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Abstract: Phlebotomus papatasi, an Old World sand fly species, is primarily responsible for the
transmission of leishmaniasis, a highly infectious and potentially lethal disease. International travel,
especially military rotations, between domestic locations and P. papatasi-prevalent regions in the
Middle East poses an imminent threat to the public health of US citizens. Because of its small size
and cryptic morphology, identification of P. papatasi is challenging and labor-intensive. Here, we
developed a ribosomal DNA-polymerase chain reaction (PCR)-based diagnostic assay that is capable
of detecting P. papatasi genomic DNA from mixed samples containing multiple sand flies native to the
Americas. Serial dilution of P. papatasi samples demonstrated that this diagnostic assay could detect
one P. papatasi from up to 255 non-target sand flies. Due to its simplicity, sensitivity and specificity,
this rapid identification tool is suited for a long-term surveillance program to screen for the presence
of P. papatasi in the continental United States and to reveal geographical regions potentially vulnerable
to sand fly-borne diseases.

Keywords: Phlebotomus papatasi; sand fly-borne diseases; PCR-based diagnostic assay; vector
surveillance; sensitivity and specificity

1. Introduction

Leishmaniasis, a vector-borne disease caused by protozoans, is an often-neglected illness endemic
to a total of 98 primarily tropical and subtropical countries. It is estimated that around 2 million new
cases of leishmaniasis occur each year, the majority of which occur in South America, East Africa and
the Middle East [1]. Of the primary forms of leishmaniasis, the most important are its cutaneous and
visceral forms. Cutaneous leishmaniasis (CL) is the most common form of the disease and can cause
severe skin lesions and permanent scarring. Visceral leishmaniasis (VL) is responsible for the majority
of leishmaniasis-linked deaths and can damage the immune system and lead to deadly complications
if untreated [2]. Leishmaniasis is caused by trypanosomes of the genus Leishmania and is transferred
to humans through the bite of an infected female sand fly. Sand flies are a group of morphologically
challenging-to-distinguish species that includes the major vectors of leishmaniasis. Specifically, 98
sand fly species are known or suspected to act as vectors of leishmaniasis, all belonging to the genera
Phlebotomus and Lutzomyia (found in the Old World and New World respectively) [3]. They are
small, rarely exceeding a length of 3.5 mm, and noiseless, rendering their attacks on hosts largely
undetectable [4]. In addition, symptoms of leishmaniasis normally develop 2 to 8 months after being
bitten, obscuring the link between the bite of a sand fly and the onset of disease. Considering the threat
posed by leishmaniasis, it is important to establish vector surveillance programs for Phlebotomine
sand flies in regions where they are suspected to exist or become established.
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Although leishmaniasis is generally considered a tropical disease, a steady range expansion has
been observed in both the parasite itself and the sand flies that vector it. Of the New World sand flies,
Lutzomyia shannoni has the largest geographic distribution, ranging from Argentina to the southeastern
United States [5]. Laboratory studies have shown that L. shannoni is capable of transmitting Leishmania
panamaensis [6] and Leishmania mexicana [7], both of which cause CL. A 2010 survey on the distribution
of sand flies in Kentucky recorded the presence of L. shannoni in the area, indicating a northward
expansion of its habitat towards the central US [8]. Similarly, the range of Leishmania has also expanded
throughout regions of Texas, where it is now considered endemic [9,10]. Cases of leishmaniasis have
also been reported in the states of Oklahoma [11] and North Dakota [12]. This range expansion
coincides with the discovery of Old World sand flies and Leishmania species in previously non-endemic
regions of Europe [13–15]. An increase in cases of canine leishmaniasis has also been observed in
Europe, which is of concern in part because dogs act as reservoirs from which the disease can spread
to humans [16]. Furthermore, simulation studies focused on the future distribution of sand flies in
regions such as North America [17], Central America [18], Europe [19] and southwestern Asia [20]
suggest that an increase in temperature and humidity, due to global warming, can allow flies to survive
in previously uninhabitable areas. While climate change is generally viewed as a major factor in
current and future sand fly range expansion, it should be noted that other factors—such as increased
cross-border travel and changes in reservoir populations—are more likely to have immediate impacts.

