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Abstract: Several coronaviruses (CoVs) have been associated with serious health hazards in recent
decades, resulting in the deaths of thousands around the globe. The recent coronavirus pandemic
has emphasized the importance of discovering novel and effective antiviral medicines as quickly
as possible to prevent more loss of human lives. Positive-sense RNA viruses with group spikes
protruding from their surfaces and an abnormally large RNA genome enclose CoVs. CoVs have
already been related to a range of respiratory infectious diseases possibly fatal to humans, such
as MERS, SARS, and the current COVID-19 outbreak. As a result, effective prevention, treatment,
and medications against human coronavirus (HCoV) is urgently needed. In recent years, many
natural substances have been discovered with a variety of biological significance, including antiviral
properties. Throughout this work, we reviewed a wide range of natural substances that interrupt the
life cycles for MERS and SARS, as well as their potential application in the treatment of COVID-19.

Keywords: bioactive molecules; alkaloids; flavonoids; terpenoids; coronavirus; COVID-19; SARS-CoV-2

1. Introduction

Viral infections are currently considered as a public health concern. Viruses are non-
living submicroscopic agents that cause a variety of human ailments. They are often
composed of RNA or DNA strains. Measles, human immunodeficiency virus (HIV), in-
fluenza, herpes simplex virus, and dengue virus are the most well-known viral diseases [1].
Coronaviruses (CoVs) are members of the Coronaviridae family and look like spiky rings
under an electron microscope. Their surface is covered in spikes that aid in the attack
and binding of living cells [2]. Among the many coronaviruses, notably, coronavirus
disease 2019 (COVID-19), first recorded in China in December 2019, is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has already spread across
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the world, infecting millions of people [3,4]. COVID-19 has prevailed almost across the
whole world and many countries’ healthcare services have now reached their breaking
point. The disease spreads through respiratory droplets and direct contact, and city and
community disinfection have not proven to be successful in controlling this disease [5]. On
11 March 2020, the World Health Organization (WHO) classified the COVID-19 breakout
a pandemic [6]. COVID-19 has affected over 219 countries and territories throughout the
world, resulting in around 190 million reported cases and over four million fatalities [7].
Despite the findings of this viral entity and a greater understanding of its mechanism of
transmission, SARS-CoV-2 continues to infect hundreds of thousands of individuals every
day throughout the world. The new coronavirus, SARS-CoV-2, is closely linked to bat
coronavirus, with over 88% nucleotide sequence identity, according to phylogenic research.
As a result, it has been categorized as a severe acute respiratory syndrome coronavirus
(SARS-CoV) (80% nucleotide similarity), such as the virus that produced the severe acute
respiratory syndrome (SARS) epidemic in Guangdong Province, China, in 2002 and 2003,
and similar to the Middle East respiratory syndrome coronavirus (MERS-CoV) (% nu-
cleotide similarity) that produced the Middle East respiratory syndrome (MERS) epidemic
in the Arabian Peninsula in 2012 [8].

In folk medicine, natural products and their derivatives are utilized to cure a variety of
diseases, such as viral infections. Throughout the field of nutraceuticals, herbal drugs have
a variety of applications [9–11]. By limiting virus replication, certain natural compounds
have been shown to have antiviral characteristics. Aside from plant-derived chemicals,
some marine natural products and biotechnologically generated compounds have also
been demonstrated to have antiviral properties against various viruses [12–17]. Nature
has a wide reservoir of compounds that may be used to research and produce medications
for a variety of ailments, including viral infections. A large variety of herbal medications
and their ingredients have proven antiviral efficacy in the past [18–20]. There is a scarcity
of studies into the creation of anti-coronavirus therapies based on natural compounds.
These medicines are vital not only for combating coronavirus, but also for preventing
viral infection. Based on previous debates, the goal of this review is to assess the current
situation of natural compounds and/or their compounds working against different species
of coronavirus.

2. Pathogenesis of COVID-19

COVID-19, an extremely lethal disease produced by the SARS-CoV-2 virus, is a major
public health concern around the world. In humans, the SARS-CoV-2 virus enters the
lower respiratory tract and causes pneumonia [21]. In the earlier stages, it shows only a
little respiratory dysfunction, but later move to a fatal respiratory dysfunction syndrome
and hyper inflammation. The SARS-CoV and MERS-CoV diseases appear to have similar
immunopathogenic features, where acute respiratory distress syndrome (ARDS) is the
major cause of death in most of the infectious diseases, including COVID-19 disease. One
of the most noticeable aspects is the cytokine storm, which is an unregulated systemic
inflammatory process induced by immune cells producing pro-inflammatory cytokines
and chemokines [22,23]. Increased blood stages of chemokines and cytokines, such as
basic FGF2, GCSF, MIP1, PDGFB, TNF, GMCSF, IL1, IL9, IL10, IL1RA, IL7, IFN, IP10, IL8,
FN, IP10, MCP1, MIP1, and VEGFA, are found in COVID-19 patients [24]. Identical to
SARS and MERS-CoV infections, a robust inflammatory immune reaction is induced in
serious forms of SARS-CoV-2 disease, which leads to organ failure, ARDS, and ultimately
death [22]. The cytokine storm harms the lungs and many other internal organs, which is
often the leading cause of death in acute COVID-19, including the heart, kidneys, and liver,
which results in multiple organ failure [17,25–28].

