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� The prognosis of patients with liver
metastasis is worse than that of other
metastatic cancers across cancer
types.

� Part of patients with liver metastasis
have common tumor environment
immunotolerance.

� The immunotolerance with low
immune cells expression contributed
the main features of liver metastasis
across cancer types.

� Liver metastasis common features
score guides immunotherapy/
prognosis of liver metastasis, with
KRT19 playing a key role.
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Background: Hepatic immune tolerance might contribute to the development of therapeutic resistance to
immunotherapy. However, addressing this issue is challenging since the efficacy of immunotherapy in
the context of liver metastasis (LM) remains poorly studied. Here, we aimed to establish an LM common
immune feature (LMCIF) score to quantify the characteristics of LM immunotolerance across cancer types
for assisting clinical disease management.
Methods: Large-scale clinical data were collected to identify the prognosis of LM. Multi-omics datasets of
metastatic cancers with LM special immune-related pathways (LMSIPs) from the Molecular Signatures
Database (MSigDB) were used to obtain an LMCIF cluster. Based on differential expression genes
(DEGs), a novel LMCIF score for the LMCIF cluster was constructed. In addition, multi-omics, and
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Immunotherapy
KRT19
immunohistochemistry (IHC) data from the public and in-house cohorts were used to explore the fea-
tures of LM, and LMCIF score.
Results: Patients with LM had a worse prognosis and significantly lower infiltration of immune cells than
patients with metastasis to other organs when analyzed with combined clinical and RNA sequencing
data. After extracting the LMCIF cluster from 373 samples by utilizing 29 LMSIPs and validating them
in a microarray cohort, an LMCIF score was established to confirm the role of the immunosuppressive
environment as a contributor to the poor prognosis of LM across cancer types. Moreover, this LMCIF score
could be used to predict the immune response of cancer patients undergoing immunotherapy. Finally, we
identified that the majority of the 31 LMCIF genes exhibited a negative correlation with TME cells in LM
patients, one of them, KRT19, which possessed the strongest positive correlation with LMCIF score, was
confirmed to have an immunosuppressive effect through IHC analysis.
Conclusions: Our results suggest that LM across cancer types share similar immunological profiles that
induce immunotolerance and escape from immune monitoring. The novel LMCIF score represents a com-
mon liver metastasis immune cluster for predicting immunotherapy response, the results of which might
benefit clinical disease management.
� 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Liver metastasis (LM), also known as secondary liver cancer,
develops from cancers outside the liver, such as gastrointestinal
tract tumors, lung tumors, breast tumors, and melanoma, and it
occurs 18–40 times more frequently than primary liver cancers
[1–2]. Metastatic liver cancers are increasingly common, resulting
in a drastically lower 5-year survival rate and lower quality of life
[3]. The complexity of the immune microenvironment complicates
the treatment of liver metastases. Chemotherapy and radiotherapy,
or either one in combination with multi-kinase inhibitors, such as
sorafenib [4], regorafenib [5], or cabozantinib [6], have not shown
significant clinical benefit so far, instead only the provision of
short-term survival. The current approach to treating metastatic
liver tumors involves immune checkpoint blockade that targets
the immunosuppressive milieu [7–8].

The liver microenvironment is a complex cellular and molecular
immune network, mainly including hepatic stellate cells (HSCs),
liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), regu-
latory T (Treg) cells, dendritic cells (DCs), and myeloid-derived
suppressor cells (MDSCs) among others [2]. These resident liver
cell subtypes play a key role in the mechanisms of hepatic immune
tolerance. Among them, MDSCs are a heterogeneous population of
bone marrow-derived cells that negatively regulate immune cell
responses. Knolle PA et al. [9] have found that HSCs could promote
the generation of MDSCs by secreting transforming growth factor-
b (TGFb) to form the tolerant immune orientation. KCs are liver
tissue-resident macrophages, and they express programmed cell
death ligand 1 (PD-L1) to mediate immunosuppressive orientation
of the liver, and the depletion of KCs in vivo can abolish hepatic tol-
erance [10]. In addition, the polarized state of KCs could reduce the
expression of major histocompatibility complex (MHC) on LSECs to
limit immunostimulation [11]. Treg cells impair tumor-cytotoxic T
cells by expressing CD25 and cytotoxic T lymphocyte protein 4
(CTLA4), as well as secreting several cytokines that promote the
immunosuppressive microenvironment, such as TGFb and IL-10
[12,13]. Pacella I et al. [14] have proved that the expansion of Treg
cells significantly impairs the antitumor activity of tumor-
cytotoxic T cells through increased utilization of lipids and glucose.
Hepatic DCs includes two main subtypes: conventional DCs and
plasmacytoid-derived DCs, respectively. Plasmacytoid-derived
DCs respond poorly to toll-like-receptor (TLR) stimulation, and
they can decrease the expression of costimulatory molecules,
thereby contributing to the immunotolerance of the live [15]. All
of the above hepatic immune tolerance mechanisms may, in turn,
drive therapeutic resistance to immunotherapy [16]. However, the
molecular features that underlie the mechanisms of human hepatic
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immunotolerance lead to compromised efficacy of immunotherapy
remains to be elucidated.

Therefore, in the current study, we systematically analyzed
overall survival in metastatic patients, with or without
immunotherapy, across various cancer types and observed that
patients with LM manifest the worst outcomes. Furthermore, we
found hepatic immune microenvironment characteristics differ
from those of other metastatic organs through the analysis of
immune pathway-related genes. We then constructed a liver
metastasis common immune feature (LMCIF) score representing
the immunosuppressive microenvironment, which would, in turn,
can be a predictor of immunotherapeutic efficacy for patients with
LM. Finally, a representative hub gene, KRT19 was observed, and
IHC experiments confirmed the negative correlation between
KRT19 and infiltrating CD8+ T cells. Our LMCIF score helps quantify
the distinct immunosuppressive microenvironment of liver metas-
tases, and it provides an effective prediction of prognosis and
immunotherapy response in patients with liver metastases across
cancer types.
Materials and methods

Study design and data collection

The experimental design we employed was illustrated in Fig. 1,
which can be divided into the following sequential steps. First, to
systematically identify the prognosis and tumor microenviron-
ment (TME) of LM across cancer types, one study included
25,000 patients with metastasis and detailed prognosis informa-
tion [17]. In addition, Dan R. Robinson et al. performed RNA
sequencing across different cancer types, of which>500 cancer
metastasis patients were also collected [18]. Among them, the total
of 373 metastasis samples with RNA transcripts, containing liver
(n = 212), lung (n = 59), brain (n = 9), bone (n = 67), and skin
(n = 26), were directly extracted from the RNA transcripts matrix
in the MET500 cohort by deleting the original local metastasis
samples [18]. Single sample gene set enrichment analysis (ssGSEA)
was utilized to quantify cells within the TME and to discriminate
the TME of LM from metastases derived from other organs.