In the United States, military involvement in the Middle East has raised public health concerns
involving the introduction of sand fly-vectored diseases. This region is home to Phlebotomus papatasi,
the principal vector for cutaneous leishmaniasis in the Old World. Phlebotomus papatasi transmits
Leishmania major, which requires both a sand fly and a mammalian host to complete its development.
Leishmania major is ingested by P. papatasi in its amastigote form, where it replicates and is later
injected into a mammalian host as a promastigote [21]. Phlebotomus papatasi comprises either a majority
or a significant portion of sand fly trap captures in the Middle East and Egypt [22–26], including
Iran where CL is especially prevalent [27–29]. Currently, P. papatasi has not yet been found in the
New World. However, troop rotations between endemic regions and domestic military bases might
introduce leishmaniasis to US soil [30]. From 2001 to 2006, around 1300 incidences of leishmaniasis
were diagnosed in United States military personnel who were returning from Afghanistan and Iraq [31].
Infected exotic sand flies, such as P. papatasi, may be carried back to the continental US by returning
patients, military equipment and supplies. Exotic species may further transmit the disease to local
mammalian reservoirs, which could then spread Leishmania parasites to local sand fly populations such
as L. shannoni. However, it is unknown whether New World sand fly species are competent vectors of
Le. major. At least two native sand fly species, L. shannoni and L. vexator, were previously captured
and identified at Fort Campbell, Kentucky [32]. Transport of infected sand flies from regions where
leishmaniasis is endemic has the potential to expose portions of the US population to the threat of sand
fly-vectored diseases.

Given the potential threat of introducing exotic sand fly species to the United States, in the
short-term through global trade and international travel and in the long-term through global warming,
it is important to establish a surveillance program to monitor the invasion of these disease vectors.
Current taxonomic keys are based extensively on subtle morphological traits such as genitalia and the
cibarium in the head, which require time and expertise to identify [5]. The overall goal of this study
was to develop a fast, easy and cost-effective diagnostic assay for P. papatasi detection. To achieve this,
we designed and tested a PCR-based diagnostic assay utilizing the P. papatasi salivary apyrase gene as
a molecular marker and then examined its sensitivity in vivo and specificity in silico.
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2. Materials and Methods

2.1. Sand Fly Collection and Storage

Lutzomyia shannoni and Lutzomyia vexator specimens were collected from field sites during 2008 at
the Fort Campbell Army Installation near Clarksville, TN and the University of Kentucky’s Western
Research and Education Center in Princeton, KY using standard Center for Disease Control (CDC) light
traps (Model 512, John W. Hock, Gainesville, FL, USA). Phlebotomus papatasi specimens originating from
Israel, Jordan, North Sinai and Turkey were obtained from lab colonies maintained by the Walter Reed
Army Institute of Research in Maryland. Specimens of Lutzomyia longipalpis originating from Brazil
were also obtained from a lab colony maintained by Kansas State University. Lutzomyia longipalpis
was chosen as a third representative species that is native to the Americas, although its native range is
confined to Central and South America.

Sand flies were stored in 95% ethanol upon removal from −20 ◦C storage. Individual
specimens were temporarily removed from ethanol for dissection of the heads and last 2–3 abdominal
segments. Dissected body parts were placed in separate wells of 0.25 mL PCR strip tubes along with
approximately 0.2 mL of a lactic acid-phenol based commercial clearing solution (Bioquip Inc. Rancho
Dominguez, CA, USA) for subsequent taxonomic identification. The remainder of each specimen
was individually stored in centrifuge tubes with 95% ethanol and labeled with specimen accession
numbers. Specimen vouchers of field collected material were retained in the collection of the Public
Health Entomology Laboratory at the University of Kentucky.

2.2. Taxonomic Identification

The head and last 2–3 abdominal segments of each specimen were cleared and processed using
a modification of the methods presented in Reference [33] with commercial clearing solution used
as a substitute for boiling sodium hydroxide. The fly fragments were temporarily mounted on glass
microscope slides for viewing at 20× magnification under a compound light microscope and then
identified to species using a morphological key [34].

