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ABSTRACT: We describe a systematic approach to model CHO
metabolism during biopharmaceutical production across a wide
range of cell culture conditions. To this end, we applied themetabolic
steady state concept. We analyzed and modeled the production rates
of metabolites as a function of the specific growth rate. First, the total
number of metabolic steady state phases and the location of the
breakpoints were determined by recursive partitioning. For this, the
smoothed derivative of the metabolic rates with respect to the growth
rate were used followed by hierarchical clustering of the obtained
partition. We then applied a piecewise regression to the metabolic
rates with the previously determined number of phases. This allowed
identifying the growth rates at which the cells underwent a metabolic
shift. The resulting model with piecewise linear relationships
between metabolic rates and the growth rate did well describe
cellular metabolism in the fed-batch cultures. Using the model
structure and parameter values from a small-scale cell culture (2 L)
training dataset, it was possible to predict metabolic rates of new fed-
batch cultures just using the experimental specific growth rates. Such
prediction was successful both at the laboratory scale with 2 L
bioreactors but also at the production scale of 2000 L. This type of
modeling provides a flexible framework to set a solid foundation for
metabolic flux analysis and mechanistic type of modeling.
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Introduction

Fed-batch cultivation of Chinese hamster ovary (CHO) cells is a
widely used technology for the production of therapeutic
glycosylated proteins (Niklas and Heinzle, 2012; Sidoli et al.,
2004; Tescione et al., 2015; Tsang et al., 2014). So far, process
development of mammalian cells producing monoclonal antibodies
(mAb) and other biopharmaceuticals has been largely done by
designing and performing experiments in an empirical manner. In
the attempt to understand the mechanism determining such
production in-depth, systems biology methods, that is genomic,
transcriptomic, proteomic, and metabolomic analyses are increas-
ingly applied together with associated modeling. For process
development mainly two methods were already used to get a better
understanding of cellular metabolism as a basis for process
optimization. On the one side, mechanistic metabolic modeling
(Ashyraliyev et al., 2009; Ben Yahia et al., 2015; Hu, 2012) is used to
describe the physiological behavior of cells and further to optimize
cultivation and production (Dorka et al., 2009; Nolan and Lee,
2011). On the other side, metabolic flux analysis (Niklas and
Heinzle, 2012) quantifies the intracellular fluxes and therefore
provides a better understanding of cellular physiology (Amribt
et al., 2013; Dorka et al., 2009; Jungers et al., 2011; Meshram et al.,
2013; Naderi et al., 2011; Nolan and Lee, 2011; Provost and Bastin,
2004; Provost et al., 2006; Zamorano et al., 2013). During
cultivation, cells adapt to the extracellular environment that
changes due to the successive consumption and depletion of
substrates and the accumulation of waste byproducts. Different
metabolic phases linked by metabolic shifts are the results of this
(Mulukutla et al., 2015; Wahrheit et al., 2014a,b). This makes
mechanistic modeling of the metabolism for the duration of a whole
bioproduction difficult. Metabolic flux analysis requiring a
metabolic steady state is then only applicable for each metabolic
phase individually. However, metabolic phases with metabolic
steady state have to be identified first (Niklas and Heinzle, 2012;
Provost and Bastin, 2004; Provost et al., 2006). Usually, cell
cultivation is divided into phases based on the growth profile
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(Altamirano et al., 2001, 2006; Niklas et al., 2011; Wahrheit et al.,
2014a). This procedure is performed manually from visual
inspection of cell growth (Dean and Reddy, 2013; Fan et al.,
2015) but can also be based on non-linear models such as Neural
Network (Simon et al., 1998) or on a structural approach (Borchers
et al., 2013). However, these methods focus on growth phases and
may thus miss metabolic shifts that are only seen by observing the
yield coefficients between metabolite consumption/production and
cell growth. Identification of growth phases based on growth
profiles is even more difficult in fed-batch cultures with their
varying conditions. To overcome this problem, the concept of
metabolic-steady state has been applied and extended. Under such
conditions, intracellular fluxes or, at least, flux ratios remain
constant. Moreover, biomass yields on substrates as well as on all
precursor molecules are constant; that can be proven by the
identification of linear correlations between metabolic rates
(Deshpande et al., 2009).

The aim of the prevailing work is to provide a systematic
methodology for identifying metabolic phases and for simulating
the evolution of cell metabolism based on the relationship between
external metabolite rates and the specific growth rate. For that
purpose, segmented linear regression, also called piecewise
regression, was used (McGee and Carleton, 1970; Muggeo, 2003;
Toms and Lesperance, 2003). In segmented regression models, two
or more regression lines are joining at unknown points, called
breakpoints. Using the growth rate as a criterion to identify
metabolic phases and predict cell metabolism provides the unique
possibility to compare various states of growth. Finally, this new
methodology can be used without any assumed metabolic network
model. This method is illustrated with the example of a Chinese
hamster ovary (CHO) cells cultivated in fed-batch production at 2 L
scale that was used to establish and calibrate the piecewise model.
The model was then validated for its applicability for scaling up to a
production scale bioreactor of 2000 L.