In the next step, we used the 373metastasis samples frommore
than 16 cancer types, and 2432 normal tissue samples from the
above 5 organ sites to perfrom further analysis. A total of 2432 nor-
mal samples with RNA transcripts, which including the 110 normal
liver tissues and other tissues (Brain (n = 1152), Bone (n = 70), Skin
(n = 812), and Lung (n = 288)), were selected from the GTEx
database(https://www.gtexportal.org/home). Based on RNA
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Fig. 1. Overall design of this study. First step: Clinical analysis for Liver metastasis(LM). We used the 25,000 patients with pan-cancer and OS data to check the porpartions
and the prognosisitc values of LM. Then, 301 pan-cancer with Immunotherapy was matched to detected the Immuntoherapy effect for LM. Second Step, Clusting analysis.
After estimating the TME charactertics of LM, by using the 5000 + MSigDB-C7 pathways, 373 patients with RNA-sequence data were clustering. Third Step: LMCIF score
establishing and estimation. The TME features and find special genes of LMCIF clusters were identified to construct the LMCIF score. In-house and extral data were used to
validate the role of related genes in the LMCIF score. The drawing was produced by BioRender (https://biorender.com/).
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transcripts, the enrichment scores of 5025 immune pathways from
MSigDb C7 (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
in all metastatic cancer patients and normal tissues were calcu-
lated, respectively. Subsequently, LM samples with special differ-
ential expression immune-related pathways (LMSIPs) were
identified to cluster them. These LM special clusters were now ter-
med as LMCIF clusters and the features of LMCIF clusters were fur-
ther characterized.

In the end, an LMCIF score based on the different expressing
genes in LM was developed. It represents the genetic traits or phe-
notypes associated with LMCIF clusters in LM patients [18], LM
patients undergoing immunotherapy [19–20] and LM single cells
[21]. Also, the tissue samples from colorectal cancer associated
with LM as in-house data, as well as a public dataset
(GSE51244), were both used to validate the characteristics of
LMCIF-related genes. All datasets utilized in the present work were
listed in Supplemental Table S1.
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Prognostic analysis of LM in pan-cancers with or without
immunotherapy

A total of 10,097 metastasis patients out of 25,000 patients
across cancer types were included in the prognostic analysis of
LM [17]. Kaplan-Meier (KM) curves and Cox proportional hazards
regression analysis were used to reveal the role of LM for tumor
progression in different cancer type. A cohort of 301 metastasis
patients who received immunotherapy, extracted from a larger
group of 2,277 patients [20], was utilized to assess the prognosis
of LM.

Quantifying TME cells, immune pathways, and immune scores

By using various bioinformatics tools, such as digital quantita-
tive or non-quantitative methods, the gene expression data of
immune cells, stromal cells, and other important components
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within the TME from all avivalbe metastasis samples were interro-
gated based on the RNA transcripts. For TME cells, the gene
signature-based method xCell [22–23] and MCP-counter (Microen-
vironment Cell Populations-counter) [24] were adopted to inte-
grate the advantages of gene set enrichment with deconvolution
approaches. In addition, both immune and environment scores
were measured by the xCell algorithm. The estimate R package
was used to measure stromal score, immune score, and estimate
score [25–26]. Classical canonical pathways and immunotherapy-
predicted response-related pathways, which had been selected
manually from previous studies, were listed in Supplemental
Table S2. These essential pathways were also calculated by gene
set variation analysis (GSVA) to explore cancer progression and
immune features of LM in the present study. To reveal the full
immune landscape of LM patients across cancer types, the immune
features of 5025 immune-related gene sets from MsigDB were also
calculated via ssGSEA methods. All obtained calculated scores and
Z-scores were analyzed according to scale for further analysis.

Identification of LM special immune-related pathways

To find LM special immune-related pathways (LMSIPs), GETx
database and pan-cancer cohorts were used. Then, we used the
lmFit function of the ‘‘limma” package to identify the target
immune gene sets from a total of 5025 genes more highly
expressed in liver metastasis samples compared to other tissue
samples in the pan-cancer cohort. Lastly, we kept the immune gene
sets with significantly high expression in LM samples and excluded
those with significantly elevated expression in normal liver tissue
(T value > 6 and p adj < 0.001) in further analysis of LM samples.

Immune clustering for metastatic cancer

Given these LMSIPs, we performed a non-parametric unsuper-
vised analysis to estimate the variation of these metastasis sam-
ples. First, sample distances were computed by the ‘‘dist”
function in R with Euclidean distance, followed by generating clus-
ters for distances by the ‘‘Ward-D2” linkage method by the ‘‘hclust”
function. In addition, through the ‘‘cutree” function, we established
clusters to include specific samples. Finally, for visualization pur-
poses, heatmaps and boxplots were performed with a representa-
tion of 373 samples and LMSIPs.

Validation of immune clustering in the Gene Expression Omnibus
(GEO) dataset

To verify the immune genetic profile of metastasis clustering,
we searched special cohorts with metastatic cancer in the GEO
dataset (https://www.ncbi.nlm.nih.gov/geo/). A total of 374 metas-
tasis samples from 16 datasets from a previous study were col-
lected. Data were downloaded from https://github.com/odap-ubs/
mets-immunecluster. GSVA calculates sample-wise gene set
enrichment scores as a function of genes inside and outside the
gene set, analogously to a competitive gene set test. By using the
GSVA score for the above LMSIPs, we then clustered the metastasis
samples to get their genetic profile. Other characteristics, including
some TME cells and special pathways, were also identified for fur-
ther analysis in each immune cluster of metastasis samples.

Identification and development of LMCIF score

To better understand the role(s) of LMCIF clusters in LM, we
aimed to establish a score representing the biological significance
of LMCIF. To accomplish this, RNA transcripts between clusters
with the highest proportion of LM, and clusters with the lowest
percentage of LM were compared. Their DEGs were identified as
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LMCIF genes (logFC > 1.5, adjusted P < 0.001). Among these LMCIF
DEGs, we excluded the highly-expressing genes in the normal liver
tissue samples from GTEx as well (logFC > 1.5, adjusted P < 0.001).
Given the significant DEGs in LM, principal component analysis
(PCA) was used to establish the LMCIF score in all samples. Similar
to a previous study [27], we summed the principal components
PC1, PC2 and PC3 as the LMCIF score. The Z-score was applied to
the LMCIF score and used in the present study to indicate how
much a given value differs from the standard deviation.