2.3. Genomic DNA Extraction and Sample Preparation

Remaining portions of specimens were individually dried in a rotary evaporator to remove
ethanol. A single 2.5 mm glass bead was added to each tube along with 75 µL of PCR nanopure water.
Tubes were placed in a Mini beadbeater (BioSpec Products Inc., Bartlesville, OK, USA) for 1.5 min of
grinding. DNA slurries were mixed with 180 µL ATL lysis buffer (Qiagen Inc., Hilden, Germany) and
20 µL Proteinase K (Qiagen Inc.) and incubated overnight on a dry heating block at 56 ◦C. The standard
DNAeasy Tissue Kit (Qiagen Inc.) extraction protocol was followed from this point on, ending with
two final elutions in 100 µL of buffer AE. The DNA concentration of each sample was determined
using a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).

Individual sand fly DNA samples were sorted according to species identification. Artificially
mixed samples of L. shannoni, L. vexator and L. longipalpis were made by combining individual samples
of the same concentration from the three species with a 1:1:1 ratio. Sand fly DNA mixtures were
prepared by adding one P. papatasi specimen to each of these mixed samples. Individual P. papatasi
samples from Israel, Jordan, North Sinai and Turkey were subjected to a serial dilution with ddH20 or
sand fly DNA mixtures described above.

2.4. Primer Design

The complete CDS of the mammalian-like lipase (accession number: AY179968) and salivary
apyrase (accession number: AF261768) Phlebotomus papatasi mRNA sequences were obtained from
NCBI. Both were subjected to Blastn analysis and searched against all insect nucleotide entries. Of
the top 100 Blastn results, sequences belonging to the Phlebotomine sand flies, including the query
sequence, were retained for multiple sequence alignment with MUltiple Sequence Comparison by



Insects 2018, 9, 162 4 of 12

Log-Expectation (MUSCLE) [35]. Three primer sets were designed for each mRNA within the regions
with the lowest homogeneity. Table 1 shows the sequence for the primer sets along with the expected
length of amplified products.

Table 1. Sequences of primer sets tested for diagnostic use, with expected amplicon length.

Gene Accession Number Primer Sequence (5′-3′) Amplicion Length (bp)

Mammalian-like lipse AY179968 LIP1F CTGCGAGGCCAACGTGGACA 132
LIP1R GCGCAGAGGTCACAGAGGTCG
LIP2F CCGGCCACTACGGTGTTGAGG 135
LIP2R CCAGTTCCGACGATCGATTT
LIP3F ACGTCACACTCTTCCCCAAC 172
LIP3R TAGTCGCACTTGGCCTTCTT

Salivary apyrase AF261768 APY1F ACAAAGGACGAGGAGCTGAA 178
APY1R GTTGCCCATTCTGCCTTAAA
APY2F TGGCACGAAGCTGTTAATTG 228
APY1R GTCA TCAC TATC GGGG AGGA
APY3F ACCA ATGC AGAC CTCA TTCC 174
APY3R TTTG ATCC AGAG GGAG TTGC

2.5. PCR Amplification

Sand fly DNA samples were amplified using the designed primer sets and iQ™ SYBR® Green
Supermix. Each reaction contained 10.0 µL of enzyme supermix, 1.0 µL of template DNA, 1.0 µL of
forward primer and reverse primer each and 7.0 µL of ddH20. PCR was performed in accordance with
the supermix manufacturer’s protocol. PCR was carried out in a thermal cycler with the following
cycling conditions: initial denaturing at 94 ◦C for 3 min; 40 cycles of 15 s denaturing at 94 ◦C, 30 s
annealing at 55 ◦C and 30 s extension at 72 ◦C; and a final extension at 72 ◦C for 5 min.

PCR products were validated using gel electrophoresis. Amplified products were visualized on
1.5% agarose gels stained with Gelred (Biotium Inc., Fremont, CA, USA, Cat. # 41002) in 0.5× TBE
buffer, which was run at 80V for 30 min. A 1000 plus base pair DNA ladder (1KB plus Gene Ruler™,
Fermentas Inc., Burlington, MA, USA, Cat. # SM1333) was used as the molecular size marker.