Modeling and Theoretical Aspects

General Representation and Metabolic Steady-State
Assumption

Metabolic phases are defined by a metabolic steady state such that
intracellular metabolite concentrations remain constant within a
phase (Provost et al., 2006). If all intracellular concentrations
remain constant, then metabolic fluxes as well as yield coefficients
are constant (Deshpande et al., 2009). Moreover, the consumption
of substrates can be separated into a part associated with growth
and into one not consumed in association with growth, for example
for maintenance purposes or for the synthesis of products in a non-
growth associated manner (Pirt, 1965, 1982). A metabolic-steady
state can in principle be reached in any cultivation including batch
and fed-batch processes where extracellular concentrations vary. We
illustrate our approach with a simple example of cells in a fed-batch
bioreactor, consuming substrates Mi and producing biomass X and
products Mj (Fig. 1). In this context, both substrates and products
are metabolites denoted as M. The extracellular substrate Mi can be
consumed either in a growth-associated manner—and hence the
specific consumption rate of Mi is proportional to the specific

growth rate m—or independent of growth. Part of the substrate is
directly incorporated into the biomass or consumed for the
synthesis of it, some is converted to products or used for
maintenance purposes. Similarly, product formation can either be
coupled with growth (Luedeking and Piret, 1959), characterized by
rate rj,c, or independent from growth, described by rj,nc. A mass
balance of substrate Mi in the reactor is described by equation 1:

dðVR:CMiÞ
dt

¼ F:CF;Mi þ ri:CXRVR ð1Þ

The substrate consumption rate, ri is split into two parts as shown in
Figure 1, a growth associated one, ri,c and one not correlated with
growth, ri,nc.

ri ¼ ri;c þ ri;nc ¼ �YMi=X :mþ ri;nc ð2Þ

For product formation we get

rj ¼ rj;c þ rj;nc ¼ YMj=X :mþ rj;nc ð3Þ

With variables: CF,Mi¼ concentration of substrate Mi in the feed
(mol/L); CMi¼ concentration of substrate Mi in the bioreactor
(mol/L); CXR¼ viable cell density (cell/L); VR¼ reactor volume
(L); YMi=X ¼ biomass yield coefficient (molMi/cell); m¼ specific
growth rate (1/day); ri, rj¼ specific rates of formation ofMi and Mj

(mol M/(cell � day); F¼ feed flow rate (L/day); X indicates biomass
associated variables and indices c and nc indicate processes coupled
and not coupled to growth, respectively.

The rates of substrate consumption, ri, and product formation,
rj, are both calculated from experimental data by rearranging
Equation 1:

Figure 1. Interactions between cells and bioreactor. Schematic representation of

major fluxes into cells in a bioreactor during a fed-batch process. Substrates,

represented by Mi, are consumed with specific rates ri either associated with growth,

with specific rate ri,c, or independent of growth with specific rate ri,nc. Part of the

growth associated consumption of Mi is converted to products Mj with a specific rate

rj,c. A fraction of Mj is produced not correlated with growth with specific rate rj,nc.

Substrate Mi and product Mj are also added by feeding them with a volume rate F.
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ri ¼ �F:CF;Mi þ dðVR:CMiÞ
dt

� �
:

1

CXR:VR
ð4Þ

The derivative was computed by dividing the change of total
quantity of metabolite Mi by the length of the respective period in a
defined period.
For products, index j is used. In matrix notations, Equations 2

and 3 read

ri

rj

" #
¼ R ¼ A:mþ B ¼ ai

aj

" #
:mþ bi

bj

" #
ð5Þ

where R, A and B are vectors with A and B constant within each
metabolic phase.
As a practical consequence, the specific production rate of each

metabolite can be expressed as a function of the growth rate by
using joined linear sub-models corresponding to distinct metabolic
phases. The breakpoints between each sub-model correspond to
metabolic shifts.

Data Cleaning and Outlier Identification

As experimental data contain errors that may corrupt the
conclusions, outliers must be identified. In particular, at low viable
cell density during culture startup, computed specific production
rates are inherently noisy and make interpretation of cell metabolism
difficult. We thus identified outliers on the first days of production.
For each day from day 0 to 2, data of all experimentswas pooled since
the conditions were identical until the feed addition started on day 3.
Then principal components analysis (PCA) was performed on all the
specific production rates of all metabolites for all experiments of this
initial period to reduce the dimensionality of the data (Bersimis et al.,
2005). The multidimensional distance from a sample point to its
sample mean was then estimated using the T2 Hoteling distance
(Bersimis et al., 2005; Mason, 1997). Values that fall outside an upper
control limit (UCLT

2) are defined as outliers assuming the data
follows a multidimensional normal distribution. The UCL on the T2

distance is defined as:

UCLT2 ¼
ðn� 1Þ2

n
b 1�a;

p
2;
n�p�1

2½ � ð6Þ

where

1. n¼ number of observations
2. P¼ number of variables

b 1�a;
p
2;
n�p�1

2½ � ¼ ð1� athÞ quantile of a Beta p
2 ;

n�p�1
2

� �
distribution
This scheme is iterated until nomore outliers are identified (Fig. 2).
It is important to conduct this data cleaning procedure during

the first few days of the culture because the viable cell concentration

during that period is low with correspondingly higher experimental
error than in later cultivation phases. The coefficient of variation of
the viable cell concentrationmethod at these low cell concentrations
was around 20% leading to very noisy rate calculations. On top of
the outlier identification with PCA between day 0 and 2, two
constraints were added for later data points:

1. All the data points with viability below 50%, that were usually
only observed in later culture phases, were removed from the
dataset as low cell viability can also lead to biased and incorrect
estimation of the specific production rates of metabolites. This is
due tometabolites released from cell death and to imprecision of
the viable cell concentration measurements at this low cell
viability.

2. Data points with depletion of metabolites during a measurement
interval were also removed from the dataset as the computation
of the specific production rate of that metabolite would be
underestimated in these cases.

Identification of the Number of Metabolic Phases

To avoid over fitting with the segmented regression, the number
of phases has to be determined. Based on the metabolic-steady
state paradigm, we assume that the vectors A and B (Equation 5)
are constant within a metabolic phase. We can estimate
coefficients A for all metabolites for the whole cell culture
process by taking the derivative of metabolic rates with respect to
the specific growth rate, m:

dR

dm
¼ A ð7Þ

Vector A is assumed constant within each metabolic phase. As
the derivative can amplify possible biological and analytical errors,
the specific production rates were, preliminarily to deriving,
smoothed as a function of the specific growth rate with the linear
Locally Weighted Scatterplot Smoother (LOWESS) method
(Cleveland, 1979) by using SAS software JMP 11 ©. The LOWESS
method represents non-parametric statistics that do not require any
specific model. We used a “tricube” function (Cleveland, 1979) as a
weight function and for each fitted value, a fraction of the data
points of 0.5 was used for the computation. The weight
function W is defined as:

W xð Þ ¼ 1� xj j3� �3
for xj j < 1

0 otherwise

(
ð8Þ

The derivatives of the LOWESS function is then also computed
with JMP 11 ©. The recursive partitioning (Gaudard et al., 2006) is
then used on the smoothed derivatives defined in Equation 7: the
data is successively partitioned according to a splitting value for a
given factor. The splitting value is the one that maximize the
�log(P-value), also called logworth, of the chi-square test
measuring how different data is between the two partitions. The
purpose of partitioning is to split all derivatives dR/dm of each
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Figure 2. Schematic representation of the data cleaning process. A principal component analysis (PCA) is performed, for each day from day 0 to 2 separately, on a pool of the

specific production rates of all metabolites. The T2 Hotelling distance (Bersimis et al., 2005; Mason 1997) is then computed by assuming a multi-normal distribution for the data. A

simple statistical process control (SPC) (Bersimis et al., 2005; Mason 1997) is then used on these T2 values to identify possible outliers. This scheme is repeated until no more outlier is

identified. UCL: upper control limit. This methodology has been used on day 0, 1, and 2 of the cell cultivation since the experimental conditions are similar before the feeding starts on

day 3.

Figure 3. Identification of the number of metabolic phase breakpoints. Hierarchical clustering was performed on the vector containing the breakpoint growth rate values

identified from recursive partitioning. Each observation/breakpoint starts in its own cluster, and at each step the clustering process calculates the distance between each other

cluster, and combines the two clusters that are closest together (Agglomerative procedure) (Murtagh 1983). The agglomerative procedure uses theWard’s method to calculate the

distance between each cluster. The objective was to identify the number of distinct metabolic phase breakpoints required to calibrate the segmented regression model (Fig. 3). Two

groups of breakpoints were identified, which correspond to two metabolic phase breakpoints BP1 and BP2. BP1¼ 0.54� 0.06 day�1; BP2¼�0.08� 0.06 day�1.
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metabolite (Equation 7), as a function of the specific growth rate
and then to determine the number of breakpoints. On the dataset of
all breakpoints for all metabolites, we apply a hierarchical clustering
to identify similar set of breakpoint values (Mojena, 1977; Murtagh,
1983; Szekely and Rizzo, 2005) (Fig. 3). Each observation starts in
its own cluster, and at each step the clustering process calculates the
distance between each cluster, and combines the two clusters that
are closest together (agglomerative procedure). The agglomerative
procedure is Ward’s method (Murtagh, 1983). The linkage distance
is defined as the “cost” in between-class sum of square to join the
clusters. The final number of clusters selected is chosen as the first
“knee” point in the linkage function, that is the peak in the second-
order derivative of the linkage distance function. The outcome is a
first estimation of the breakpoint value of each metabolic phase and
the total number of metabolic phases.