LMCIF Score ¼
Xj

i

ðPC1iþ PC2iþ PC3iÞ

Where i is the array or gene sequence expression of LMCIF
genes, and j is the total number of DEGs in the LMCIF cluster.
Function enrichment analysis

Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses for DEGs were performed
by the ‘‘clusterProfiler” package and visualized by the network
function in R.
Cell-cell communications in LM single-cell data

Single-cell data were obtained from the GEO (GSE178318).
Among them, 54,305 single cells were identified from the liver
metastasis tissues of colon cancer. First, the maestro pipeline was
used to annotate all single cells in CD4Tconv, B, CD8T, CD8Tex,
Fibroblasts, Mast, Mono/Macro, Myofibroblasts, NK, pDC, Plasma,
TMKI67, Treg and Cancer cells. The tSNE function from the Seurat
R package was used to visualize LM single cells. Then, based on
DEGs, we first used AddModuleScore in Seurat R for cancer cells.
Next, to check the different effects of cancer cells with different
LMCIF scores on other TME cells, cancer cells were divided into
four zones, Q1, Q2, Q3 and Q4, according to quantity. CellChat is
an R package containing ligand-receptor interactions. It can ana-
lyze the intercellular communication from scRNA-seq data, and it
was used to evaluate the major signaling inputs and outputs
among all TME cell clusters, using CellChatDB.human. Finally, the
‘‘netVisual_circle function” was used to show the strength or
weakness of cell–cell communication networks from the target cell
cluster to different cell clusters in all clusters.
The utilization of the LMCIF score as a predictor of prognosis and
immunotherapy in patient cohorts

To test the prognostic value of the LMCIF score in pan-cancer,
we collected 115 patients with LM from 13 cancer types in the
TCGA cohort. In addition, patients with immunotherapy (n = 348)
were taken from the ‘‘IMvigor210” R package. These LM patients
had advanced urothelial cancer and had been administered ate-
zolizumab, an anti-PD-L1 antibody. They were included to explore
the relationship between the LMCIF score and immune checkpoint
blockade (ICB) therapy response in patients with LM.
Ethics statement

The use of all human samples was approved by the Institutional
Ethics Committee of the Sir Run Run Shaw Hospital of Zhejiang
University School of Medicine (Ethical code: 20190211–55).
Informed consent was obtained from all patients.
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Human sample collecting and immunohistochemical staining

We made a tissue microarray [No.XM091Mco1] with 14 pan-
cancer metastatic samples, which cooperated with Xi’an Biotech
Co., Ltd (Xi’an, China). All tissue samples were fixed in formalin
and embedded with paraffin. Multiplexed Immunohistochemical
Staining was supported by Baios Biotechnology Co., Ltd. KRT19
Polyclonal Antibody (PTG,60187–1-AP) and CD8 antibody (ZA-
0508) was purchased from Zhongshan Golden Bridge and recov-
ered by PH9.0 EDTA. Secondary antibodies of Alexa Fluor�488 Don-
key anti- Rabbit (A21206) and Alexa Fluor�594 Donkey anti-Mouse
(A21203) were purchased from Life Technologies.

For double-IHC, the following steps were adopted. First, after
deparaffinization, rehydration, and antigen retrieval, the tissue
microarray was placed in TBST and blocked with 10% Donkey
Serum for 30 mins at room temperature. In addition, after incubat-
ing 0.5 lL mouse monoclonal anti-human CK19 antibody (EDTA,
dilution 1:2000) and 1 lL rabbit monoclonal anti-human CD8
(EDTA, dilution 1:1000) in the microarray overnight at 4 ℃, the
working solution of secondary antibodies was used for configura-
tion the next day, and slides were incubated at 37 ℃ for 60 mins.
DAPI (1:500) was then used to stain nuclei for 5 mins while kept
away from light. Diaminobenzidine (DAB) Substrate Kit was used
for the chromogenic reaction. Finally, IHC images were captured
by the digital slide scanning system (3DHistech). Green repre-
sented the positivity of CD8, and red indicated the positivity of
KRT19.

Immunohistochemical score

To detect the immunohistochemical score (H-score) and the
density of positive and negative cells in each sample, two experi-
enced pathologists with artificial intelligence (AI) tools (Visio-
pharm, OpenSlide and Python) extracted these features from
cancer tissue samples. Here, H-score is a histological scoring
method for processing immunohistochemical results. It converts
the number of positive cells and their staining intensity in each
section into corresponding values for semi-quantitative staining
of tissues. Following the equation H-score = R Pi (i + 1), Pi repre-
sents the percentage of the positive cells in all cells in a section,
and i represent staining intensity. The immunohistochemical H-
score integration method was [1 � (proportion of cells with a
staining score of 1) + 2 � (proportion of cells with a staining score
of 2) + 3 � (proportion of cells with staining score of 3)] [28]. All
available features could be extracted from the AI results, including
the number of negative and positive cells, the positive percentage,
and the number of positive cells per mm2 for each sample.

Statistical analysis

The categorical variables were presented as frequencies and
percentages in tables or bar plots and compared for significance
using the chi-square test. The continuous variables were reported
as median values with interquartile ranges (IQR) or mean
values ± standard deviation (SD) based on normality in the tables
or the box plots. The non-normally distributed continuous vari-
ables were compared for significance using the Wilcoxon rank-
sum test between two groups and the Kruskal-Wallis H test for
more than two groups. Additionally, the log-rank (Mantel-Cox) test
and univariate Cox proportional hazards regression were used to
analyze the prognosis of variables in patients with LM, with or
without immunotherapy. The Spearman method was employed
to calculate the relationships between two continuous variables
with non-normal distribution. The statistical parameters, including
the definition of center, dispersion, precision measures, and statis-
tical significance, were reported in the figures and figure legends.
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Any other special analyses can be found in the description of the
corresponding method sections. All statistical analyses were con-
ducted using R 3.6.2. A p-value of < 0.05 was considered statisti-
cally significant.
Results

High incidence and poorer prognosis of LM in pan-cancer with or
without immunotherapy