2.6. In Silico Analysis of the Specificity of the Selected Diagnostic Marker

After being selected as the diagnostic marker, the specificity of P. papatasi salivary apyrase (APY)
mRNA primer set 2 was analyzed bioinformatically. First, a nucleotide search was conducted on
NCBI with the items “salivary” and “apyrase” and the results were restricted to Psychodidae. All
returned sequences were aligned using MUSCLE [35] and edited by Mega7 [36]. Another MUSCLE
alignment was conducted between the APY primer set 2 product and aligned sequences from the
previous step using EMBL-EBI (European Bioinformatics Institute), to generate a percent identity
matrix. Pair-wise comparison between the APY primer set 2 product and returned sand fly APY
sequences was carried out following the resultant matrix. Second, the APY primer set 2 product was
subjected to Blastn search against nucleotide entries in all organisms. Program selection was optimized
to “Somewhat similar sequences (blastn).” Returned sequences were compared by query coverage
and percent identity. Information regarding the sources of the returned sequences was summarized in
Tables S1 and S2.

3. Results

In order to differentiate the exotic sand fly species P. papatasi from native L. shannoni and L.
vexator, our candidate primer sets should be able to only amplify PCR products from P. papatasi
genomic DNA. Figure 1 displays the band patterns for amplifications using different sand fly DNA
and different primer sets. For reactions using the three mammalian-like lipase (LIP) primer sets,
bands corresponding to P. papatasi can be visualized at approximately 130, 130 and 180 bp respectively.
However, bands corresponding to non-target species were also observed in reactions using LIP primer
sets 1 and 3. Reactions with salivary apyrase (APY) primer sets yielded bands at approximately 170,
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230 and 170 bp for P. papatasi. Among them, amplified products of APY primer set 2 exhibited the
most intense band for P. papatasi without additional bands for other species, such as the band for
L. shannoni found in primer set 1. Therefore, this primer set was selected as the diagnostic marker for
the subsequent sensitivity testing.
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Figure 1. Selection of the diagnostic primer set for Phlebotomus papatasi. To search for P. papatasi-specific
markers, two nucleus genes, salivary apyrase (accession number: AF261768); (A) and mammalian-like
lipase (accession number: AY179968); (B) were used in this study. Three primer sets were designed
for each mRNA within the regions with the lowest homogeneity. Primer sequences and projected
amplicon sizes were listed in Table 1. Some bands of very low intensity were visible after running the
gel but are not visible in photos. Notably, bands pertaining to all three non-target species appear when
LIP primer set 3 is used.

When APY primer set 2 was compared with all sand fly APY transcripts, 135 results were returned.
After MUSCLE alignment and editing, 98 sequences remained. Most of the sequences ranged from 40%
to 70% percent identity with the primer set 2 product, as shown in Figure 2. 53 sequences’ identities
were between 40% and 50%, 24 were between 50% and 60% and 12 were between 60% and 70%. There
were only 4 sequences with identities higher than 80%, all of them belonging to either P. papatasi or
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P. duboscqi. Information on the identities of the apyrase transcripts with the greatest sequence identity
can be found in Table S1.
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Figure 2. Specificity of P. papatasi salivary apyrase primer set 2. MUltiple Sequence Comparison by
Log-Expectation (MUSCLE) was used to align and compare the sequence identity of the PCR product
generated by the primer set 2 of P. papatasi salivary apyrase with 98 apyrase transcripts in other sand
flies. (A) The distribution of the number of apyrase transcripts across different range of percent identity;
(B) The number of apyrase transcripts from different species in Phlebotomus.

The Blastn results with the highest sequence identity are shown in Table S2. 33 results were
returned from the Blastn search across 4 kingdoms: Animalia, Plantae, Fungi and Bacteria. 23 of
the sequences were from animals, of which 12 sequences belonged to insects and half of the insects’
sequences belonged to sand flies. Among all returned results, only 4 of them had a more than 50%
query coverage: 2 from P. papatasi (100%) and 2 from P. duboscqi (99%) with over 87% percent identity,
which indicated a significant match with the APY primer set 2 product.
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To test the sensitivity of the primer set, we investigated the effect of sample dilution on the
amplification of PCR products. Figure 3 illustrates the visibility of PCR products amplified from
P. papatasi DNA samples diluted with either ddH20 or artificial DNA mixes of the three non-target
native species (L. shannoni, L. vexator and L. longipalpis).Insects 2018, 9, x FOR PEER REVIEW  7 of 12 
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Figure 3. Sensitivity of PCR-based diagnostic assay. To examine the sensitivity of this diagnostic assay,
P. papatasi samples were diluted into ddH20 (A) or sand-fly DNA mixtures (B). In addition, the number
of PCR cycles also contributed to the sensitivity of this rapid detection method. Dilution factor based
on serial dilution ranged from 0- to 256-fold.