Segmented Linear Regression

Linear segments between all specific metabolic rates with the
specific growth rate, m, were identified using segmented linear
regression analysis (McGee and Carleton, 1970; Ryan et al., 2007;
Toms and Lesperance, 2003). It is a regressionmodel composed of a
sequence of joined linear sub-models. If we define rk as the

observed specific production rate of metabolite Mk and m as the
growth rate, we have, for n� 2 metabolic phases and n-1
breakpoints BP s such that s 2 1; . . . ; n-1f g:

rk mð Þ ¼ ak;1 � mþ bk;1 þ
Xn�1

s¼1

ak;sþ1 � m� BPj
� �

� us ð9Þ

us ¼
1 f orm � BPs
0 f orm > BPs

1 � s � n� 1

(

bi,1, ai,1, ai,j+1, and BPj constant coefficients of metaboliteMi, for
j2{1,. . .,n-1}. This expression allows the regression function to be
continuous at the breakpoint (Ryan et al., 2007). Amino acid
limitation in the medium can lead to its depletion that would impact
mAb and protein synthesis (Gramer, 2014; Kilberg et al., 2009). As
an extra constraint imposed to our model, as soon as an essential
amino acid is depleted, the specific mAb productivity predicted by
the model is set to zero. We consider tryptophan, histidine,
isoleucine, methionine, threonine, phenylalanine, valine, tyrosine,
leucine, lysine, glutamine, arginine, and cysteine as essential amino
acids (Hu, 2012).

Figure 4. Developed methodology to identify and characterize metabolic phases. Experimental data are first cleaned using the methodology presented in Figure 2 and

additionally by removing data with a viability below 50% or a depletion of metabolites during a measurement interval. The number of metabolic phases during the cell culture process

are determined by differentiating the smoothed (LOWESS) reaction rates of all metabolites with respect to the growth rate (dR/dm). Recursive partitioning is then applied on those

derivatives to get a vector of possible metabolic phase breakpoints. Hierarchical clustering is then applied on this vector of possible breakpoints to define the number of final

metabolic phases (clusters). Knowing the number of metabolic phases, the segmented regression can then be calibrated on the calibration dataset for eachmetabolite and validated

on the cross validation dataset of the 2 L bioreactor and also of the 2000 L bioreactor.
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Parameter Estimation

For each metabolite, based on the number n of metabolic phases
determined by the hierarchical clustering, n models were set up
from zero to n-1 breakpoints. For each model, the estimation of
model parameters with the best fit was selected using a least-square
minimization (Wagner et al., 2002). To assess if the addition of a
breakpoint makes the model prediction statistically superior to a
model with a lower number of breakpoint, an F-test was performed
at 95% confidence level. To alleviate the selection of too close
breakpoints, a criterion has been added to the model:

BP1 � BP2j j > 0:2 day�1

A summary of the methodology is presented in Figure 4. All
estimations were carried out using EXCEL (Microsoft) for primary
data treatment and Matlab Release 2013a (The Mathworks, Natick,
MA) for further calculations unless otherwise stated. MATLAB
scripts are supplied as Supplementary Material to automatically
carry out segmented linear regression using a supplied data set.

Materials and Methods

Cell Line, Cell Cultivation, Sampling, and Rate
Estimations

A CHO-DG44 cell line was used. The cells were cultivated in a
proprietary, chemically defined, serum-free medium in 2 L stirred
tank glass bioreactor (STR) with supply towers (C-DCUII,
Sartorius Stedim Biotech) controlled by a multi-fermentation
control system (MFCS, Sartorius Stedim Biotech). The reactors
were equipped with a 3-segment blade impeller (elephant ear
impeller). The cultivation start volume was adapted to ensure an
optimal cultivation end volume. The production bioreactors were
seeded at similar target seeding density (TSD). The pH was
controlled at a value of 7 with a dead band of 0.2. Dissolved
oxygen concentration (pO2) was set to 40% air saturation. To
control pO2, air, nitrogen, and oxygen were sparged into the
culture using a cascade controller with a predefined mixture
profile. The temperature was controlled at 36.8�C.

The culture was operated in fed-batch mode for 14 days. During
the feeding phase, the monoclonal antibody (mAb) is secreted into
the medium. Samples were drawn daily to determine total and
viable cell number, viability, off-line pH, partial pressure of CO2,
pCO2, osmolality, glucose-lactate, amino acid, and mAb concen-
trations (stored at �80�C). Antifoam was added manually on
demand every day to control the build-up of foam. Seventy-two
hours after inoculation, continuous nutrient feeding with constant
rate for a day was started with a predetermined rate using a
proprietary, chemically defined concentrated feed. The feed rate was
adjusted every day following a predefined strategy. In addition to
that proprietary chemically defined concentrated feed addition, a
glucose solution of 500 g/Lwas added as a bolus to the culture when
the glucose concentration dropped below 6 g/L but only from day 6
onwards. In this way, glucose was not depleted at any time during
the culture at the experimental conditions tested. Samples for the
amino acid analysis were taken before the feed addition. The

extracellular concentrations after feeding were computed based on
the feed composition information. Specific growth rate, m, was
computed for each experimental condition separately as the slope of
the linear trend line obtained by plotting ln(CXR.VR) against time
(Chin et al., 2015; Clarke et al., 2011).