According to the statistics of clinical data from 25,000 patients,
10,097 patients from 27 cancer types were identified had cancer
metastasis (with or without LM) and were included in the initial
stage of analysis. LM accounted for 4.8% to 62.7% of pan-cancer
types (Fig. 2A and Supplemental Table S2). Among them, gas-
trointestinal and neuroendocrine tumors, pancreatic and colorectal
cancer, showed the highest incidence of LM. In addition, Cox
regression analysis was performed and revealed that LM had a sig-
nificant negative effect on survival in almost all cancer types
(Fig. 2B, Supplemental Table S2, and Figure S1). Especially, germ
cell tumor, cervical cancer, and thyroid cancer demonstrated
higher Hazard Ratio(HR) values of LM for the prognosis. Survival
curves showed that LM is a significant risk factor in several typical
solid tumors, such as melanoma, bladder, lung, ovarian, breast, and
colorectal (Supplemental Figure S1). Based on all datasets, it was
clear that cancer patients accompanied by LM had a poorer prog-
nosis than those who had other organ metastases in pan-cancers
(Fig. 2C, P < 0.001). Furthermore, 401 patients with anti-PD-1/
PD-L1 treatment across 8 different cancer types were enrolled to
evaluate the influence of LM on prognosis (Supplemental
Table S3). Under anti-PD-1/PD-L1 immunotherapy, LM patients
still had worse outcomes than non-LM patients (Fig. 2D,
P < 0.001). Collectively, the results indicated that patients with
LM tend to have poorer prognosis than those who have other organ
metastases.
Tumor microenvironment (TME) of LM across cancer types

To investigate the TME of LM, various TME profile indicators,
including tumor mutation burden (TMB), immune score and infil-
tration of B cells and T cells, were calculated by using DNA muta-
tion or RNA-seq data. Interestingly, it was found that TMB, an
immune indicator for immunotherapy, was significantly lower in
patients with LM than those without LM with and without
immunotherapy (Fig. 2E and 2F). Next, by the MCP-counter, we
found that most immune lineages were lower in patients with
LM compared to those without LMmetastasis, including B lineages,
NK cells, monocyclic lineage, myeloid dendritic cells, T cells and in
particular CD8 T cells (Fig. 2G, all P < 0.05). Similarly, for samples
with Estimated and xCell algorithm for pan-cancer RNA tran-
scripts, immune score, stromal score, estimated score, microenvi-
ronment score, as well as 64 types of immune cells were
calculated. And the results revealed that these immune indicators
were all significantly lower in patients with LM compared to those
without LM (Fig. 2H and Supplemental Figure S2).

To further validate this observation, we conducted an immuno-
histochemical assay to assess the expression of CD8 protein in 25
samples from 4 types of cancer metastasis (e.g., liver, lung, bone,
and brain) on a tissue chip, representing pan-cancer metastasis
samples. The result further validates that the tumor-infiltrated
number of CD8+ T cells was significantly lower in the LM tissue
than in non-LM tissue (e.g., lung, brain and bone) (Fig. 2J,
P < 0.05). Fig. 2I displays a representative sample exhibiting low
levels of CD8+ protein in LM tissue, while another representative
sample shows high levels of CD8+ protein in the non-LM tissue.



Fig. 2. LM shares a poor prognosis and a similar immune environment. A) Rank of incidence of LM in each cancer type. B) Cox regression for the prognosis ranks for LM in
each cancer type. C) and D) Log-rank test for the KM curves in the meta-cohort of metastasis patients with or without anti-PD1/PDL1 immunotherapy. E) and F) Kruskal-
Wallis test for the TMB in different statuses of LM with or without immunotherapy. G) Wilcoxon test for the different infiltration of immune cells in metastasis cancer
patients with or without liver metastasis. H) Kruskal-Wallis test for the different TME scores five types of metastases from the patients with 16 cancer types. I) IHC for CD8
protein in the representative samples from LM or non-LM tissue. J) Kruskal-Wallis test for the expression of CD8 T cell number among four organ metastases.
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All these continus data were presented with correspondence for-
mat in the Supplemental Table S4. In summary, compared to
metastases in other organs, LM showed significantly lower
immune cell infiltration.
Clustering for metastatic cancers based on LM special immune-related
pathways (LMSIPs)

We then hypothesized whether there are certain common
immune chrematistics in patients with LM. To test this hypothesis,
precise extraction of genetic features for patients with LM was
achieved by using the criterion of limma t value > 6 and adjusted
p-value < 0.001, both in LM samples and normal liver samples
(Fig. 3A and 3B). This yielded 29 LMSIPs with their statistic infor-
mation for LM (Fig. 3C, Supplemental Table S5, and Table S6).
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Next, in the 373 metastasis samples, cluster analysis was per-
formed according to the GSVA score of 29 LMSIPs. Six immune
metastasis clusters with obvious differences in the expression of
LMSIPs were discovered(Supplemental Figure S3 and Table S7).
A positive relationship between the expression of 29 LMSIPs and
the percentage of LMwas observed (Fig. 3D). Among these immune
clusters, cluster 4 had the highest proportion of LM (Fig. 3E). The
bar plot also showed that the distribution of these clusters was sig-
nificantly different in 16 primary cancer types (Fig. 3F).
Characteristics and validation of special liver metastasis clusters

In addition, to explore the characteristics of different LMCIF
clusters, several immune features and tumor-activated pathways
were calculated by GSVA in the 373 metastasis samples (Fig. 4A).



Fig. 3. Clustering analysis for LMCIF patients using immune pathways. A) Proportion of liver source in the normal issue from GTEx(n = 2432). B) Proportion of liver source
frommetaststic patients(n = 373). C) Venn plot of crossing selection for the targeting LMSIPs in the LM cluster C4. D) Limma results for the LMSIPs with immune cell source by
cross selection. E) Six LM clusters by using 29 LMSIPs in metastasis samples. F) Bar plot of proportation of the six clusters in each metastasis cancer type. G) Precentage of the
different distribution of six LM clusters in original each cancer type. Abbreviation: ACC Adrenal; BLCA Bladder; BRCA Breast; CHOL Gall bladder; COLO Colon; ESCA
Esophagus; HCC Liver; HNSC Head-neck; KDNY Kidney; OV Ovarian; PAAD Pancreas; PRAD Prostate; SARC Sarcoma; SECR Miscellaneous gland; STAD Stomach; TGCT Germ-
cell; THYM Thymoma.
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Of note, clusters with high LM proportion had the fewest immune
cell infiltrations and the most suppression of immune response.
For example, cluster C4, which showed the highest LM percentage,
showed lower infiltration of the lymphoid and myeloid cells, while
some stromal cells were highly infiltrated (Fig. 4A). To further val-
idate the genetic profiles of LM, a combined dataset, including 374
samples with four different metastasis sites (bone, brain, liver, and
lung), was included and termed the meta-GEO cohort (Supplemen-
tal Table S8). The 29 LMSIPs were also used to cluster these sam-
ples. We observed that one of the LMCIF clusters had the lowest
number of immune cells and a higher number of suppressed
immune response pathways. Additionally, this cluster exhibited
the highest rates of LM compared to the other clusters in the meta-
GEO corhot (Fig. 4B, Supplemental Figure S4 and Supplemental
Table S8). All genesets compared among these immune clusters
were listed in Supplemental Table S9. These continus data in the
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heatmap were presented with correspondence format in the Sup-
plemental TableS10.