3. Epidemiology

Transmission by people is the major pathway for getting infected with the SARS-CoV-2
virus, with droplets through sneezing and coughing inhaled via close contact. COVID-19
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virus transmission can also occur through contaminated sites or fomites after interaction
with the mouth, eye, or nose. Symptomatic patients have a high risk of spreading the
virus to others [29]. Asymptomatic patients have less evidence of viral shedding, whereas
critically ill patients seem to have higher viral shedding levels [30]. The virus is extremely
virulent and was shown to have a lengthy spreading period in China, according to current
trends in coronavirus illness epidemiology [31–37]. In the first coronavirus pandemic in
Wuhan, an epidemiological analysis of 425 coronavirus patients was conducted, where 56%
of the infected individuals were male, with a median age of 59 years. In total, 86.6% of the
affected people were between the ages of 30 and 70 on 11 February 2020. Patients had a
total mortality rate of 2.3%, with 80.9% of the recorded cases being moderate. Healthcare
professionals accounted for about 3.8% of reported cases in hospitals, with 14.6% of these
cases being chronic or serious. Infants infected with the virus were observed in only
a few cases (2.1%). The coronavirus was found to have the greatest impact on people
above the age of 80, representing 14.8% of all cases. For COVID-19 patients to be classed
as chronic, the main elements must be present: a PaO2/FiO2 higher than 300, oxygen
saturated higher than or equal to 93%, respiration larger than or equal to 30 breath/min,
and dyspnea, defined as a 50% involvement of the lungs in less than 24 to 48 h. The virus
is infectious and at the critical phase in patients with multiple organ dysfunction, leads
to septic shock and/or restricted breathing [29,38]. The suggested 14-day initial infection
for coronavirus illness is based on the relevant incubation duration for coronaviruses with
similar incubation periods after the initial exposure. Incubation takes an average of 5.2 days,
with 95% Cl of 4.1 to 7.0, but it can take from 2 to 14 days. Gao et al. also discovered a 9-day
average incubation period [39]. Another study revealed that the delta variant’s incubation
takes an average of 4 days [40]. Associated infections can be found in roughly 22–33% of
infected people, and they may be greater in people with severe illnesses [29].

4. Etiology

The virus has an 88% sequencing resemblance to two bat-derived severe acute res-
piratory syndrome (SARS) coronaviruses, but is more distanced from SARS-CoV [41,42].
Here, as consequence, the virus was dubbed a novel coronavirus in 2019. A coronavirus
seems to be a single-stranded, encapsulated ribonucleic acid with surface spikes that are
9 to 12 nm long and mimics the solar corona [43–45]. The spike (S) protein interacts with
the angiotensin-converting enzyme 2 (ACE2) receptor and facilitates viral entrance into
the host cell by mediating fusion of the enveloped and host cell membranes, and the
coronavirus genome encodes four key structural protein molecules on the surface [46,47].
Glycosaminoglycans (GAGs) and sialic acid-containing oligosaccharides are examples of
such molecules. GAGs are typically found on the cell’s outer surface. They are particu-
larly well suited to function as attachment factors to recruit viruses to the cell surfaces
because of their position [48–50]. In mammals, heparan sulfate (HS) is one of the most
common forms of GAGs. It is a sulfated linear polysaccharide found on the surface of
practically all cell types as well as in the extracellular matrix. To produce HS proteoglycans
(HSPGs), the HS chains are typically covalently attached as side chains to the core proteins
(Figure 1) [51,52].

Many distinct enzymes produce HS in the Golgi apparatus. HS undergoes a number of
changes during and after arrangement, including sulfation, acetylation, and epimerization,
resulting in glycan structures with a high degree of variation in length, sulfation, and
glucuronate/iduronate ratio. In distinct species, organs, tissues, and even at different ages
and illness stages, there was significant diversity in the sulfation pattern and degree of
HS [54,55]. Many viruses’ attachment to host cells during transmission has been demon-
strated to be regulated by the sequence and sulfation pattern of HS. Sialylation patterns of
cell surface oligosaccharides showed similar results. The MERS-CoV S protein, for instance,
selectively attaches α2,3-linked sialic acids on the cell surface over α2,6-linked sialic acids,
and 5-N-glycolylation and 7,9-O-acetylation of sialic acids impairs their interaction. These
data suggest that the distribution of distinct forms of HS/sialylated glycans and viral
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tropism may have a linkage [56–58]. A deeper knowledge of their interaction could involve
the development of novel antiviral drugs. Although there is presently inadequate evidence
on the viral tropism of SARS-CoV-2, new research suggests that its tropism may not be
totally connected with ACE2 expression. Other variables, such as proteases and glycans,
may have a role in determining cellular sensitivity to this viral infection [59–61]. A recent
study revealed that HS could bind to the SARS-CoV-2 spike protein’s receptor-binding
domain (RBD, the C-terminal region of the S1 subunit) and modify its shape. The fas-
cinating potential that differences in HS and sialic acid properties could influence virus
tropism prompted us to look into SARS-binding of CoV-2 to a variety of HS and sialic
acid-containing oligosaccharides [62,63].

Figure 1. SARS-CoV-2 infection and entrance via a plausible pathway. Using the S protein projecting from the viral particle,
SARS-CoV-2 may first engage with the HSPGs on the surface of susceptible cells early in the infection cycle. The virus’s
subsequent interaction with the high-affinity entry receptor ACE2 may be facilitated by this initial attachment. By cleaving
the S protein at the S1/S2 and/or S2’ sites, the transmembrane protease serine 2 (TMPRSS2) on the host cell surface and
other host cell proteases may facilitate viral entry [53]. Adapted with permission from ref. [53]. Copyright 2021 Science
China Press.

5. Structural Composition of SARS-CoV-2

With a genomic diameter varying from 27 to 32 kilobases in size (~125 nm or 0.125 µm),
SARS-CoV-2 belongs to the biggest RNA virus family. It is an enveloping RNA virus with
a single-stranded (+ssRNA) positive-sense RNA genome, with a 5′ cap shape and also
a 3′ poly-A tail [64]. SARS-CoV-2 shares some characteristics with other virus infections
in this family. The envelope (E), membrane (M), spike (S), and nucleocapsid protein (N)
are four critical structural proteins that influence the virus’s function and shape [65]. The
most important of these four proteins are N and S, the former of which aids in the optimal
utilization of the capsid and the entire viral structure, and the latter of which aids in the
future growth of the capsid, with the full viral framework facilitating virus attachment
to host cells [66,67]. The three primary elements of the S protein are a huge ectodomain,
a short intracellular tail, and also a single-pass transmembrane anchor. Those are all
necessary for the host cells to be anchored. The S1 receptor attaching subunits and the S2
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membrane fusion subunit are the two parts of the ectodomain (Figure 2). The clove-trimeric
or crown shape in which such subunits are located gives the virus its name [68]. According
to studies, SARS and SARS-CoV-2 have identical receptors within viral genomes, especially
in the receptor-binding domain (RBD) and receptor-binding motif (RBM). Throughout
SARS infection, the RBM of the S protein is intimately related to ACE2 in mammalian or
host cells. The coronavirus’s principal targets are indeed the kidneys, lungs, and gut, while
the ACE2 protein is detected in a range of human organs [69–73]. Although no research
has established that the virus may impair men’s fertility or sexual potency because of the
virus’s new nature, doctors in Wuhan have speculated that the condition may influence
sperm production, a low sperm rate, and the production of male sex hormones, resulting
in low libido. SARS-CoV-2 also attacks host cells through ACE2 receptors, leading to
COVID-19-related pneumonia, acute myocardial damage, and long-term cardiovascular
injury [74].

