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Abstract
Background: It is widely believed that atherosclerotic plaque rupture and subsequent thrombosis
leads to acute coronary events and stroke. However, study of the mechanism and treatment of
human plaque rupture is hampered by lack of a suitable animal model. Our aim was to develop a
novel animal model of atherosclerotic plaque rupture to facilitate the study of human plaque
disruption and thrombosis.

Methods: 28 healthy male New Zealand white rabbits were randomly divided into two groups:
rabbits in group A (n = 12) were only fed a high-fat diet for eight weeks; rabbits in group B (n = 16)
underwent cold-induced endothelial injury with liquid nitrogen, then were given a high-fat diet for
eight weeks. After completion of the preparatory regimen, triggering of plaque rupture was
attempted by local injection of liquid nitrogen in both groups.

Results: All rabbits in group B had disrupted plaques or rupture-driven occlusive thrombus
formation, but none in group A showed any effects. More importantly, the cold-induced plaques in
our model were reminiscent of human atherosclerotic plaques in terms of architecture, cellular
composition, growth characteristics, and patterns of lipid accumulation.

Conclusion: We successfully developed a novel rabbit model of atherosclerotic plaque rupture
and thrombosis, which is simple, fast, inexpensive, and reproducible, and has a low mortality and a
high yield of triggering. This model will allow us to better understand the mechanism of human
plaque rupture and also to develop plaque-stabilizing therapies.

Background
It is now recognized that atherosclerotic plaque rupture
and ensuing occlusive thrombus formation play an
important role in the onset of two major causes of death
in developed countries: acute coronary syndrome (ACS)
and ischemic stroke[1,2]. By its very nature, plaque rup-
ture is difficult to study directly in humans. A good animal
model would help us to understand not only how plaque

rupture and thrombus formation occur, but also how to
take measures to prevent these from happening.

Over the years, many animal models of atherosclerosis
have been developed. In recent years, several models of
plaque rupture and thrombosis have also begun to
emerge. However, all of the existing models, such as bal-
loon-induced and biological or mechanical triggering rab-
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bit models [3-6], the Watanabe heritable hyperlipidemic
(WHHL) rabbit model [7], and the apolipoprotein E
(ApoE) or the LDL-receptor mice models [8-12], suffer the
drawback that they lack direct evidence of characteristic
plaque rupture accompanied by platelet and fibrin-rich
occlusive thrombus at the rupture site [13]. There are
additional disadvantages of the existing models, such as
the long preparatory period, the complicated manipula-
tion, the high cost of development, the low yield of trig-
gering, and the high mortality, which hamper ensuing
large-scale studies.

In this study, we aimed to develop a novel rabbit model
of atherosclerotic plaque that would be associated with
true plaque rupture and also a rupture-driven occlusive
thrombus formation that is structurally similar to that
found in humans [1]. More importantly, the advantages
of our model over other currently used animal models are
that it is simpler, faster, less expensive, and more repro-
ducible, and has a lower mortality and higher yield of trig-
gering.

Methods
Animal preparation
28 healthy male New Zealand white rabbits (about 3-
month-old) were randomly divided into two groups: rab-
bits in group A (n = 12) were fed a high-fat diet only (con-
taining 1% cholesterol, 3% lard, and 15% yolk) for 8
weeks. In contrast, rabbits in group B (n = 16) first under-
went cold-induced endothelial injury with liquid nitro-
gen, then were fed the same high-fat diet as group A for 8
weeks. Cold-induced endothelial injury was performed by
injection of liquid nitrogen through a carotid artery. The
rabbits were anesthetized with an intravenous injection of
pentobarbital sodium (30 mg/kg). After the surgery, the
animals were allowed to recover and conventional antibi-
otics were required to prevent infection. All rabbits sur-
vived until the time of attempted triggering, with the
exception of one in group B that was killed at random in
order to observe the severity of endothelial injury by
Evans blue staining. Three rabbits in group B were also
taken at random to ensure the establishment of athero-
sclerotic plaque, and the remaining rabbits in two groups
were triggered by liquid nitrogen. All procedures that used
animals were conducted in compliance with the adminis-
trative act for experimental animals in China.