Development of LMCIF score for LM patients

To better reveal the characteristics of LMCIF, 305 of its differen-
tial expression genes (DEGs) between clusters with the highest and
lowest LM rates (C4 vs. C3) from the RNA-seq data of 373 metasta-
sis cohorts were identified. We also delimited 274 background
DEGs derived from normal liver tissue and other normal tissues
in the GTEx database. The special liver genes were obtained (Sup-
plemental Table S11). Finally, 31 DEGs were deemed LMCIF genes
that might represent the features of LMCIF C4 cluster in the metas-
tasis samples (Fig. 5A 5B, 5C, and Supplemental Table S12). GO
terms analysis for these 31 DEGs showed that their most associ-
ated functions include cell-substrate adhesion, cornification, and



Fig. 4. Heatmap of the comparison of cancer gene signatures, immune response signatures and TME cells among different LMCIF clusters. A) Training cohort (Dan R.
Robinson et al. cohort) B) Validation cohort (Sandra García-Mulero et al. cohort). All variables with p < 0.001 was tested by Kruskal.test among six groups. Abbreviation: ACC
Adrenal; BLCA Bladder; BRCA Breast; CHOL Gall bladder; COLO Colon; ESCA Esophagus; HCC Liver; HNSC Head-neck; KDNY Kidney; OV Ovarian; PAAD Pancreas; PRAD
Prostate; SARC Sarcoma; SECR Miscellaneous gland; STAD Stomach; TGCT Germ-cell; THYM Thymoma.
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epidermal cell differentiation. All of these functions are important
factors involved in the metastatic process (Fig. 5D). We then per-
formed a prognosis analysis for these 31 LMCIF genes on the GEPIA
(Gene Expression Profiling Interactive Analysis) website and found
most of them are significantly related to poor prognosis in pan-
cancer (Supplemental Figure S5). Moreover, we developed an
LMCIF score for metastasis samples by using the 31 DEGs and their
coefficients (Supplemental Table S13). Association analysis
revealed that the LMCIF score was strongly related to LMCIF genes
(Fig. 5E).

Liver organ specificity of LMCIF score

To explore the liver organ specificity of the LMCIF score, we first
observed that the LMCIF score was higher in the LMCIF C4 than in
other metastasis immune clusters except for C1 and C6 (Fig. 5F).
Then, we compared the LMCIF score in different metastasis tissues
and found that the LMCIF score was higher in LM than in bone and
lung metastasis, while no significant differences between brain and
skin metastasis were detected (Fig. 5G). Interestingly, the LMCIF
score had no significant differences among breast, esophagus, gall-
bladder, or prostate cancer with metastasis (all cancer samples
n > 20) (Fig. 5H). The LMCIF score with statsitc information for each
group were listed in the Supplemental Table 14.

LMCIF score indicates a suppressed immune microenvironment

In metastasis samples, LMCIF score was found to be negatively
correlated with immune cells, including myeloid dendritic cells,
NK cells, T cells, as well as B and monocytic lineage cells (Fig. 6A
and Supplemental Figure S6). In addition, in the single-cell analy-
sis, all LMCIF genes were highly expressed in tumor cells (Fig. 6B).
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Next, by using quantile values of LMCIF genes, single LM tumor
cells were labeled with the single-cell LMCIF score (n = 5527),
and it was noted that tumor cells had a much higher LMCIF score
than other cells at the single-cell resolution (Fig. 6C). Then the
tumor cells were divided into four subgroups based on LMCIF
scores (from low to high: Q1, Q2, Q3, and Q4). CellChat analysis
indicated that immune cells showed reduced crosstalk with single
cancer cells along with an increase in LMCIF score (Fig. 6D and
Supplemental Table 15).

LMCIF score predicts unfavorable prognosis and limited
immunotherapy response

To study the effect of LMCIF on prognosis and immunotherapy
response, we integrated 115 pan-cancer patients with LM in the
TCGA cohort and observed that a higher LMCIF score correlated
with a worse prognosis in these tumors (Fig. 6E and Supplemental
Table S16). In addition, LMCIF score of all metastasis sites showed
predictive value for patients’ prognosis under anti-PD-L1
immunotherapy (Fig. 6F). Among them, 98 patients identified as
LM patients were used to validate the prognostic value of the
LMCIF score (Fig. 6G). These patients, along with their LMCIF
scores, were listed in Supplemental Table S17.

Validation of representative genes of the LMCIF score

We firstly detected the correlation of 31 LMCIF genes with TME
cells in the LM patients, and found that most of them were nega-
tively related to Immune cells(Fig. 7A). Amongt them, KRT19 was
identified as one of the representative genes consisting of LMCIF
score, since it had the highest relationship with the LMCIF score
in metastatic cancers (R = 0.94, P < 0.001, Fig. 5E). Multiplex IHC



Fig. 5. Development of LMCIF score in metastasis patients. A) Volcano plot of limma analysis for DEGs between normal liver and other normal tissue. B) Volcano plot of
DEGs between liver metastasis and other organ metastases. C) Venn plot for the cross selection of the special DEGs of LMCIF C4 cluster and normal liver samples. D) GO terms
Functional analysis of 31 DEGs of LMCIF clusters. E) Spearman correlation analysis of LMCIF score with 31 DEGs. F) Wilcoxon test for the different expressions of LMCIF score
in LMCIF clusters. G) Wilcoxon test for the different expressions of LMCIF score in different organ metastasis tissues. F) Kruskal-Wallis test for the expression of LMCIF score in
different cancer types.
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experiments were performed based on 25 samples from 4 pan-
cancer metastasis, including liver (n = 16), bone (n = 4), brain
(n = 2) and lung (n = 3), for KRT19 (CK19) and CD8 protein. Here,
three representative samples with different expression modes of
KRT19 and CD8 were selected to show the features of LMCIF in
pan-cancer(Fig. 7B, 7C and 7D). Fig. 7B showed one representative
sample with low KRT 19 and high CD8 expression in LM samples,
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and Fig. 7C showed the representative sample with high KRT19
and low CD8 expression in LM samples. As a compared group,
2/3 of lung metastasis had high CD8 expression and low KRT19
and a sample with high CD8 was selected as the representative
sample (Fig. 7D). The expression mode of KRT19 and CD8 is shown
in Fig. 7E. Interestingly, 4 of 16 LM samples with high KRT19 and
low CD8 could be represented as LMCIF clusters. Among 16 LM