Figure 2. The structure of the SARS-CoV-2 virus. Clathrin is a protein that plays a vital role in the formation of coated
vesicles. The S protein is an important element of the viral shape that helps the virus to connect with the host receptor cells.
The S protein comprises two parts: the receptor-binding component S1 and the membrane fusion component S2; the former
attaches to the human host cell’s ACE2 receptor, while the latter internalizes and forms a membrane fusion between the
viral component and the ACE2 receptors. This causes the viral RNA to be released into the host cell, resulting in respiratory
infection [75]. Adapted with permission from ref. [75]. Copyright 2020 Elsevier B.V.

6. SARS-CoV-2: Suggested Mode of Action

SARS-CoV-2 shares similarities with SARS-CoV, but it does have a much higher risk
of transmission and virulence; this higher rate of spread could be because of a gain of
point mutations, which distinguishes this distinct virus from SARS-CoV. The 8a segment of
SARS-CoV-2 is absent, the 8b and 3b segments are longer and also shorter, and the Nsp 2
and 3 proteins are changed (Figure 3) [75].

SARS-CoV-2 Nsp 2 is a mutation that is thought to be linked to the virus’s capacity
to be more infectious [76]. The SARS-CoV-2 orf8 and orf10 proteins are distinct. It can be
helpful to learn more about the physiological functions of such proteins. Understanding the
function of these proteins might be valuable. Moreover, a furin-like cleave site throughout
the S protein has been revealed in novel pathogenic viruses, which is lacking in SARS-CoV
but active in SARS-CoV-2. This might be the cause of SARS-CoV-2’s increased pathogenicity.
SARS-CoV-2 also interacts with almost the same ACE2 receptor as SARS-CoV, but with
a significantly stronger affinity; this might explain the enhanced transmission rate and
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ease with which it may infect other species. The S1 portion of the S protein, which has
S1 just on the N terminal and S2 on the C terminal, contains RBD. The S2 domain of
an S protein contains the fusion protein, an S2, an internal fusion peptide (FP), and two
heptad-repeat domains surrounding the transmembrane domain (TM). SARS-CoV-2 and
SARS-CoV has similar internal FPs [77]. SARS-CoV recruits proteases once it binds to the
receptor and cleaves the S protein into S1 and S2 domains. S2 undergoes a structural shift as
a result of the fragmentation, which is accompanied by the incorporation of the FP into the
membrane and membrane fusion, allowing the virus to more readily enter the cell. ACE2
is broken and released into the additional membrane region by ADAM17 as soon as the
virus penetrates the cell. Alveolar injury and higher pulmonary vascular permeability have
both been associated with decreased ACE2 [78]. Once the virus’s proteins are imported
into the cell, the ORF3a protein is generated, which encodes for a Ca2+ ion pathway
identical to SARS and SARS-CoV-2. ORF3a links with TRAF3 to stimulate the nuclear
factor kappa B (NF-kB) pathway, which causes the pro-IL-1B gene e to be transcribed [79].
ORF3a also recruits an inflammasome complex with TRAF3. NLRP3, ASC, and caspase
1 make up this complex. A secondary signal, such as Ca2+ influx, activation caspase,
reactive oxygen species (ROS) generation, or mitochondrial injury convert pro-IL-1B to
IL-B, culminating in cell proliferation. The extended ORF8b protein in SARS-CoV-2 also
activates the inflammasome system via NLRP3 [80]. A cytokine storm happens because all
of those channels are active, leading to the respiratory problem, which is a common sign
of COVID-19. The JNK cascade, which is triggered by ORF3a, ORF3b, and ORF7a, may
result in higher generation of pro-inflammatory mediators, resulting in greater lung injury
(Figure 4) [81].

Figure 3. Graphical representation of the comparisons between SARS-CoV and SARS-CoV-2. N: nucleocapsid protein;
E: envelope; M: membrane; S: spike.
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Figure 4. Potential mode of action of SARS- CoV-2, illustrated as SARS-CoV-2 attached to its target ACE-2. After that,
the S1 and S2 molecules are cleaved, and ADAM 17 sheds ACE-2. As a consequence, the body’s level of Angiotensin II
rises, resulting in respiratory discomfort. During contact, the virus fuses with the membrane and penetrates the cell, where
protein synthesis and replication occur. ORF8b, ORF3a, and E proteins, and also the pathway of NF-κB, all stimulate the
inflammasome path, resulting in cytokine stimulation in different ways. A cytokine storm ensues, leading in respiratory
discomfort. Here, ACE2, angiotensin converting enzyme 2; NF-κB, nuclear factor- kappa B; ROS, reactive oxygen species;
P65, P105, and P50 are the subunit of NF-κB transcription complex; TRAF3, TNF receptor associated factor 3; ATR maintain
to genome integrity by stabilizing replication forks and by regulating cell cycle progression and DNA [75]. Adapted with
permission from ref. [75]. Copyright 2020 Elsevier B.V.

7. Therapeutic Approach against COVID-19
7.1. Pharmacological Drugs
7.1.1. Remdesivir

Remdesivir (GS-5734) is an adenosine analog antiviral prodrug that was used to
tackle the Ebola virus infection in Western Africa from December 2013 to January 2016.
By attaching RNA-dependent RNA polymerase, remdesivir’s active form (GS-441524)
suppresses viral RNA multiplication [68,82–84]. Remdesivir is an antiviral drug that works
against such a range of single-stranded viruses such as RNA and includes paramyxoviruses,
filoviruses, pneumoviruses, and coronaviruses, including SARS- and MERS-CoV [84,85].
Remdesivir is a prodrug that is metabolized into GS-441524, an adenine nucleotide ana-
logue that inhibits viral RNA production. Remdesivir functions initially in the target cells,
decreasing viral RNA rates in a dose-dependent manner [82], which correlates to viral
load dysfunction in vitro. For the Ebola virus, SARS-, and MERS-CoV, similar modes of
action of remdesivir have been established in vitro [86,87]. In cultured cells experiments,
remdesivir prevents SARS-CoV-2 illness in simian Vero E6 cells infected with SARS-CoV-2
at 1.76 µM in an 90% effective concentration (EC90), a quantity achieved in wild monkey
experiments. Remdesivir was also shown in virus-prone Huh-7 cells of human liver cancer
to prevent SARS-CoV-2 infection [88]. Nowadays, remdesivir’s efficacy in preventing
and treating MERS-CoV infection in nonhuman primates has been shown [89]. Patient
safety data for remdesivir was obtained from a randomized, clinical study of Ebola virus
treatment that was done in August 2018 in response to the Ebola virus outbreak in the
Democratic Republic of Congo. A sample of 175 individuals was given remdesivir at a
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packed dose of 200 mg on Day 1 and then a maintenance dose of 100 mg for 13 days; nine
of the people investigated had major adverse effects, demonstrating that remdesivir is a
safe medicine [90].

