with elevated expression in malignancies, including PCa, glioma, and
skin squamous cell carcinoma [72]. It functions in many cellular processes, including cell
growth, cell cycle progression, malignant transformation, and apoptosis. As an androgen-
regulated gene [73], TPT1 is often upregulated in CRPC. TPT1’s upregulation correlates
with CRPC progression [74] and higher PCa grades [75], similar to our finding.
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At least three other genes have been well implicated in cancer development and
progression. The Von Willebrand Factor (VWF) is a marker for angiogenesis, and it has
been suggested as a predictive biomarker for therapeutic response in pancreatic cancer [76].
A decrease in VWF expression is associated with improved survival in patients with
colorectal cancer and liver metastases [77], and a single nucleotide polymorphism in VWF
(rs73049469) is associated with overall survival in NSCLC [78]. VWF is also upregulated in
androgen-independent prostate cancer cells [79].

LMO7 participates in cytoskeletal reorganization during carcinogenesis [80–82], and
its downregulation in lung cancer is associated with poorer patient prognosis [83]. Its
absence in mice induces spontaneous lung adenocarcinomas [84]. Although not reported
in prostate cancer, reduced LMO7 expression inhibits breast cancer cell migration [85], and
the LMO7-BRAF fusion frequently occurs in papillary thyroid cancer [86].

NUAK1, also known as ARK5, encodes for an AMPK-related serine/threonine protein
kinase that functions in cell adhesion [87], migration [88,89], and cellular and organismal
metabolism [90]. It is overexpressed in multiple types of cancers, and the overexpression
is associated with poorer prognosis in breast cancer [91], hepatocellular carcinoma [92],
colorectal cancer [93,94], and lung cancer [89]. A role in PCa has not been reported for
NUAK1, though.

It is unclear whether NPEPL1 plays a role in PCa and other cancers. However, it
appears to be a direct target gene of miR-19a, an oncogenic miRNA in breast cancer [95],
and the STX16-NPEPL1 fusion event occurs in gastrointestinal stromal tumors [96]. These
six genes constitute the CRPCPS, suggesting that they may play a coordinated role in CRPC
progression and are worthy of further investigation.

While the novel six-gene CRPCPS has reasonable generalizability and versatility in
RFS prediction and the three-gene diagnostic model can distinguish CRPC from HSPC, we
are aware that our study has some limitations. Firstly, the sample size of CRPC could be an
issue, as a relatively small number of CRPCs were used to identify CRPC-associated genes
and assess the diagnostic model. Secondly, the prognostic performance of this six-gene
signature needs to be evaluated in clinical practice. Another limitation derives from the
heterogeneities among the patient cohorts used in our study. For example, the follow-up
time was shorter in the Cambridge cohort (GSE70768, median 29.7 months) than in the
Belfast cohort (GSE116918, median 82 months). No standardization was conducted in terms
of sample collection, RNA extraction, gene expression analysis, etc. These heterogeneities
made us choose different optimal thresholds for risk stratification.

5. Conclusions

In summary, this study identified 287 genes differentially expressed between localized
CRPC and HSPC samples, many of which were not reported in previous studies. A six-
gene panel derived from the 287 CRPC-associated genes can predict RFS in PCa patients,
including those with lower tumor stages or lower Gleason scores. Three of the six genes
comprised of a diagnostic model predictive of CRPC. Therefore, these gene signatures may
help develop CRPC and RFS biomarkers via large-scale randomized clinical trials.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/4/917/s1, Figure S1: Overlap of differentially expressed genes (DEGs) between our study
and previously reported microarray experiments, Figure S2: The diagnosis effectiveness of the six
CRPCPS genes, Figure S3: Evaluation of the CRPCPS in the internal validation cohort and the entire
TCGA cohort, Figure S4: Association of CRPCPS score with tumor stage (a–d), Gleason score (e–h),
and lymph node status (i–k) in different patient cohorts, Figure S5: Association of CRPCPS with
patients’ age in the TCGA training cohort (a), the TCGA validation cohort (b), the entire TCGA
cohort (c), the MSKCC cohort (d), the Cambridge cohort (GSE70768) (e), and the Belfast cohort
(GSE116918) (f), Figure S6: Kaplan–Meier curves of recurrence-free survival (RFS) according to the
CRPCPS score in patients with lower (T1/T2) (a–c) and higher pathological tumor stage (T3/T4)
(d–g) in indicated patient cohorts, Figure S7: Kaplan–Meier curves of recurrence-free survival (RFS)
according to the CRPCPS score in patients with lower (≤7) (a–d) and higher Gleason score (>7)
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(e–g) in indicated patient cohorts, Figure S8: Kaplan–Meier curves of recurrence-free survival (RFS)
according to the CRPCPS score in patients without (N0) (a–c) and with lymph node metastasis (N1)
(d) in indicated patient cohorts, Figure S9: Performance of the CRPCPS and reported signatures in
different cohorts, Figure S10: Functional enrichment analysis of the CRPCPS, Table S1: Characteristics
of gene expression datasets used for the identification of differentially expressed genes, Table S2:
Differentially expressed genes (DEGs) between localized CRPC and HSPC samples with |log2 (fold
change)| > 0.5 and p value < 0.05 by RRA analysis. CRPC-associated genes newly identified in
our study were marked in bold, Table S3: List of the 24 genes that were significantly associated
with recurrence-free survival (RFS) in the TCGA training cohort (p-value < 0.05), as analyzed by the
univariate Cox regression analysis, Table S4: Characteristics of the three CRPCPS-derived genes and
their coefficients used for predicting CRPC occurrence.
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