After 50 cycles, in both dilution strategies, bands of amplified product were visible up to the
256th-fold dilution level. Figure 4 illustrates the visibility of PCR products amplified from diluted
P. papatasi DNA samples originating from Israel, Jordan, North Sinai and Turkey via APY primer set
2. Bands were visible at the 256th-fold dilution level in all but the Turkey sample, where bands were
visible up to the 16th-fold dilution.

Insects 2018, 9, x FOR PEER REVIEW  7 of 12 

 

 
Figure 3. Sensitivity of PCR-based diagnostic assay. To examine the sensitivity of this diagnostic 
assay, P. papatasi samples were diluted into ddH20 (A) or sand-fly DNA mixtures (B). In addition, the 
number of PCR cycles also contributed to the sensitivity of this rapid detection method. Dilution 
factor based on serial dilution ranged from 0- to 256-fold. 

After 50 cycles, in both dilution strategies, bands of amplified product were visible up to the 
256th-fold dilution level. Figure 4 illustrates the visibility of PCR products amplified from diluted P. 
papatasi DNA samples originating from Israel, Jordan, North Sinai and Turkey via APY primer set 2. 
Bands were visible at the 256th-fold dilution level in all but the Turkey sample, where bands were 
visible up to the 16th-fold dilution. 

 
Figure 4. Validation of sensitivity. Field-collected P. papatasi samples from Israel, Jordan, North Sinai 
and Turkey were, respectively, subjected to a serial dilution with ddH20 (A) or artificially mixed sand 
fly DNA samples (B) including L. shannoni, L. vexator and L. longipalpis. Dilution factor based on serial 
dilution comprised 0 (0), 1 (1), 2 (2), 3 (4), 4 (8), 5 (16), 6 (32), 7 (64), 8 (128) and 9 (256). 

4. Discussion 

Previously, members of our lab developed and tested a PCR-restriction fragment length 
polymorphism (RFLP)-based assay for the differentiation of sand fly species using the mitochondrial 
cytochrome oxidase 1 (CO1) gene [37]. Here, we demonstrate the use of a similar PCR-based assay as 
an effective form of surveillance in the detection of non-endemic P. papatasi sand flies. PCR-RFLP has 
been used extensively in regions where leishmaniasis is endemic as a means of identification for both 
sand fly [38–42] and Leishmania [27–29] species. In addition to PCR-RFLP, DNA barcoding [43–47] 

Figure 4. Validation of sensitivity. Field-collected P. papatasi samples from Israel, Jordan, North Sinai
and Turkey were, respectively, subjected to a serial dilution with ddH20 (A) or artificially mixed sand
fly DNA samples (B) including L. shannoni, L. vexator and L. longipalpis. Dilution factor based on serial
dilution comprised 0 (0), 1 (1), 2 (2), 3 (4), 4 (8), 5 (16), 6 (32), 7 (64), 8 (128) and 9 (256).
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4. Discussion

Previously, members of our lab developed and tested a PCR-restriction fragment length
polymorphism (RFLP)-based assay for the differentiation of sand fly species using the mitochondrial
cytochrome oxidase 1 (CO1) gene [37]. Here, we demonstrate the use of a similar PCR-based assay
as an effective form of surveillance in the detection of non-endemic P. papatasi sand flies. PCR-RFLP
has been used extensively in regions where leishmaniasis is endemic as a means of identification for
both sand fly [38–42] and Leishmania [27–29] species. In addition to PCR-RFLP, DNA barcoding [43–47]
and matrix-assisted laser desorption/ionization time of flight mass spectrometry [48–50] have also
been used to differentiate sand fly species. In comparison to other methods of identification, the PCR
basis of our assay removes the need for DNA sequencing and requires only rudimentary equipment to
perform. In addition, it is tuned specifically towards detection of P. papatasi sand flies, which allows
the assay to produce completely unambiguous results. Finally, our assay can detect P. paptasi DNA
even when it is homogenized with other insect samples, making it ideal as a means of monitoring
P. papatasi presence using light trap captures.