7.1.2. Chloroquine (CQ) and Hydroxychloroquine (HCQ)

CQ and HCQ are most commonly used as antimalarial drugs, having lysosomotropic
effects. Particularly in comparison to CQ, HCQ is a less hazardous antimalarial drug
made by combining chloroquine with an OH group. The effects of these antimalarial
medications are widely found in the whole body, including in the lungs, according to
pharmacokinetic studies [87]. They are now being researched as a potential therapy for
SARS-CoV-2 because of their immunomodulating and anti-inflammatory properties [88].
Although preclinical research suggests that CQ and HCQ can reduce viral replication and
may prevent COVID-19 infection, present evidence does not support their efficacy as a
SARS-CoV-2 infection prophylaxis [91]. Experts recommended to utilize the CQ/HCQ
regimen for SARS-CoV-2 infection prophylaxis, notably among healthcare workers who
are at a higher risk of infection [92,93]. However, this opinion was refuted by data from
a well-designed randomized controlled trial on 821 participants. Within four days of
exposure, participants were randomly assigned to receive either HCQ or the placebo. The
occurrence of novel COVID-19-related symptoms did not differ significantly between the
two groups (11.8% versus 14.3%; P = 0.35) [94]. Another study also showed differences
between CQ/HCQ and the placebo, but leading without showing any significant effect
againt SARS-CoV-2 [95].

7.1.3. Lopinavir/Ritonavir

Lopinavir is an extremely effective blocker of HIV protease, which is necessary for
intracellular HIV replication. It was created in 1998 to combat HIV tolerance of the protease
inhibitor ritonavir, which is produced by a variation of valine at position 82 (Val 82) in HIV
protease’s active site in reaction to ritonavir treatment. Because lopinavir decomposition
is inhibited by ritonavir, concomitant oral treatment of ritonavir and lopinavir exceeded
the in vitro antiviral half maximal effective concentration (EC50) of lopinavir in monkeys,
dog, and rat plasma by over 50-fold after 8 h [96]. As a result, when taken in combination
with other antiretroviral drugs, the combination of lopinavir and ritonavir has indeed
been acknowledged as an excellent orally administered medicine in the treatment of HIV-
infected persons [97,98].

7.1.4. Tocilizumab

Tocilizumab is a humanized monoclonal antibody that targets the interleukin-6 re-
ceptor (IL-6R) and has been allowed by the FDA to treat rheumatoid arthritis. In critically
sick COVID-19, the cytokine release storm (CRS) has been mediated by IL-6. As a result,
it has been recommended as a treatment for such patients [73,99]. In China and Italy,
tocilizumab has been used as an immuno-suppressive medication in COVID-19 patients
with impressive results. In China, individuals with COVID-19 who were given tocilizumab,
showed massive improvement, implying that tocilizumab could be very effective in curing
people with acute disease [100–102].

7.1.5. Favipiravir

Toyama Chemical, Japan, developed favipiravir that inhibits the RNA-dependent
RNA polymerase (RdRp) of RNA viruses and produces lethal RNA transversion mutations,
resulting in a nonviable viral phenotype [103–105]. Favipiravir inhibits the replication of
a wide range of RNA viruses, such as influenza A, Ebola, and Lassa viruses [106]. The
favipiravir-treated individuals had a substantially superior therapeutic response, with
quicker viral clearance and a higher incidence of improvement in chest imaging. Based on
these promising results, China’s National Medical Products Administration has authorized
favipiravir as the country’s first anti-COVID-19 drug [107].
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7.1.6. Umifenovir

Umifenovir is a small indole-derivate molecule that protects against viral infection by
inhibiting clathrin-mediated endocytosis, which hinders membrane fusion between the
viral particle and the host cell’s cytoplasmic membrane (Figure 5). In Russia and China,
umifnovir is approved for the treatment and control of influenza A and B viruses, as well
as for many other respiratory pathogens [106,108–110]. Around 36 COVID-19 patients had
taken 400 mg umifenovir three times per day for nine days in a clinical pilot project in
Wuhan, China, with 31 uncontrolled COVID-19 patients taking part as a control condition.
When compared with the control group, umifenovir therapy was found to have a higher
proclivity for reducing viral load as determined by RT-PCR, and also a reduced fatality rate
of 0% vs. 16% [111]. Table 1 illustrates some combinational drugs that can act as potential
targets for COVID-19.

Figure 5. The structures of some effective COVID-19 treatment pharmacological drugs.

Table 1. Combinational drugs as potential COVID-19 treatment.

Drugs Targeted Virions Infection Targeted Virions Modes References

HCQ and Itazoxanide SARS-CoV-2 Used as adjuvant treatment
in COVID-19 [111]

Darunavir and Umifenovir SARS-CoV-2 Inhibition of viral replication
reduces viral load [112]

CQ and HCQ SARS-CoV-2 Reduces viral loads in the lungs
and increases pulmonary activity [113]

Interferon beta, Lopinavir and
ritonavir MERS-CoV and SARS-CoV-2

The viral load was reduced little,
and pulmonary function

improved slightly
[114]

Ribavirin and Interferon-α SARS-CoV-2 ARDS was reduced, as
was mortality [115]

Camostat mesilate HCQ SARS-CoV-2
Blockers of the angiotensin

receptor and inhibitors of the
serine protease of the host cell

[116]
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7.2. Natural Products for COVID-19 Treatment

Nonetheless, the expensive healthcare expenditure, lack of availability, unprecedented
drug side effects, and ethical considerations regarding convalescent plasma therapy (CPT)
make them difficult to execute globally. Furthermore, the problem can be made worse if
the virus evolves into drug-resistant mutants, rendering antiviral medications worthless
because most of them target specific viral proteins [117]. As a result, we can search for
new therapies using natural products. Some of the potential natural products antiviral
medications utilized for the management and prophylaxis of COVID-19 are reviewed in
the following sections of this review (Table 2).