Experimental Condition

Various feed compositions of amino acid were tested in small scale
bioreactors (2 L) for a total of 29 experimental conditions. We varied
the concentration of three different amino acids (aa1, aa2, aa3)
contained in our feed as described in the Supplementary Table SI.

The volume of feed added per bioreactor volume in the STR was
the same in each condition. pH, temperature, stirrer speed, and all
the bioreactor parameters were controlled at the same value. The
TSD was also the same for all experiments. Three 2000 L production
runs with the same experimental conditions were also performed,
that is with identical feed addition profiles and chemically defined
feed with a composition concerning the varied amino acids as
specified in the supplementary Table S1. The set points for
temperature, pH and pO2, as well as the target seeding density,
medium formulation, nutrient feed formulation, feeding strategy,
and culture duration were the same as at the 2 L bioreactor scale.

Figure 5. Experimental viable cell count and time course of specific growth rates.

(a) Growth profiles of CHO-DG44 for 29 experimental conditions (see supplementary

Table SI) with various cell growth behaviors. The cells were cultivated in a 2 L

bioreactor operated in fed-batch mode for 14 days. Black arrow: Start of nutrient

feeding with a predetermined rate. (b) Specific growth rate of the 29 experimental

conditions after data cleaning (Fig. 2) for the calibration dataset and the cross

validation dataset.
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Analytical Methods

Cells were counted by using a VI-CELL1 XR (Beckman-Coulter, Inc.,
Brea, CA) automated cell counting device that applied the trypan blue
exclusion method. Glucose and lactate levels in the culture medium
were determined using a NOVA 400 BioProfile automated analyzer
(Nova Biomedical, Waltham, MA). A model 2020 freezing-point
osmometer (Advanced Instruments, Inc., Norwood, MA) was used
for osmolality determination. Offline gas and pHmeasurements were
performed with a BioProfile pHOx1 blood gas analyzer (Nova
Biomedical Corporation, Waltham, MA). Product titer analysis was
performed with a ForteBio Octet model analyzer (ForteBio, Inc.,
Menlo Park, CA) or protein A high performance liquid chromatog-
raphy (HPLC) with cell culture supernatant samples which were
stored at �80�C prior to analysis. Amino acids were analyzed by
reversed-phase UPLC (Waters AccQ �Tagultra method) after ultra-
filtration using Amicon Ultra-0.5mL centrifugal filters (Merck
Millipore, Billerica, MA). Statistical analysis were performed using

SAS software JMP 11 ©. Matlab Release 2013a (The Mathworks,
Natick, MA) was used to calibrate the segmented linear model.

Results and Discussion

The growth profile of all experimental conditions is depicted in
Figure 5a. The growth behavior varies with the experimental
conditions. For further analysis, we computed the specific production
rates, ri, of glucose, lactate, ammonia, all amino acids, and the mAb.

Data Cleaning and Determination of the Number of
Metabolic Phases

We applied the outlier identification methodology based on the PCA
on our dataset for days 0, 1, and 2 separately. From a total of 404 data
points, 86 data points are from days 0, 1, and 2. From these 47 outliers
were identified by using PCA and removed from the dataset. Based on

Figure 6. Segmented regression of specific rates as a function of the growth rate. To identify metabolic phases, segmented regression was used (Fig. 4). Data of the 2 L

bioreactor calibration dataset were used. Three models were set up for each metabolite, from zero up to two breakpoints. To assess whether the addition of a breakpoint makes the

model prediction statistically superior to a model with a lower number of breakpoints, an F-test was performed with 95% confidence level. (a) Segmented regression models are

presented. Red names correspond to metabolites that are impacted by metabolic phases, that is which show better prediction with one to two breakpoints. When the segmented

regression model is characterized by a red line, three metabolic phases were identified. Identification of two metabolic phases are characterized by a green line. (b) The 12

metabolites that were significantly impacted by metabolic phases are presented for each metabolic phase: P1, P2, and P3. Blue arrow: net uptake; Dark arrow: net secretion. The

widths of the arrows are proportional to the average specific production rate values for the defined metabolic phase.
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the two extra constraints added to our data cleaning procedure from
day 3 to 14, data points with depletion of metabolites and/or with
viability lower than 50% throughout the cell culture production were
also removed from the dataset resulting in a total of 215 remaining
data points. This cleaned dataset was partitioned into two datasets
based on the growth rate profiles of each experimental condition: 115
data points (calibration dataset) with a wide range of experimental
conditions as specified in the Supplementary Table SI and 100 data
points (cross validation dataset) with similar experimental
conditions. The cross validation dataset contains experimental
conditions within the design space of the calibration dataset. From
the calibration dataset, two distinct clusters, which correspond to the
breakpoints, were identified based on recursive partitioning and
hierarchical clustering as described above (Fig. 3): one (Bp1) at a
growth rate of 0.54� 0.06 day�1 and a second one (Bp2) at
�0.08� 0.06 day�1. The first breakpoint was identified for all
metabolites. The second breakpoint was only identified for proline,
valine, leucine, methionine, tyrosine, threonine, cysteine, aspara-
gine, lysine, glutamate, lactate, and mAb. Hence, to avoid over fitting
during the calibration of the segmented linear regression, the
maximum number of breakpoints to identify was set to two.