Cold-induced endothelial injury by liquid nitrogen
To induce atherosclerotic lesions, liquid nitrogen was
injected into the right carotid artery of each rabbit in
group B. With the rabbit under sufficient anesthesia, a
midline incision was made on the neck. The right carotid
artery was surgically exposed, and a 4-cm segment of
artery was isolated by two artery clamps. A 1-ml aseptic
syringe needle was immediately inserted into the proxi-

mal end of the segment. Blood was rinsed from the seg-
ment with phosphate-buffered saline, and the segment
was evacuated completely, then liquid nitrogen (about
0.5 ml) was injected as quickly as possible into the empty
artery through another 1-ml syringe via the indwelling
needle. The cold liquid nitrogen gasified instantly in the
artery. To ensure endothelial injury of the carotid artery,
this process was repeated three times in each rabbit over a
period of about two minutes. The segment was then
rinsed with phosphate-buffered saline, the needle was
withdrawn, and the artery clamps were loosened from the
distal end to the proximal end. Circulation was re-estab-
lished, hemostasis was ensured, and the surgical incision
was closed. To evaluate the severity of endothelial injury
by liquid nitrogen, 24 hour after surgery, one rabbit in
group B was taken at random to receive an intravenous
injection of 0.5% Evans blue dye (2 ml/kg). Two hours
later, the animal was killed, the carotid arteries on both
sides were dissected and excised, and the intimal surfaces
were exposed by an anterior longitudinal incision of the
vessel.

Triggering by liquid nitrogen
To induce the triggering of plaque rupture in both groups,
8 weeks later, liquid nitrogen was injected into the right
carotid aortic segment with a 1-ml syringe. The triggering
was performed at the same injection site and according to
the method of cold-induced endothelial injury described
above.

Histology and immunohistochemistry
Forty-eight hours after triggering, all rabbits were killed by
an overdose of intravenous pentobarbital sodium. The
right carotid arteries were perfused with phosphate-buff-
ered saline, and artery specimens (3 cm in length) were
quickly removed from the right carotid arteries. Each spec-
imen was then cut into 2 pieces. One piece was fixed in
10% buffered formalin and embedded in paraffin for light
microscopy and immunohistochemistry, while the other
piece was fixed in 3% glutaraldehyde and postfixed in 1%
osmium tetroxide, then processed routinely for transmis-
sion electron microscopy (JEM-1230, Japan). To charac-
terize the general architecture of the atherosclerotic
plaques, serial 4-μm-thick cross sections were cut and
mounted on glass slides, and then stained with hematox-
ylin and eosin (H&E). Cellular composition, cell prolifer-
ation, cell apoptosis, and the presence of tissue factor were
characterized immunocytochemically. The primary mon-
oclonal antibodies used were as follows: an anti-smooth
muscle α-actin antibody (Kangwei) to identify SMCs,
anti-CD68 antibody (Kangwei) to identify macrophages,
anti-factor VIII antibody (Maixin) to identify endothelial
cells, anti-CD45RO antibody (Maixin) to identify T cells,
anti-proliferating cell nuclear antigen (PCNA) antibody
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(Maixin) to detect proliferating cells, and anti-p53 anti-
body (Kangwei)to identify apoptotic cells.

Biochemical analysis
Total cholesterol (TC), triglyceride(TG), and low-density
lipoprotein(LDL) measurements were obtained by enzy-
matic assays of blood samples collected from the rabbits
8 weeks after the high-fat diet. The expression of high-sen-
sitivity C-reactive protein (hs-CRP) was determined by
enzyme-linked immunosorbent assay of blood samples
collected from the rabbits before triggering and 48 hours
after triggering. This was done with the ADL Diagnostic
Kit (ADL, USA) procedure for hs-CRP. Plasma fibrinogen
was determined by the Clauss method, and platelet count
was determined by a Coulter counter from blood samples
obtained before triggering and 48 hours after triggering.

Statistical analysis
Diet-induced changes in the lipid levels were compared by
paired Student's t test, as were hematological changes
before and after attempted triggering. Student-Newman-
Keul's test was used to assess statistical significance
between the two groups. We considered differences to be
significant at P < 0.05. All values were expressed as means
± SD.

Results
Extent of atherosclerotic plaque and plaque rupture/
thrombosis
All rabbits survived throughout the duration of the exper-
iment. Evans blue staining showed that the intimal sur-
face of right carotid artery injured by liquid nitrogen
became dark blue (Fig. 1), but the left carotid artery had a
normal color.

Eight weeks after cold-induced endothelial injury, each of
the 3 rabbits that were taken to observe the extent of
atherosclerotic plaques in group B showed extensive
sheets of elevated white-yellow plaques, but had no spon-
taneous plaque rupture or thrombosis. At 48 hours after
triggering, all of the remaining rabbits in group B had suf-
fered plaque rupture or showed occlusive thrombus for-
mation, while the intima of the right carotid arteries in
group A appeared normal by gross inspection, and no
atherosclerotic plaque or thrombi were noted.