Table 2. List of some natural products, their classification, and possible mechanism of action.

Sl. No. Name of
Natural Product

Class of
the Compound Source Biological Efficacy References

1 Daurisoline Alkaloid Rhizoma menispermi

Increased endolysosomal pH,
lowered active cathepsin levels,

and impaired V-type ATPase
activity (EC of 10 µM)

[118,119]

2 Dauricine Alkaloid Rhizoma menispermi

Increased endolysosomal pH,
lowered active cathepsin levels,

and impaired V-type ATPase
activity (EC of 10 µM)

[120]

3 Tetrandrine Alkaloid Stephania tetrandra
Increased endolysosomal pH in

a concentrationdependent
manner (EC of 1–10 µM)

[121,122]

4 Luteolin Flavonoid Rhodiola kirilowii IC50 = 4.5 µM [123,124]

5 Quercetin Flavonoid Allium cepa IC50 = 83.4 µM [125]

6 Kazinol A Flavonoid Broussonetia
papyrifera IC50 = 84.8 µM [126]

7 Kazinol F Biphenyl
propanoids

Broussonetia
papyrifera IC50 = 43.3 µM [127]

8 Kazinol J Biphenyl
propanoids

Broussonetia
papyrifera IC50 = 64.2 µM [127]

9 Kaempferol Flavonoid Zingiber officinale IC50 =16.3 µM [128]

10 Neobavaisoflavone Flavonoid Psoralea corylifolia IC50 = 18.3 µM [129]

11 Papyriflavonol A Flavonoid Broussonetia
papyrifera IC50 = 3.7 µM [126]

12 Psoralidin Flavonoid Psoralea corylifolia IC50 = 4.2 µM [129]

13 Tomentin A Flavonoid Paulownia
tomentosa IC50 = 6.2 µM [130]

14 Tomentin B Flavonoid Paulownia
tomentosa IC50 = 6.1 µM [130]

15 Tomentin C Flavonoid Paulownia
tomentosa IC50 = 11.6 µM [130]

16 Tomentin D Flavonoid Paulownia
tomentosa IC50 = 12.5 µM [130]

17 Tomentin E Flavonoid Paulownia
tomentosa IC50 = 5.0 µM [130]

18 Catechin Flavonoid Camellia sinensis Elevated Zn2+ level (2-fold
increase at EC of 50 µM)

[131]
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Table 2. Cont.

Sl. No. Name of
Natural Product

Class of
the Compound Source Biological Efficacy References

19 Epigallocatechin-3-
gallate (EGCG) Flavonoid Camellia sinensis

Elevated intracellular Zn2+ level
(2-fold increase
at EC of 50 µM)

[131]

20 Rutin Flavonoid
glycoside Morus alba

Elevated intracellular Zn2+ level
(4-fold increase
at EC of 50 µM)

[131]

21 Apigenin Flavonoid Adinandra nitida 30.3% suppression at EC
of 500 µg/mL [132,133]

22 Camellianin A Flavonoid Adinandra nitida 30.2% suppression at EC
of 500 µg/mL [132,133]

23 Camellianin B Flavonoid Adinandra nitida 40.7% suppression at EC
of 500 µg/mL [132,133]

24 Taxifolin Flavonoid Coreopsis tinctoria IC50 = 145.7 µM [134]

25 Myrtenal Terpene Elettaria
cardamomum

Suppressed the action of V-type
ATPase and reduced

endolysosomal acidification
(EC of 100 µM)

[135]

26 Pulsatilla saponin D Triterpenoid
saponin Pulsatilla chinensis

Increased endolysosomal pH
and downregulated cathepsins

(EC of 1.25 µM)
[88]

27 Betulinic acid Terpenoid Breynia fruticose IC50 = 10.0 µM [136,137]

28 Leelamine Terpene Pinus sylvestris
Decreased endolysosomal

acidity and suppressed cellular
endocytosis (EC of 3 µM)

[138]

29 Curcumin Polyphenol Curcuma longa IC50 = 5.7 µM [137]

30 Caffeic acid Phenolic acid Ocimum basilicum Elevated intracellular Zn2+ level
(3-fold increase at EC of 50 µM)

[131]

31 Catechol Phenol Allium cepa Elevated intracellular Zn2+ level
(2-fold increase at EC of 50 µM)

[131]

32 Gallic acid Phenolic acid Syzygium
aromaticum

Elevated intracellular Zn2+ level
(4-fold increase at EC of 50 µM)

[131]

33 Resveratrol Polyphenol Vitis vinifera
Elevated intracellular Zn2+ level

(7.5-fold increase at EC
of 10 µM)

[139]

34 Methyl gallate Phenolic acid Tamarix hohenackeri 35.7% suppression at EC
of 20 mg/mL [140]

35 Tannic acid Phenolic acid Camellia sinensis IC50 = 5.7 µM [141]

36 Pd-C-I Coumarin Angelica decursiva IC50 = 6.8 µM [142]

37 Pd-C-II Coumarin Angelica decursiva IC50 = 12.4 µM [142]

38 Pd-C-III Coumarin Angelica decursiva IC50 = 15.3 µM [142]

39 Isorutarine Coumarin Angelica decursiva IC50 = 68.4 µM [142]

40 Ampleopsin C Stilbenoid Vitis thunbergiivar IC50 = 18.4 µM [143]

7.2.1. Alkaloids Derivatives

Homoharringtonine is a cytotoxic alkaloid isolated in the Cephalotaxus hainanensis
medicinal plant. It has been approved by the FDA as a treatment for resistant chronic
myeloid leukemia. Homoharringtonine has the smallest half maximal inhibitory concentra-
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tion (IC50) and has significant antiviral efficacy against a number of human and animal
coronaviruses [144]. The antiallergic, antimalarial, antibacterial, and antiviral effects of
isatin (1H-indole-2,3-dione), an oxidizing indole derivative, have been found in nature,
including Isatis tinctoria and Calanthe discolor. SARS-CoV 3C-like protease (3CLpro) was sup-
pressed in tiny doses by isatin derivatives [145–147]. Rhinovirus and SARS-CoV have iden-
tical protease architectures. In coronavirus-infected swine testicular cells, Tylophora indica’s
tylophorine and 7-methoxycryptopleurine were found to limit viral prolification. In this
investigation, 7-methoxycryptopleurine IC50:20 nM was found to be more effective than
tylophorine (IC50:58 nM). In previous studies, tylophorine was demonstrated to affect viral
RNA proliferation and cellular JAK2-mediated dominating nuclear factor kappa B (NF-kB)
activation in CoV at doses of 0–1000 nM [148,149].