Calibration of the Prediction Model Using the Segmented
Regression Model

Segmented regression was applied on the cleaned calibration
dataset, containing specific growth rates and not smoothed specific

production rates of metabolites and mAb (Fig. 6a). The
identification of the metabolic phase breakpoints and the
calibration of models were performed separately for each
metabolite. Estimated model parameters are listed in Table I.
Twelve metabolites, that is ammonium, glycine, alanine, methio-
nine, serine, asparagine, glutamine, arginine, aspartate, glutamate,
glucose, and lactate, are impacted by metabolic phases. These
metabolites are linked to glucose/glutamine metabolism and cell
proliferation which confirms results of Rehberg et al. (2014). Most
models for these metabolites include only one breakpoint, that is
only two metabolic phases were identified. Only glutamate,
methionine, and lactate have a specific production rate profile
divided into three metabolic phases. Based on an F-test, twelve
metabolites are better fitted with a simple linear regression model
and not impacted by metabolic phases: proline, isoleucine, leucine,
lysine, valine, phenylalanine, cysteine, tyrosine, tryptophan,
threonine, histidine, and mAb (Fig. 6a).

Suitability of the Segmented Model to Identify Metabolic
Phases

Breakpoints were identified for 12 metabolites. For the 12
metabolites that have significant breakpoints, the breakpoints Bp1
and/or Bp2 identified share similar values with a relative precision
of breakpoint identification close to 5% for both breakpoints
which supports the suitability of the method. The relative
precision is defined here as the standard deviation divided by the

Table I. Segmented model coefficients. For each metabolites and for each metabolic phase, the value of coefficient a and b from equation 5 is

presented.

a (10�09 mmol/cell) b (10�09 mmol/cell.day)

P1 P2 P3 P1 P2 P3

NH4þ 12.45 (9.90) �0.16 (�0.18) �7.81 (�6.10) 0.04 (0.04)
Gly 2.04 (2.12) �0.002 (0.08) �1.07 (�1.15) 0.02 (0.02)
Ala 5.15 (4.78) �0.11 (0.02) �3.03 (�2.84) 0.02 (�0.02)
Pro �0.05 (�0.10) �0.06 (�0.04)
Val �0.06 (�0.13) �0.09 (�0.06)
Leu �0.09 (�0.14) �0.12 (�0.08)
Ile �0.07 (�0.03) �0.06 (�0.04)
Met �0.46 (�0.57) �0.03 (�0.006) �0.24 (N/A) 0.28 (0.36) 0.01 (0.0044) �0.04 (N/A)
Phe �0.04 (�0.05) �0.03 (�0.02)
Tyr �0.00009 (�0.05) �0.06 (�0.03)
Trp �0.009 (�0.012) �0.02 (�0.01)
Ser �1.47 (�1.87) �0.08 (�0.17) 0.48 (0.14) �0.18 (�0.14)
Thr �0.04 (�0.09) �0.07 (�0.05)
Cys 0.01 (�0.06) �0.07 (�0.05)
Asn �0.44 (�0.49) 0.78 (N/A) �0.25 (�0.17) �0.11 (N/A)
Gln �12.39 (�12.17) �0.03 (�0.06) 7.42 (7.38) 0.007 (0.007)
Lys �0.10 (�0.20) �0.10 (�0.06)
His �0.03 (�0.05) �0.01 (�0.009)
Arg �3.14 (�0.72) �0.08 (�0.09) 2.19 (0.38) �0.03 (�0.03)
Asp 1.97 (1.49) �0.02 (�0.02) �1.25 (�0.95) �0.05 (�0.05)
Glu 1.84 (1.31) 0.07 (0.05) 1.20 (N/A) �1.19 (�0.85) �0.09 (�0.09) 0.18 (N/A)
Glc �18.34 (�18.58) �0.04 (�0.21) 9.61 (10.00) �0.98 (�0.88)
Lac 63.41 (56.79) �0.05 (0.15) �17.66 (N/A) �39.42 (�35.51) 0.03 (�0.06) �4.86 (N/A)
mAb �0.0006 (�0.0002) 0.0007 (0.006)

The coefficients were also identified with the cross validation dataset and presented in the brackets. Red names correspond to metabolites that are impacted by the three
metabolic phases. Bold names are metabolites that are impacted by two metabolic phases. Glc � glucose; Lac � lactate, mAb � monoclonal antibody.
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range of the possible growth rate values. The first breakpoint
between phases P1 and P2 was reached when the initially high
specific growth rate, m, decreased below a value of 0.58� 0.09
day�1, the second one between phases P2 and P3 when m fell
below �0.18� 0.09 day�1 (Fig. 6b). The segmented linear
regression identified breakpoint Bp1 for only 11 metabolites and
breakpoint Bp2 for 4 metabolites (Table I) which is less than those
identified with the combination of recursive partitioning and
hierarchical clustering. This may be explained by the sensitivity
of the second method to outliers: the LOWESS regression may
create additional trends that only exist due to possible outliers
and the derivative computation can amplify the noise. Moreover,
no F-test is performed with the combination of recursive
partitioning and hierarchical clustering which could possibly
identify non-significant metabolites. Nevertheless, breakpoints
identified by both methods are similar which proves the reliability
of the segmented linear regression to identify metabolic phases.
As a conclusion from our work, the application of segmented
regression is sufficient to identify relevant breakpoints and
parameter. Therefore, hierarchical clustering is not necessary
which simplifies the overall procedure.