Histologic and immunohistochemical features of cold-
induced plaques
Light microscopy of arterial samples from group A
showed normal vascular histology. The samples from
group B had extensive plaques composed of lipid-contain-
ing macrophages (foam cells), extracellular lipid collec-
tions, fibrous tissue, and calcification (Fig. 2, Panels A and
B).

Arterial samples of disrupted plaques from group B
showed that the plaques were usually broken at the caps
or at the shoulder regions (Fig. 2, Panel C). Light micro-
scopic examination of adjacent serial sections from dis-
rupted plaques revealed cylindrical and round-edged
white thrombi that were firmly attached to the arterial
wall, red clots were loosely attached to the ends of the
white thrombi, and early organization and inflammatory
cell infiltration were present within the thrombi. (Fig. 2,
Panel D).

Electron micrographs showed that the intimal surfaces of
arteries from noninjured rabbits in group A were smooth
and clean, the smooth muscle cells (SMCs) were well-
arranged, and no lipid droplets were noted(Fig. 3, Panel
A). However, transmission electron microscopy of athero-
sclerotic plaques from rabbits in group B indicated that
smooth muscle cells were crowded with lipid droplets and
smaller cell bodies. The basal laminae around the SMCs
were irregularly thickened and multilaminated. The inter-
nal elastic lamina remained intact, but was thickened and
denatured. The collagen fibrils had significantly increased
in the media, and a large number of lipids had infiltrated
into the thickened intima (Fig. 3, PanelB D).

Results of immunohistochemistry showed that these
atherosclerotic plaques contained CD68-positive macro-
phages, CD45RO-positive T cells, α-actin-positive SMCs,
factor VIII-positive endothelial cells, PCNA-positive pro-
liferating cells, and p53-positive apoptotic cells (Fig. 4).

Serum lipid levels
Prior to the high-fat diet, the baseline of serum lipid levels
(TC, LDL, and TG) did not differ between the two groups.
However, 8 weeks after the high-fat diet, the serum lipid

Evans blue stainingFigure 1
Evans blue staining. The right carotid artery injured by liq-
uid nitrogen become dark blue (bar represents 1 cm).
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levels were significantly higher than baseline, but there
were no significant differences between the two groups
(Table 1).

Hematological changes after triggering There were no sig-
nificant differences between the two groups before trigger-
ing. However, 48 hour after triggering, the levels of hs-
CRP, platelet counts and plasma fibrinogen in group B
were significantly higher than the levels observed before
triggering. The levels of hs-CRP, platelet counts, and
plasma fibrinogen in group A did not increase signifi-
cantly after triggering (Table 2).

Discussion
Features of cold-induced plaques
We successfully developed a novel animal model of
atherosclerotic plaque that is associated with true plaque
rupture and also with the rupture-driven platelet-and
fibrin-rich thrombus formation caused by cold-induced
endothelial injury in high-fat-fed rabbits.

Our model has clear characteristics of human atheroscle-
rotic plaques as we observed lipid-containing macro-
phages (foam cells), T cells, extracellular lipid collections,
a fibrous plaque cap, and calcification. The vulnerable or
disrupted plaques were histologically characterized by a

Atherosclerotic plaque and plaque rupture/thrombosisFigure 2
Atherosclerotic plaque and plaque rupture/thrombosis. (A) Stable plaque with an infiltration predominantly composed 
of foam cells. (B)Vulnerable plaque with thin fibrous cap, necrotic lipid core, many inflammatory cell infiltration and heavy calci-
fication.(C)Eccentric plaque with plaque rupture at the cap and the shoulder region(asterisk).(D)Plaque rupture(asterisk)with 
occlusive thrombi(Th)(all H & E, A, original magnification, 20 ×; B, original magnification, 40 ×; C and D, original magnification, 
10 ×).
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Transmission electron micrograph of right carotid artery specimensFigure 3
Transmission electron micrograph of right carotid artery specimens. (A)The smooth muscle cells in the media are 
spindle-shaped and well-arranged (bar represents 1 μm, magnification × 20 000). (B) The internal elastic lamina is loose. Many 
lipid droplets deposit in the intima and media.Furthermore, SMCs have died by disintegration into myriad vesicles (bar repre-
sents 1 μm, magnification × 10 000). (C)The intima is irregularly thickened and multilaminated, the internal elastic lamina is 
thickened, and the SMCs grow vertically to the internal elastic lamina(bar represents 2 μm, magnification × 10 000). (D) The 
smooth muscle cells in the media are disordered and filled with small cell bodies and lipid droplets, the collagen fibrils signifi-
cantly increase, and the apoptotic bodies, pycnosis of the nuclei could be found(bar represents 5 μm, magnification × 5000).
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Immunohistochemistry stains of atherosclerotic plaquesFigure 4
Immunohistochemistry stains of atherosclerotic plaques. (A) a-actin–positive SMCs (arrow). (B) CD68-positive mac-
rophages(arrow). (C) CD45RO-positive T cells (arrow). (D) Factor VIII-positive endothelial cells (arrow). (E) p53-positive 
apoptotic cells (arrow). (F) PCNA-positive proliferating cells (arrow) (all DAB,A-F,original magnification, 20 x).
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necrotic lipid core, a thin fibrous cap with inflammatory
cells, and cylindrical and round-edged white occlusive
thrombi adhering to the arterial wall. Moreover, cell pro-
liferation, cell apoptosis, and the presence of tissue factor
were noted in the plaques, and the serum lipid levels were
significantly higher than baseline 8 weeks after the high-
fat diet. More importantly, the expression of hs-CRP,
platelet counts, and plasma fibrinogen were significantly
higher in the rabbits with ruptured plaques. All of these
features indicated that the plaques we induced are similar
to those observed in patients with coronary heart disease
and stroke [1,14,15].