Fig. 6. Immunological and prognostic features of LMCIF score. A) Spearman correlation analysis of LMCIF score with immune cells in LM patients(n = 212). B) Expression of
LMCIF in each type at single-cell level in LM patients with scRNA data. C) The tSNE plot of LMCIF score in the scRNA data of cancer cells and non-cancer cells. D) Cell
communication analysis results of LMCIF groups in LM single cells. E) Log-rank test for LMCIF score in LM patients without Immunotherapy(n = 115). F) Log-rank test for
LMCIF score in a cohort with immunotherapy(n = 348). G) Log-rank test for LMCIF score in LM patients with Immunotherapy(n = 98).
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samples, it was revealed that KRT19 was negatively related to CD8
(Fig. 7F). An additional set of 79 samples with LM from CRC cancer
were extracted to further validate the complex correlation of
LMCIFgenes with immune cells (Supplemental Figure S7) and the
negative correlation between KRT19 and CD8 (Fig. 7G). Finally,
we calculated the relationship between KRT19 and lymphocyte
cells based on EstimateScore in the 79 LM samples, and we found
that KRT19 was significantly negatively related to CD8 T cells,
immune score, stromal score and estimate score (Fig. 7H), partially
validating the immunosuppression environment was associated
with KRT19.

The hypothesis of microenvironment identification of liver metastasis

In summary, a hypothesis for LMCIF across cancer types was
proposed to characterize the features of LM (Fig. 8). Among LM
160
samples, the cluster with the highest LM was termed the LMCIF
cluster, which showed an extreme immune-desert phenotype, thus
giving us novel insights at the clinical level. Accordingly, the LMCIF
score was developed to better understand the TME of LM. Along
with their high expression of LMCIF score, LM samples tended to
be less immunogenic, while samples with low LMCIF score tended
to be more immunogenic. Therefore, we further speculated that
the LMCIF score could be used as a predictor of immunotherapy
response.

Discussion

To the best of our knowledge, the current study, for the first
time, attempts a systematic study of immunological features of
LM by combining clinical data and RNA omics in metastasis sam-
ples across several cancer types. Using bioinformatics, the multi-



Fig. 7. Validation of the LMCIF score in in-house and external cohorts. A) Spearman correlation of 31 LMCIF genes with MCP TME cells in the LM patients(n = 212). B) IHC
for the representative LM sample with both low CD8 and KRT19 expression. C) IHC for the representative LM sample with no CD8 expression and extremely high KRT19
expression. D) IHC for the representative lung metastasis sample with high CD8 and low KRT19 expression. E) Dot plot for the rank of CD8 and KRT19 in 25 IHC samples. F)
Linear regression analysis of CD8 and KRT19 protein expression in 16 LM samples by IHC. G) Spearman correlation of CD8 and KRT19 RNA gene expression in the GSE51244
(n = 79). H) Spearman correlation of KRT19 with immune features and TME cells in the GSE51244(n = 79).
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omics immunosuppressive features of the LMCIF cluster were fur-
ther explored. In addition, regardless of an organ’s initial cancer
location, LM patients showed more immunosuppressive TME than
those with other organ metastases.

LM is one of the most common secondary sites invaded by dis-
seminated tumor cells and tends to have a worse prognosis than
patients with metastasis in other organs, as studied in>10,000
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metastasis patients. To investigate the TME of LM, 373 metastasis
samples, including liver, lung, brain, bone, and skin metastasis
from>16 cancer types, were collected in this study. It was noted
that patients with LM had lower TMB, which is an independent
biomarker positively associated with the response rate to immune
checkpoint blockade therapy[29]. In agreement, the infiltration of
various immune cells was less in patients with LM than in those



Fig. 8. Hypothesis of LMCIF. Based on LM co-expression immune pathways, metastatic samples could be divided into six immune-related clusters. A higher LMCIF score
tends to be less immunogenic, while a lower LMCIF score tends to be more immunogenic. LMCIF genes, including KRT19, might be accorded the same function as the LMCIF
score. Patients with low LMCIF scores might have better immunotherapy responses and prognoses.
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without LMmetastasis. Importantly, these results were further val-
idated by IHC, showing a significantly lower infiltration of CD8+ T
cells in LM tumor tissue compared with those in non-LM tumor
metastasis. These discoveries were consistent with the results
based on multiple mouse models showing that liver metastases
can hijack immunological tolerance mechanisms of the liver to
induce systemic tumor-specific CD8 + T cell loss and cause
impaired immunity[16]. Notably, we, for the first time, validated
this phenomenon based on a large cohort of LM patients, suggest-
ing that liver metastases may play a significant role in determining
immunotherapy success.

Moreover, a cross-selection was conducted to identify the 29
LMSIPs fromMSigDB. Metastasis samples were clustered according
to the GSVA score of 29 LMSIPs, and the one of these clusters with
the highest proportion of LM was detected, both in Dan R. Robin-
son et al.[18] and Sandra García-Mulero et al.[30] cohorts. In line
with previous results, the LMCIF cluster showed a higher LM per-
centage, and lymphoid and myeloid cell lineages in this cluster
were significantly reduced. In addition, some stromal cells were
highly expressed in the LMCIF cluster. It has been reported that
liver stromal cells can suppress immunity by stimulating non-
responsive cells, as well as myeloid-derived suppressor cells
(MDSCs), thereby compromising the performance of antigen-
presenting cells [31]. Combined with our results, it can be inferred
that the immune suppressive influence of liver metastases on TME
is not only derived from the inhibition of tumor cytotoxic CD8+ T
cells, but also through the induction of stromal cells.
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To facilitate clinical usage of the signature of LMCIF cluster, 31
DEGs were obtained to develop an LMCIF score for simplifying the
features of the LMCIF cluster. The prognostic and predictive value
of the LMCIF score implies its potential in clinical practice. In addi-
tion, cell analysis showed that 31 LMCIF genes and LMCIF score
were specifically expressed in tumor cells, not in immune cells,
indicating that the LMCIF score is a good representation of tumor
states. Additional analysis revealed that these 31 DEGs were clo-
sely associated with cell-substrate adhesion. The adhesion of circu-
lating cancer cells is the initial step, and it has a decisive role in the
formation of liver metastases[32]. It was also demonstrated that
metastases in the liver showed a higher LMCIF score than metas-
tases in bone and lung. Of note, no differences were found in the
LMCIF score, regardless of their primary sites: breast, esophagus
gallbladder, and prostate cancer. This implies that different
cancer-derived metastases might share a common mechanism
for immune tolerance to the liver.