Previous studies using P. papatasi revealed that mammalian-like lipase (LIP) is a major protein
involved in the secretions of female reproductive accessory glands [51]. Considering that the anatomy
of internal reproductive organs is used for sand fly species identification, differences in morphology
may reflect on the mRNA sequence of the LIP protein. Research on salivary apyrase (APY) in P. papatasi
also indicates that this protein family is highly diverse in hematophagous arthropods [52]. For both
proteins, their corresponding mRNAs can be potentially utilized for species identification. Blast
searches against insect nucleotide entries generally resulted in low homogeneity with other species,
with the only exception being that P. papatasi and P. duboscqi from Mali share 90% identity with the
APY mRNA. This similarity has been verified previously [53]. Phlebotomus duboscqi’s native range
overlaps with that of P. papatasi and it is also capable of carrying Leishmania [3,54]. Thus, although it
is likely that our surveillance system yields a positive result with P. duboscqi DNA, this exception is
acceptable due to the risk posed by this species.

Multiple sequence alignment for mammalian-like lipase (LIP) and salivary apyrase (APY) of
P. papatasi and related sand fly species revealed conserved domains among closely related sand fly
species. As denoted in Figure 4, primer sets were preferably selected at disparate regions in the
alignment. If the conserved region was overwhelmingly long as in the case of salivary apyrase,
high-scoring segment pair (HSP) regions between P. papatasi and non-target species would be used
as the secondary selection criteria. This design strategy is intended to improve the probability of
obtaining species-specific primer sets at the bioinformatics level.

Candidate primer sets were evaluated on DNA samples of four sand fly species to ensure that
a sufficient level of specificity was achieved to distinguish P. papatasi from non-target species. APY
primer set 2 was able to amplify DNA samples of P. papatasi but no other species, indicating a strong
and specific binding of the primer set to P. papatasi DNA. Other primer sets yielded bands exhibiting
various degrees of anomaly including weak intensity, the presence of multiple bands and band
deformation. These anomalies were probably due to unspecific binding to DNA samples of non-target
species. The length of amplified products was generally in accordance with the expected values
predicted from mRNA sequences, indicating the absence of introns and splicing variants that could
affect primer positions.

Subsequently, we investigated the sensitivity of APY primer set 2 by diluting P. papatasi samples
with ddH20 and DNA mixes of non-target sand flies. Phlebotomus papatasi is a sand fly species which
poses an invasion threat to the US. At the initial stage of a potential invasion, the number of P. papatasi
that are present in CDC traps would be extremely limited, which poses a great challenge to its detection
from a pool of insect DNA mixtures. Nevertheless, APY primer set 2 was able to detect and amplify
P. papatasi originating from most regions up to the ninth dilution level, indicating an equivalent
identification power of detecting one P. papatasi from 255 native sand fly individuals. Due to possible
contamination of the Turkey DNA sample, bands above the fifth dilution level were not readily visible,
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which is equivalent to detecting one P. papatasi from 15 native sand fly individuals. Compared to
the clear gel background of the ddH20 dilution group, some barely visible bands at 300 bp were
present in the DNA mix dilution group. While the intensity of the target band at around 140bp was
not greatly affected, the presence of irreverent bands illustrates the influence of non-target DNA on
P. papatasi detection.

5. Conclusions

In conclusion, our PCR-based assay can successfully detect the presence of P. papatasi genomic
DNA from DNA mixtures consisting of native sand fly species. Our next goal is to apply our assay to
captures from standard CDC light traps acquired from Spindletop Farm, a research farm located near
the University of Kentucky, and Fort Campbell, Kentucky as a means of field validation. If successful,
development of a mobile field kit is also a possibility, to allow technicians to analyze trap captures
on-site. Furthermore, it may also be possible to adapt our assay for use in detecting exotic sand fly
species in other regions at risk of invasion, including Europe and the Middle East. The most effective
time window for any surveillance strategy is prior to or during the initial stage of invasion when
introduced populations of non-native species have yet to become established. Using readily available
PCR technologies, our detection strategy achieves significant levels of sensitivity and specificity while
theoretically reducing the time, labor, cost and expertise required by traditional surveillance strategies
based on either morphological traits, molecular features, or both.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4450/9/4/162/s1,
Table S1: Sequence comparison between P. papatasi salivary apyrase primer set 2 product and apyrase transcripts
in other sand flies, Table S2: Sequence comparison between P. papatasi salivary apyrase primer set 2 product and
top blastn hits.
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