As per the MTS testing for virus-induced cytopathic impact, Lycoris radiata extract has
high antiviral efficacy against SARS-CoV. The active ingredient in this extraction is lycorine,
an alkaloid with an EC50 of 15.7 1.2 nM, showing antiviral action. These results indicate
that lycorine could be a promising candidate for developing novel antiviral medicines.
In vitro, lycorine also inhibited the reproduction of coronaviruses such as HCoV-OC43
(EC50:0.15 µM), MERS-CoV (EC50:1.63 µM), and HCoV-NL63 (EC50:0.47 µM), according to
another study [150,151].

Anticancer, anti-inflammatory, and antioxidant effects are reported for bisbenzyliso-
quinoline alkaloids found in the roots of Stephania tetrandra. The main active S. tetrandra
alkaloids that have also showed antiviral efficacy towards human coronavirus-OC43
(HCoV-OC43) (betacoronavirus 1) disease, are tetrandrine (IC50: 14.51 µM), fangchinoline
(IC50: 12.40 µM), and cepharanthine (IC50: 10.54 µM). Emetine, also an alkaloid, is the
active ingredient of Carapichea ipecacuanha roots that contains anti-protozoal and vomit-
ing medicines properties. Many coronaviruses, including HCoV-OC43 (EC50: 0.30 µM),
MERS-CoV (EC50: 0.34 µM), and human coronavirus-NL63 (HCoV-NL63) (alphacoro-
navirus), were suppressed in vitro by emetine (EC50: 1.43 µM). Additionally, emetine
can protect host cells against MERS-CoV infection [152]. Many coronaviruses, such as
HCoV-OC43 (EC50: 0.30 µM), MERS-CoV (EC50: 0.34 µM), and HCoV-NL63, were sup-
pressed in vitro by emetine (EC50: 1.43 µM). Moreover, emetine can protect host cells from
MERS-CoV infection [152].

7.2.2. Polyphenols and Flavonoids Derivatives

Twelve geranylated flavonoids, including five new compounds 8 (tomentin A–E)
(2.39–2.43) identified from the traditional Chinese medicinal (TCM) plant Paulownia tomentosa
(Thunb.) Steud., inhibited SARS Papain-Like Protease (PLpro) in a mixed-type manner,
with IC50 values ranging from 5.0 to 14.4 µM. Tomentin A, B, and E were revealed to be
the most effective PLpro inhibitors in this group, with IC50 values of 6.2, 6.1, and 5.0 µM,
respectively. Each of these novel compounds with the dihydro-2H-pyran moiety inhibited
more effectively than their parent compounds [130].

Similarly, six flavonoids isolated from Cullen corylifolium (L.) Medik. seeds (bavachinin,
neobavaisoflavone, isobavachalcone, 4′-O-methylbavachalcone, psoralidin, and corylifol
A) showed mixed-type inhibition against SARS-CoV PLpro, with IC50 values ranging from
4.2 to 38.4 µM [153].

Bioflavonoids, such as amentoflavone isolated from Torreya nucifera, have been shown
to have noncompetitive 3CLpro inhibitory action with low micromolar IC50 values. The
most powerful inhibitor (IC50 = 8.3 µM) was found to be amentoflavone (2.6), which
was much more potent than the parent chemical apigenin (IC50 = 280.8 µM). Other
apigenin-containing flavones, such as luteolin (2.23) (IC50 = 20.2 µM) and quercetin (2.29)
(IC50 = 23.8 µM), similarly inhibited 3CLpro more than the parent, showing that the api-
genin moiety at position C-3′ of flavones is crucial for effectiveness. Honeysuckle’s primary
flavonoid, luteolin, is a component of Lianhua qingwen, a TCM for COVID-19 [154].

Baicalin is a glycosylated flavonoid derived from S. baicalensis that displays antiviral
activity against by the fRhK-4 cell line’s prototype virus (EC50 12.5 µg/mL). At concentra-
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tions of 0.1 µM and higher, baicalein reduced the cell damage caused by SARS-CoV-2 and
enhanced the morphology of Vero E6 cells. Oral administration of 200 mg/kg crystal form
β of baicalein to rats resulted in an effective concentration. Baicalein also reduced body
weight loss, virus multiplication, and lung tissue lesions in hACE2 transgenic mice treated
with SARS-CoV-2 [130,155,156].

Polyphenols obtained from Angelica keiskei have chalcones with a C-5 prenyl that
exhibit strong inhibitory action against 3CLpro and PLpro in vitro. Noncompetitive inhi-
bition of PLpro was shown by alkylated chalcones, with the most effective compounds
being xanthoangelol E (IC50: 1.2 µM) and xanthoangelol F (IC50: 5.6 µM). According to the
analysis of SAR, the perhydroxyl member of a chalcone is an alkylated chalcone with a
stronger inhibitory effect [157].

Resveratrol is a stilbenoid found in Vitis vinifera, Vaccinium macrocarpon, and
Polygonum cuspidatum, among other plants. Hepatoprotective, cardioprotective, neuropro-
tective, antiinflammatory, and antibacterial properties are only some of the pharmacological
and therapeutic benefits of resveratrol. In vitro, resveratrol significantly inhibit MERS-
CoV proliferation and reduced MERS-CoV infection. As a consequence, resveratrol is an
important anti-MERS medication and could be a viable SARS-CoV2 antiviral [158,159].

The structure–activity relationship (SAR analysis) of quercetin-3-galactoside and its
replaced analogues exposes (1) that the 4 OH groups upon a quercetin moiety are important
for biological action; (2) that trying to remove the 7-OH decreases the 3CLpro inhibitory
effect; (3) that the sugar moiety is important for action; and (4) that sugar alterations have
no influence on inhibitor efficacy [160].