Further analysis revealed a strong negative association between
LMCIF score and several immune cells involved in both innate and
adaptive immune responses, such as CD8+ T cells, myeloid cells,
dendritic cells, NK cells, and B cells. This further supports our
results that liver metastases might cultivate an immune-desert
phenotype and it might diminish immunity systemically. Further-
more, intercellular communication networks were analyzed based
on single-cell data and also illustrated that a higher LMCIF immune
score would result in impairing communication among these
immune cells. This indicates that liver metastases have a detrimen-



Y. Gao, S. Chen, H. Wang et al. Journal of Advanced Research 61 (2024) 151–164
tal impact on immune cell communication quality in addition to
their negative impact on immune cell quantity. We also discovered
a lot of negative correlations between 31 LMCIF genes and TME
cells in the patients with LM. Among these genes, keratin 19
(KRT19) was found to have a strong positive correlation with the
LMCIF immune score. Additionally, it was negatively associated
with CD8 + T cells, which was confirmed through immunohisto-
chemistry (IHC). As a small type I cytokeratin, KRT19 is a poor
prognostic marker for liver cancer and other tumors [33–34]. A
recent mouse in vivo study further revealed that KRT19 contributes
to the absence of activated intertumoral T cells, and compromises
the effectiveness of anti-PD-1 immunotherapy[35]. Moreover, as
required for cell proliferation, KRT19 was also suggested to be used
to predict the efficacy of cyclin-dependent kinase inhibitors for
treatments of breast cancer[36]. In addition to the discovery of
KRT19, several other genes in LMCIF, including the novel immune
checkpoints(CEACAM5[37] and CEACAM6[38–39]), have been
found to possess significant immunosuppressive effects.The dis-
covery of these vital molecules involved in immune response fur-
ther verifies the reliability of LMCIF score. Thus, by conducting
further investigations into other LMCIF genes, we may uncover
novel targets that could enhance the effectiveness of immunother-
apy. Furthermore, conducting future research focused on elucidat-
ing a pattern that connects either all or a subset of the elements
within the 31-gene signature holds great importance for advancing
studies on the immunobiology of liver metastases and cancer in a
broader sense.
Conclusions

In conclusion, our results suggest that liver metastases from dif-
ferent primary cancers may share similar immunological profiles
that induce immune tolerance and escape from immune monitor-
ing, regardless of the primary sites. LM immune-related cluster
was utilized to establish an LMCIF immune score for predicting
the prognosis and immunotherapy response of LM patients, which
might benefit clinical disease management.
Funding

This work was supported by the Natural Science Foundation of
China (No: 81972012), Key Research and Development Program of
Zhejiang Province (2021C03056) and the Natural Science Founda-
tion of Zhejiang Province (LQ21H200004).
Data availability statement

The datasets used and/or analyzed during the current study are
available in the public domain. All R scripts are aviable in the
Github(https://github.com/YzGLab/LMimmune) and other custom
scripts for analyzing data are available upon reasonable request.
Ethics statement

The use of all human samples were approved by the Institu-
tional Ethics Committee of the Sir Run Run Shaw Hospital of Zhe-
jiang University School of Medicine (Ethical code: 20190211-55).
Informed consent was obtained from all patients.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
163
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jare.2023.08.011.
References

[1] Milette S, Sicklick JK, Lowy AM, Brodt P. Molecular Pathways: Targeting the
Microenvironment of Liver Metastases. Clin Cancer Res 2017;23
(21):6390–639.

[2] Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The
immunological and metabolic landscape in primary and metastatic liver
cancer. Nat Rev Cancer 2021;21(9):541–57.

[3] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for
clinicians 2020;70(1):7-30.

[4] Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in
advanced hepatocellular carcinoma. N Engl J Med 2008;359(4):378–90.

[5] Llovet JM, Montal R, Villanueva A. Randomized trials and endpoints in
advanced HCC: Role of PFS as a surrogate of survival. J Hepatol 2019;70
(6):1262–77.

[6] Abou-Alfa GK, Meyer T, Cheng AL, El-Khoueiry AB, Rimassa L, Ryoo BY, et al.
Cabozantinib in Patients with Advanced and Progressing Hepatocellular
Carcinoma. N Engl J Med 2018;379(1):54–63.

[7] Keenan BP, Fong L, Kelley RK. Immunotherapy in hepatocellular carcinoma: the
complex interface between inflammation, fibrosis, and the immune response. J
Immunother Cancer 2019;7(1):267.

[8] Mizukoshi E, Kaneko S. Immune cell therapy for hepatocellular carcinoma. J
Hematol Oncol 2019;12(1):52.

[9] Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral
hepatitis infection. Gastroenterology 2014;146(5):1193–207.

[10] Heymann F, Peusquens J, Ludwig-Portugall I, Kohlhepp M, Ergen C, Niemietz P,
et al. Liver inflammation abrogates immunological tolerance induced by
Kupffer cells. Hepatology 2015;62(1):279–91.

[11] Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol 2013;14
(10):996–1006.

[12] Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest 2007;117
(5):1167–74.

[13] Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The
immunology of hepatocellular carcinoma. Nat Immunol 2018;19(3):222–32.

[14] Pacella I, Procaccini C, Focaccetti C, Miacci S, Timperi E, Faicchia D, et al. Fatty
acid metabolism complements glycolysis in the selective regulatory T cell
expansion during tumor growth. PNAS 2018;115(28):E6546–55.

[15] Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and
achieving liver transplant tolerance: from bench to bedside. Nat Rev
Gastroenterol Hepatol 2020;17(12):719–39.

[16] Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains
immunotherapy efficacy via macrophage-mediated T cell elimination. Nat
Med 2021;27(1):152-64.

[17] Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, et al.
Genomic characterization of metastatic patterns from prospective clinical
sequencing of 25,000 patients. Cell 2022;185(3):563–75 e11.

[18] Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative
clinical genomics of metastatic cancer. Nature 2017;548(7667):297–303.

[19] Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al.
TGFbeta attenuates tumour response to PD-L1 blockade by contributing to
exclusion of T cells. Nature 2018;554(7693):544–58.

[20] Sinha N, Sinha S, Valero C, Schaffer AA, Aldape K, Litchfield K, et al. Immune
Determinants of the Association between Tumor Mutational Burden and
Immunotherapy Response across Cancer Types. Cancer Res 2022;82
(11):2076–83.

[21] Che LH, Liu JW, Huo JP, Luo R, Xu RM, He C, et al. A single-cell atlas of liver
metastases of colorectal cancer reveals reprogramming of the tumor
microenvironment in response to preoperative chemotherapy. Cell Discovery
2021;7(1):80.

[22] Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol 2017;18(1):220.

[23] Chen S, Gao Y, Wang Y, Daemen T. The Combined Signatures of Hypoxia and
Cellular Landscape Provides a Prognostic and Therapeutic Biomarker in HBV-
Related Hepatocellular Carcinoma. Int J Cancer 2022. doi: https://doi.org/
10.1002/ijc.34045.