The first metabolic phase P1, defined by a high growth rate, is
characterized by a high production of ammonium, glycine, alanine,
lactate, glutamate, and aspartate and a high consumption of
methionine, asparagine, arginine, serine, glucose, and glutamine.
This is a common metabolic profile observed in literature with
suspension CHO cells also called overflow metabolism (Niu, et al.,
2013; Wahrheit, 2015) or exponential phase (Amribt et al., 2013;
Dorka et al., 2009; Meshram et al., 2013). All the other amino acids
are also consumed during this first metabolic phase but the rates are
lower than those of the 12 metabolites impacted by metabolic
phases. During phase P1, lactate is a byproduct of the glycolysis and
high excretion of alanine is due to the conversion of pyruvate to
alanine via the alanine aminotransferase (ALAT) serving as a
nitrogen sink. Glycine synthesis is a result of high serine uptake
which is generally observed for mammalian cells and can be linked
to nucleotide synthesis and to cell proliferation (Narkewicz et al.,
1996). Glutamine is taken up as a carbon source for the tricarboxylic
acid cycle (TCA) cycle and hydrolyzed into glutamate and
ammonium. Asparagine is partly converted into aspartate which
can then be converted into oxaloacetate. In the second metabolic
phase P2 (Fig. 6b), the growth rate further decreased and some

Figure 7. Cross validation of the segmented regression models for each metabolite in 2 L bioreactor runs. The specific production rates of all metabolites for the validation

dataset are presented as a function of time (day) as the specific growth rate profiles were similar (Fig. 5). The error bars correspond to 3 standard deviations. The prediction (red line)

is based on the segmented regression of the calibration dataset (Fig. 6) and used the experimental specific growth rate profile (Fig. 5b) to estimate specific production rates. The

prediction variability is due to the growth rate value variability and the error bars presented for the prediction correspond also to the three standard deviation. When the prediction

was out of the 3 standard deviations range, the corresponding day is crossed in red.
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metabolites, that is ammonium, alanine, lactate, glutamate, and
aspartate, started being consumed. This metabolic phase is usually
called balanced metabolism (Wahrheit et al., 2014b; Wahrheit, 2015)
or transition phase (Naderi et al., 2011; Provost et al., 2006;
Zamorano et al., 2013). Overall, the rates of all metabolites were
lower than in phase P1. Alanine and lactate, accumulated during the
phase P1, were converted back to pyruvate, which is a major
characteristic of CHO cell metabolism. The last metabolic phase P3
(Fig. 6b) is characterized by an accumulation of methionine, an
increase of the consumption of glutamate and asparagine, and an
overproduction of lactate. For the other eight metabolites that were
impacted by the first metabolic shift, no break of slope could be
observed between phases P2 and P3. The growth rate is negative for
that metabolic phase, also called in the literature the maintenance
phase (Wahrheit, 2015; Yu et al., 2011) or death phase (Provost et al.,
2006; Zamorano et al., 2013).

Usually, different growth behaviors can be observed during
process production, making it quite difficult to compare their
metabolic characteristics by only using time. Using the growth
rate rather than time allows better identification of metabolic
phases and better comparison of their characteristics between

various experimental conditions particularly in fed-batch
cultivation.

Validation of the Model at Small Scale (2 L)

Metabolic profiles of the cross validation dataset were predicted (Fig. 7)
from the experimental growth rate of the cross validation dataset and
parameters of segmented regression model identified using the
calibration dataset (Table I). Since the growth rates were overall similar
in the cross validation dataset, the data can be presented as a function
of time. Themodel prediction closely followed the experimental trends
throughout the cell culture process. The only discrepancy occurred in
the late stages, on day 13, for 18metabolites. For four metabolites, that
is tyrosine, tryptophan, cysteine, and glucose, the prediction is also out
of range for day 12.

Prediction of the Specific Production Rate in Large Scale
(2000 L)

To estimate the transferability of the segmented regression model to a
larger scale cultivation, specific production rates of metabolites of each

Figure 8. Validation of the segmented regression models for each metabolite at 2000 L bioreactor scale. The specific production rates of each metabolites for three 2000 L

bioreactors runs with the same experimental condition are presented as a function of time (day) as the specific growth rate profiles are similar. The error bars correspond to 3

standard deviations. The prediction model (red line) is based on the segmented regression of the calibration dataset (Fig. 6) and is based on the experimental specific growth rate

profile (Fig. 5b). The prediction variability is due to the growth rate value variability and the error bars presented for the prediction correspond also to the three standard deviation.