Myricetin and scutellarein are obtained from Nigella sativa, which have been reported
in many studies. At concentrations of 0.01–10 µM, myricetin and scutellarein inhibit
SARS-CoV 3CLpro. Broussochalcone B, broussochalcone A, 4-hydroxyisolonchocarpin,
papyriflavonol A,4,7-trihydroxyflavane, kazinol A, kazinol B, broussoflavan A, kazinol F,
and kazinol J are all obtained from Broussonetia papyrifera, which are also responsible for
inhibiting SARS-CoV [126,161,162].

7.2.3. Terpenoid Derivatives

Quinone-methide triterpenes are a kind of terpene found solely in the Celastraceae
family of plants, such as Tripterygium regelii. With an IC50 of 2.6–10.3 µM, these compounds
demonstrated modest inhibitory action towards 3CLpro. The presence of a quinone-methide
molecule, according to SAR analysis, plays a substantial role in 3CLpro inhibition [163].

Saikosaponins are the main pharmacological active triterpenoids, usually as gluco-
sides, found from TCM such as Bupleurum spp., Heteromorpha spp., and Scrophularia scorodonia,
with antiviral and immunomodulatory potential [164]. Four saikosaponins, namely, saikos-
aponin A, B2, C, and D (5–25 M/L), demonstrate action towards human coronavirus-229E
(CoV-229E) (alphacoronavirus) with EC50 values of 8.6, 1.7, 19.9, and 13.2 µM, respectfully;
saikosaponin B2 suppressed viral adherence and penetration stages [165].

Triterpenoids and 3-friedelanol obtained from Euphorbia neriifolia leaves were tested
in vitro for anti-HCoV efficacy in 2012. 3-Friedelanol with a triterpenoid showed through
screening a more potential antimicrobial action and increased cellular viability after incu-
bation with HCoV. Furthermore, 3β-fridelanol showed strong inhibitory action towards
3CLpro [166,167].

Glycyrrhiza glabra and glycyrrhizin, its active ingredient, have antiviral action against
a variety of viruses, including hepatitis A, B, C, varicella-zoster, HIV, and herpes simplex
type-1 [168].

Salvia miltiorrhiza produces tanshinones with an abietane diterpene structure. Tanshi-
nones have several biological actions, including anti-inflammatory, cardiovascular, and
anti-tumor properties. These compounds preferentially block the SARS-CoV 3CLpro and
PLpro enzymes, and their effectiveness varies depending mostly on enzyme subtype. Some
tanshinones inhibit PLpro more potently (IC50 varying from 0.8 to 30.0 µM) [169].
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Ferruginol, a natural phenol with a terpenoid substructure derived from Sequoia
sempervirens, has been shown to have anticancer effects in humans with colon, breast, and
lung malignancies. Furthermore, at 0–80 µM, ferruginol, betulonic acid, betulinic acid,
hinokinin, savinin, and curcumin are some of the compounds found in turmeric, which
reduced SARS-CoV replication substantially [136,170]. The structures of some effective
COVID-19 treatment natural products are shown in Figure 6.

Figure 6. Cont.
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Figure 6. The structures of some effective COVID-19 treatment natural products (alkaloids, polyphenols, flavonoids, and
terpenoids derivatives).

7.2.4. Miscellaneous Compounds

Sivestrol, a natural substance derived from the fruit of Aglaia foveolata, has been
demonstrated to exhibit highly potent in vitro cytotoxic activity against a number of human
cancer cell lines. Furthermore, at doses of 0.6–2 µM, this drug inhibited nondependent
viral mRNA synthesis of HCoV-229E with an IC50 of 40 nM [171,172].

One of the promising antibiotic treatments against SARS-CoV is valinomycin with a
cyclododecadepsipeptide architecture, which was discovered in Streptomyces tsusimaensis
and has minimum cytotoxicity and great efficiency against CoV [173].

Phycocyanin, lutein, polysaccharides, vitamins, and other phenolics were found to
have antibacterial, anticancer, anti-inammatory, and other important pharmacological
effects in marine microalgae belonging to the phyla Rhodophyta and Phaeophyta [120]. Hi-
rata et al. [174] investigated the antiviral and antioxidative properties of phycocyanobilins,
a type of tetrapyrrole chromophores found in some marine cyanobacteria. In silico molecu-
lar docking tests conducted by Pendyala and Patras in 2020 revealed that phycocyanobilins
had a significant binding affinity for the SARS-CoV-2 main protease (Mpro) and RdRp.
Lectins are a type of molecule with a strong affinity for carbs. Griffithsin, a lectin produced
from red algae, was investigated for its possible application, and tests have revealed that
it has antiviral action against human immunodeficiency virus-1 (HIV-1) and hepatitis
C [175–177]. A recent in vitro study by Millet et al. [178] revealed that griffithsin had in-
hibitory action against MERS-CoV. Esculetin ethyl ester from Axinella cf. corrugate, a marine
sponge, demonstrated a high interaction with SARS-CoV-2 protease and could be em-
ployed as an anti-COVID-19 drug [179]. Carrageenans, a type of sulphated polysaccharide
found in the sea, are considered to be virus inhibitors. They work by preventing the virus
from attaching and then being internalized. As a result, Nagle et al. [180] hypothesized
that these compounds could be used as coating materials on hygienic products to inhibit
COVID-19 infection. In silico analyses have recently contributed in the identification of
potential lead compounds for therapeutic development against the COVID-19 pandemic.
In a molecular dynamic research, Khan et al. [181] reported four effective SARS-CoV-2 Mpro