[24] Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression. Genome Biol 2016;17(1):218.

[25] Gao Y, Chen S, Vafaei S, Zhong X. Tumor-Infiltrating Immune Cell Signature
Predicts the Prognosis and Chemosensitivity of Patients With Pancreatic
Ductal Adenocarcinoma. Front Oncol 2020;10:557638.

[26] Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun 2013;4:2612.

[27] Gao Y, Wang H, Li H, Ye X, Xia Y, Yuan S, et al. Integrated analyses of m(1)A
regulator-mediated modification patterns in tumor microenvironment-
infiltrating immune cells in colon cancer. Oncoimmunology 2021;10
(1):1936758.

https://github.com/YzGLab/LMimmune
https://doi.org/10.1016/j.jare.2023.08.011
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0005
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0005
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0005
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0010
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0010
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0010
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0020
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0020
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0025
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0025
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0025
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0030
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0030
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0030
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0035
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0035
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0035
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0040
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0040
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0045
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0045
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0050
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0050
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0050
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0055
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0055
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0060
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0060
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0065
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0065
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0070
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0070
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0070
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0075
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0075
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0075
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0085
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0085
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0085
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0090
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0090
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0095
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0095
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0095
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0100
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0100
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0100
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0100
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0105
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0105
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0105
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0105
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0110
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0110
https://doi.org/10.1002/ijc.34045
https://doi.org/10.1002/ijc.34045
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0120
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0120
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0120
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0125
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0125
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0125
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0130
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0130
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0130
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0135
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0135
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0135
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0135


Y. Gao, S. Chen, H. Wang et al. Journal of Advanced Research 61 (2024) 151–164
[28] Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT,
et al. Immunohistochemical analyses of estrogen receptor in endometrial
adenocarcinoma using a monoclonal antibody. Cancer Res 1986;46
(10):5419–25.

[29] Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, et al. Tumor
Mutational Burden as a Predictive Biomarker for Response to Immune
Checkpoint Inhibitors: A Review of Current Evidence. Oncologist 2020;25(1):
e147–59.

[30] Garcia-Mulero S, Alonso MH, Pardo J, Santos C, Sanjuan X, Salazar R, et al. Lung
metastases share common immune features regardless of primary tumor
origin. J Immunotherapy Cancer 2020;8(1).

[31] Schildberg FA, Sharpe AH, Turley SJ. Hepatic immune regulation by stromal
cells. Curr Opin Immunol 2015;32:1–6.

[32] Izutsu R, Osaki M, Jehung JP, Seong HK, Okada F. Liver Metastasis Formation Is
Defined by AMIGO2 Expression via Adhesion to Hepatic Endothelial Cells in
Human Gastric and Colorectal Cancer Cells. Pathol Res Pract 2022;237:154015.

[33] Rhee H, Kim HY, Choi JH, Woo HG, Yoo JE, Nahm JH, et al. Keratin 19
Expression in Hepatocellular Carcinoma Is Regulated by Fibroblast-Derived
HGF via a MET-ERK1/2-AP1 and SP1 Axis. Cancer Res 2018;78(7):1619–31.
164
[34] Menz A, Bauer R, Kluth M, Marie von Bargen C, Gorbokon N, Viehweger F, et al.
Diagnostic and prognostic impact of cytokeratin 19 expression analysis in
human tumors: a tissue microarray study of 13,172 tumors. Hum Pathol
2021;115:19–36.

[35] Wang Z, Moresco P, Yan R, Li J, Gao Y, Biasci D, et al. Carcinomas assemble a
filamentous CXCL12-keratin-19 coating that suppresses T cell-mediated
immune attack. Proc Natl Acad Sci U S A 2022;119(4):e2119463119.

[36] Sharma P, Alsharif S, Bursch K, Parvathaneni S, Anastasakis DG, Chahine J, et al.
Keratin 19 regulates cell cycle pathway and sensitivity of breast cancer cells to
CDK inhibitors. Sci Rep 2019;9(1):14650.

[37] Teijeira A, Migueliz I, Garasa S, Karanikas V, Luri C, Cirella A, et al. Three-
dimensional colon cancer organoids model the response to CEA-CD3 T-cell
engagers. Theranostics 2022;12(3):1373–87.

[38] Pinkert J, Boehm HH, Trautwein M, Doecke WD, Wessel F, Ge Y, et al. T cell-
mediated elimination of cancer cells by blocking CEACAM6-CEACAM1
interaction. Oncoimmunology 2022;11(1):2008110.

[39] Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, et al. CEACAM1
regulates TIM-3-mediated tolerance and exhaustion. Nature 2015;517
(7534):386–90.

http://refhub.elsevier.com/S2090-1232(23)00227-8/h0140
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0140
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0140
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0140
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0145
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0145
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0145
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0145
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0155
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0155
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0160
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0160
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0160
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0165
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0165
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0165
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0170
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0170
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0170
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0170
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0180
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0180
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0180
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0185
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0185
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0185
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0190
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0190
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0190
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0195
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0195
http://refhub.elsevier.com/S2090-1232(23)00227-8/h0195

	Liver metastases across cancer types sharing tumor environment immunotolerance can impede immune response therapy and immune monitoring
	Introduction
	Materials and methods
	Study design and data collection
	Prognostic analysis of LM in pan-cancers with or without immunotherapy
	Quantifying TME cells, immune pathways, and immune scores
	Identification of LM special immune-related pathways
	Immune clustering for metastatic cancer
	Validation of immune clustering in the Gene Expression Omnibus (GEO) dataset
	Identification and development of LMCIF score
	Function enrichment analysis
	Cell-cell communications in LM single-cell data
	The utilization of the LMCIF score as a predictor of prognosis and immunotherapy in patient cohorts
	Ethics statement
	Human sample collecting and immunohistochemical staining
	Immunohistochemical score
	Statistical analysis

	Results
	High incidence and poorer prognosis of LM in pan-cancer with or without immunotherapy
	Tumor microenvironment (TME) of LM across cancer types
	Clustering for metastatic cancers based on LM special immune-related pathways (LMSIPs)
	Characteristics and validation of special liver metastasis clusters
	Development of LMCIF score for LM patients
	Liver organ specificity of LMCIF score
	LMCIF score indicates a suppressed immune microenvironment
	LMCIF score predicts unfavorable prognosis and limited immunotherapy response
	Validation of representative genes of the LMCIF score
	The hypothesis of microenvironment identification of liver metastasis

	Discussion
	Conclusions
	Funding
	Data availability statement
	Ethics statement
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