Comparison with other models
At present, there is no gold standard animal model for
plaque rupture and thrombosis. One of the major draw-
backs of the existing models is the lack of an end-stage
atherosclerosis that shows plaque rupture and platelet-
and fibrin-rich thrombi. This is a very important limita-
tion because myocardial infarction or cerebral infarction
in humans is not caused by plaque rupture per se, but by
the formation of the platelet-and fibrin-rich occlusive
thrombi [13]. In addition, the balloon-induced and bio-
logical or mechanical triggering rabbit models [3-6] are
very labor-intensive and expensive, and the animals fre-
quently require over eight months to develop significant
lesions. Although pharmacological triggering models
have been shown to develop acute aortic thrombi, these
thrombi are primarily associated with endothelial toxicity
and do not represent true plaque rupture. Some plaques
of the WHHL model rabbit contain a lipid core and a thin
fibrous cap similar to human vulnerable plaques, but true

plaque rupture and occlusive thrombus are not observed
in WHHL rabbits [7,16]. In mouse studies [8-12], the
period of onset is too long and the rate of plaque rupture
and luminal thrombi is too low to observe any effects of
intervention. Furthermore, spontaneous plaque rupture
in mice is merely an intraplaque hemorrhage and not a
true plaque rupture. As well, the thrombi are mostly not
organized and nonocclusive. In humans, the plaque rup-
ture and occlusive thrombus formation that actually kill
and disable humans are linked, yet either one can occur
without the other.

To the best of our knowledge, our model is the first report
of an animal model that demonstrates direct evidence of
plaque rupture and the rupture-driven platelet-and fibrin-
rich occlusive thrombus formation that is similar to its
human counterpart. The other distinguishing advantages
of our model over other models are that it is simpler, has
a shorter duration, is less expensive, and is more repro-
ducible, as our experimental data indicated. Because
atherosclerotic plaque and plaque rupture/thrombosis
occurred in all cold-injured rabbits, and none of the rab-
bits died during the experiments, this model also provides
both a lower mortality and a higher yield of triggering.
These advantages will greatly facilitate ensuing study of
human-type plaque rupture on a large scale.

Mechanisms of the cold-induced model
Atherothrombosis is a complex disease that includes both
atherosclerosis and thrombosis. Over the years, it has
been recognized that it is plaque composition, rather than
plaque size or stenosis severity, that is important for

Table 1: Lipid levels of the two groups (mmol/L).

before high-fat diet 8 weeks after high-fat diet

Group TC LDL TG TC LDL TG

Group A 2.50 ± 0.45 1.05 ± 0.38 1.08 ± 0.47 30.76 ± 5.58a 22.72 ± 6.61a 4.36 ± 1.63b

Group B 2.43 ± 0.54 1.10 ± 0.42 1.15 ± 0.39 31.88 ± 3.83a 23.69 ± 5.02a 4.58 ± 1.57b

Note: a:P < 0.001;b:P < 0.01, compared with baseline before high-fat diet

Table 2: Hematological changes after triggering.

hs-CRP(mg/L) Platelet counts(/mm3) Plasma fibrinogen(mg/dL)

Group before triggering after triggering before triggering after triggering before triggering after triggering

Group A 0.96 ± 0.35 1.05 ± 0.24 212.6 ± 114.2 × 103 220.3 ± 105.6 × 103 206.8 ± 53.5 215.2 ± 46.4