When the prediction was out of the 3 standard deviations range, the corresponding day is crossed in red.

794 Biotechnology and Bioengineering, Vol. 114, No. 4, April, 2017



2000 L experiment were predicted (Fig. 8) by the model estimated on
the 2 L bioreactor calibration set (Table I). As the growth rates were
similar for the triplicate experimental conditions, the data could be
presented together as a function of time. The prediction model is able
to track the experimental trends of almost all metabolites over the
entire culture period. Overall 88% of the predictions fall into a 3
standard deviations interval. Two amino acids, named aa1 and aa2,
were depleted throughout the cell culture process but the model was
able to predict their concentrations (Fig. 9b).

Accuracy of the Segmented Model for Prediction of
Metabolite Profiles (2 and 2000 L)

Cross validation of the segmented models showed good results for
all metabolites. The ability to predict the experimental metabolite
profiles in large scale experiments reinforces the validity of the
model and justifies the initial assumption of linear correlation of
specific rates of metabolites with the specific growth rate. The
accuracy of our model with two to a maximum of six parameters to

estimate for eachmetabolite is remarkable. For 12 metabolites, even
if a simple linear model was used, the model has provided accurate
results. Moreover, adding more parameters to the model may lead
to over fitting. From this point of view, the model can be used for
accurate prediction of the specific production rates of metabolites
and so, of the metabolite concentrations, requiring only the
experimental specific growth rate of the prevailing experiment. The
established model would also allow online estimation of metabolic
rates on the bases of online measured biomass parameters, for
example viable cell count. It could therefore potentially also be
applied for on line optimization of feeding profiles.

Accuracy of the Segmented Model for Prediction of Final
mAb Titers (2 and 2000 L)

The model was used to predict the final mAb titer. Results of
prediction model are presented in Figure 9a. The final mAb titer
prediction in 2 L is accurate and within the range of �3 standard
deviations even for conditions with a depletion of metabolites

Figure 9. Prediction of the final mAb titer and of aa1 and aa2 concentrations. (a) Experimental and predicted final mAb titers for the calibration dataset (2 L) and for large scale

bioreactor runs (2000 L). The mAb titers were normalized to the maximum titer reached. The prediction is based on the segmented regression model of the specific productivity. The

calibration dataset (2 L) and the large scale bioreactor runs (2000 L) are divided into 2 subsets: one without depletion of any metabolite during the cell culture process (No), and the

other with depletions of aa1 and aa2, two amino acids, during the cell culture process (dp). The error bars correspond to 3 standard deviations for both prediction and experimental

data. (b) Prediction of aa1 and aa2 concentrations before feeding during the whole cell culture process in triplicate experiments in 2000 L bioreactors (dp). The concentrations were

normalized to the initial concentrations.
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throughout the cell culture process. Similarly to the small scale, the
2000 L triplicate experimental conditions previously used to
compare the metabolite prediction profiles were depleted in
some metabolites, that is aa1 and aa2, during the cell cultivation.
Hence, the prediction of the final mAb titer in 2000 L is also
compared to other duplicates experimental conditions in 2000 L
bioreactors runs without metabolites limitations throughout the cell
culture process. The final mAb titer prediction is accurate and
within the �3 standards deviations even with metabolite
limitations throughout the cell culture process (Fig. 9a). Our
model is able to predict mAb titer decrease due to essential amino
acid depletion.

Prediction Outside Calibration Experimental Conditions

The segmented regression methodology was used to identified
coefficients a and b from equation 10 with the cross validation
dataset. The objective was to compare both coefficients identified
with the cross validation dataset and with the calibration dataset.
Results are presented in Table I in the brackets and in
supplementary material (Fig. S1). As expected, the breakpoints
Bp2 was not identified with the cross validation dataset as the
growth rates minimum values were higher than Bp2. For coefficients
a and b within metabolic phase P1 and P2, coefficients are similar
which prove the predictability and applicability of the methodology.
As the cross validation dataset only contained four different
experimental conditions, we can conclude from this work that the
presented method does not require a wide range of different
experimental conditions in order to set up a robust and predictive
model. The question of the minimum of data points and
experiments needed is difficult to answer, since it depends on
the quality of the measured data.

Conclusion

In summary, we propose an accurate predictive model of
external metabolite rates which requires few parameters to
estimate and seems very robust. The final titer can also be
predicted even if the cells are starved in some metabolites. It
should also be highlighted that an entire and complex metabolic
network is not needed in order to achieve the macroscopic
modeling which makes it simpler and, possibly, easily adaptable
to other cell clones and cell lines. We also presented a systematic
methodology to identify metabolic phases that allows compar-
ing various experimental conditions with different growth
behavior. It provides an excellent basis for later metabolic flux
analysis and for later dynamic mechanistic modeling. We
showed that the metabolites that are more impacted by
metabolic shift are those linked to glucose/glutamine metabo-
lism and cell proliferation.
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