Group B 0.92 ± 0.28 3.84 ± 0.73a 218.3 ± 97.0 × 103 953.6 ± 307.0 × 103b 213.7 ± 49.1 536.3 ± 78.6b

Note: a:P < 0.01; b: P < 0.001, compared with the levels before triggering.
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plaque rupture and subsequent thrombosis. The underly-
ing mechanisms of atherothrombosis include endothelial
dysfunction, lipid accumulation, and enhanced inflam-
matory involvement, which result in plaque disruption
and subsequent thrombosis [17]. Analyses of human
plaques have demonstrated that disrupted plaques have
significantly less collagen, a low number of smooth mus-
cle cells, and a high inflammatory cell content [18,19].
Plaque rupture occurs as a result of interactions between
extrinsic triggering factors and the intrinsic vulnerability
of the plaque, when forces acting on the plaque exceed its
tensile strength [20-22]. Plaques with a large necrotic lipid
core, increased inflammatory cell infiltration, and a thin
fibrous cap appear to be particularly vulnerable to rupture
[23]. One important issue in the prediction of vulnerabil-
ity of a plaque to rupture is having the ability to determine
the mechanical stress in the wall of the pathological artery
and, more specifically, in the fibrous cap. The currently
favored hypothesis is that plaque rupture in the fibrous
cap initiates thrombus formation by exposing blood
either to collagen in the extracellular matrix or to previ-
ously sequestered tissue factor associated with lipid-laden
macrophages, or to both. Fresh occlusion is identified by
a luminal thrombus containing platelet aggregates inter-
spersed with inflammatory cells, and a paucity of red
blood cells.

It is well known that endothelial injury is a key event in
the pathogenesis of atherosclerosis. Our experimental
approach was based on the hypothesis that an atheroscle-
rotic plaque can be initiated by cold-induced endothelial
injury with liquid nitrogen, and that the plaque can be
ruptured at will by later triggering with liquid nitrogen.
This hypothesis is supported by the finding that when
endothelium is frozen and thawed immediately, various
ultrastructural alterations occur. For example, membra-
nous structures are extensively damaged and endothelial
cell apoptosis or death occurs through intra- and extracel-
lular ice crystal formation [24,25]. Along with the destruc-
tion of barrier function, lipoproteins enter the vessel wall,
promoting the recruitment of monocytes, which in turn
imbibe lipids and become foam cells, and atherosclerotic
plaques can then develop [26]. When the plaques are trig-
gered by liquid nitrogen, the apoptotic rate of endothelial
cells and smooth muscle cells increases and the propor-
tion of collagen production decreases at the position of
the plaque. The triggering action then forces the plaque
contents through the thin fibrous cap or weakened shoul-
der region, producing an effect like a volcanic erup-
tion[27]. Thus, vulnerable plaques were grossly disrupted
as a result of the local increase in stress caused by cold trig-
gering, which is very similar to ACS triggered by acute
events. The circulating platelets are recruited to the site of
injury, where they become a major component of the
developing thrombus. Platelet thrombus formation and

fibrin deposition occur concomitantly, and the occlusive
thrombi then lead to acute ischemic events.

In other words, the cold-induced lesion in our model is
reminiscent of human plaque rupture in terms of
endothelial injury, lipid deposition, macrophage infiltra-
tion, aggregation of platelets, a relatively hypercoagulable
state, and a triggering as a result of activity such as local
vasospasm.

Potential usefulness of the cold-induced model
Because atherosclerotic plaque rupture occurs in a ran-
dom fashion, by its very nature it is difficult to study
directly in humans. The merits of our model make it more
feasible to evaluate treatment strategies designed to stabi-
lize vulnerable plaques (primary prevention), to diminish
thrombosis after disruption, and to promote the curative
effect of ruptured plaques (secondary prevention). In
addition, the model also can help us to develop new drugs
or other therapies that are able to prevent plaque rupture
and thrombosis from happening on a large scale. Finally,
this model can help us to identify biomarkers and also to
accurately image vulnerable plaques or ruptured plaques.

In this study, we demonstrated a rabbit model of human
plaque rupture that shows direct evidence for plaque rup-
ture and rupture-driven platelet-and fibrin-rich occlusive
thrombus formation for the first time. The model is sim-
ple, fast, inexpensive, and reproducible, and has a low
mortality and a high yield of triggering. We hope that this
model will help us to understand the mechanism of
human plaque rupture and also to reduce the incidence of
thrombus-induced heart attack and stroke.
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