inhibitors from marine sources (fostularin 3,1-hexadecoxypropane-1, 2-diol, palmitoleic
acid, 15 alphamethoxypuupehenol, and puupehedione) that can be used to disrupt the
viral life cycle in the host.
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Lactoferrin (LF), a transferrin-family glycoprotein found in many different of human
secretions, is known to bind and transport iron and to play a key role in iron homeostasis
regulation. In vitro studies on human intestinal, liver, and T cell lines revealed that LF
possesses promising antiviral and antibacterial properties, as well as anti-inflammatory
and immune-modulating properties [182–185]. Many investigations have shown that
LF has potent antiviral activity against viruses such as hepatitis C virus, herpes simplex
virus, human immunodeficiency virus, poliovirus, and rotavirus, with EC50 values in the
micromolar range in vitro [186,187]. The LF antiviral action is most evident in the early
stages of infection, when it prevents viral particles from entering host cells by binding
directly to them or inhibiting the virus receptor or co-receptor on the host cell. Moreover, LF
can inhibit some viruses from internalizing, including the SARS pseudovirus, by binding
to cell-surface HSPGs, which have been demonstrated to be required co-factors for SARS-
CoV-2 infection [188–190]. Furthermore, LF has been found to prevent the entry of murine
coronavirus and human coronaviruses such as hCoV-NL63, which are closely related to
SARS-CoV-2 [191,192]. SARS-CoV-2 uses endocytosis as a cell-entrance mechanism, and LF
has been shown to preferentially suppress cathepsin L, a lysosomal peptidase important for
endocytosis. The immunomodulatory and anti-inflammatory properties of LF are another
essential component of its bioactivity [192–195]. In experimental settings simulating sepsis,
LF was shown to lower IL6 and tumor necrosis factor-alpha (TNF-α). Therefore, it is
feasible that LF can control the hyperactive immunological and inflammatory response to
SARS-CoV-2, which can lead to acute respiratory distress and death in some individuals.
Overall, LF has the potential to be a non-toxic health supplement that can be used to prevent
infection as well as a supplementary treatment for those who have COVID-19 [26,196,197].

Vitamin C is a water-soluble vitamin with antioxidant effects that supports the ep-
ithelial barrier against pathogen entrance and the cellular functioning of the innate and
adaptive immune systems in the immune system. Environmental factors, such as air
pollution, and the presence of diseases, such as type 2 diabetes, can affect vitamin C levels
in the body [198]. Vitamin C deficiency affects the older population in particular because
chronic or acute disorders are frequent in this group, and aging is linked to lower vitamin
C levels [199–201]. Furthermore, vitamin C may control the cytokine storm, which is char-
acterized by elevated levels of the pro-inflammatory cytokine IL-6, increasing the risk of
respiratory failure necessitating mechanical ventilation in COVID-19 patients. Pretreatment
with vitamin C, according to an in vivo study involving 12 healthy males, can lower the
amounts of IL-6 generated by the vasoconstrictor endothelin-1 (ET-1), lowering vascular
dysfunction. Furthermore, elevated ET-1 expression has been linked to pneumonia, pul-
monary hypertension, interstitial lung fibrosis, and acute respiratory distress syndrome
(ARDS) [89,202–204].

In pulmonary epithelial cells, the vitamin D receptor (VDR) is present. When VDR is
activated, it produces defensins and catelicidins, peptides that have antiviral activity either
directly or through immunological regulation. The decreased antiviral immune response
in COVID-19 patients during vitamin D shortage may be attributed to a reduction in
LL37 levels, an antimicrobial peptide generated from catelicidin [205,206]. Vitamin D may
also help to reduce the severity of inflammatory reactions by inhibiting pro-inflammatory
cytokines such TNF-α and IL-6, which are involved in the development of cytokine storm
in COVID-19-related ARDS [207,208].

Zinc’s immunomodulatory and antiviral properties have made it and its ionophores
potential COVID-19 targets [209,210]. Zinc is crucial for immune system integrity, and it
plays a key role in cell maintenance, development, and activation throughout innate and
adaptive immunological responses. It also helps to maintain the integrity of epithelial
barriers, which are necessary for organism defense and pathogen prevention [211–213].
Zinc can regulate T cell growth and activity, thus decreasing the cytokine storm, which
is accompanied by significant amounts of pro-inflammatory cytokines and chemokines
that cause systemic immune response dysfunction, resulting in ARDS or multiple organ
failure [214,215]. Natural killer (NK) cells and cytolytic T cells, both of which are important
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in the elimination of viruses, bacteria, and tumor cells, are both affected by zinc defi-
ciency [216,217]. Zinc’s direct antiviral activity is another vital role, making it necessary for
the immunological response to viral infection. Increased intracellular concentrations of this
mineral can inhibit viral polyprotein processing and limit the replication of a number of
RNA viruses [218–220]. Zinc can also improve interferon (IFN) cytokine signaling against
RNA viruses and reduce ACE2 activity, which is required for SARS-CoV-2 entrance into
host cells [221,222].

8. Some Drawbacks of Antiviral Drugs on Human Body
8.1. Remdesivir

Researchers noted that remdesivir had certain negative impacts on the human body
during a clinical study against SARS-CoV-2, such as improved productivity of liver en-
zymes, which might be responsible for liver dysfunction [223]. In recent times, experts in
the United States documented many negative remdesivir impacts in individuals hospital-
ized with COVID-19. Moreover, remdesivir has been linked to an increased risk of allergic
reactions, hypotension, breathing problems, as well as other human body anomalies in in-
dividuals with COVID-19, according to many study investigations. Researchers employed
the first study to look at the efficacy of 5 or 10 days of remdesivir therapy for individuals
with moderate bacterial meningitis. In the therapy group, vomiting, metabolic alkalosis,
and migraine were more prevalent than customary [91,224].

8.2. Chloroquine (CQ) and Hydroxychloroquine (HCQ)

CQ can cause digestive side effects such as stomach pain, vomiting, sickness, and
feces. CQ causes a variety of cardiovascular issues, including cardiac failure, lowers the
blood pressure, a reduction in cardiac function, and dilatation. Finally, it has the potential
to stop potassium from entering cells and has an influence on the chloride channels found
in cardiac myocytes. CQ and HCQ can produce arrhythmias in COVID-19 patients, which
can be decreased by mixing them with other medicinal medications, such as the antibiotic
azithromycin, which has comparable cardiac actions. In other investigations, substantial
rhythm problems have been linked to using CQ or HCQ, particularly in high dosages
or in combination with the antibiotic azithromycin. It was also recognized that cardiac
adverse effects were more common in women than in males. Heat transfer problems had
the most common adverse effects, with ventricular hypertrophy, hypokinesia, and valve
malfunction all being observed [225,226].

8.3. Lopinavir/Ritonavir

Patients who were given lopinavir/ritonavir experienced greater digestive problems
as well as other comorbidities, which hampered their healing. In the lopinavir–ritonavir
trial group, gastrointestinal problems were so much more prevalent in individuals with
COVID-19 [227]. A clinical trial of 90 patients showed that about 14% receiving lopinavir–
ritonavir were unable to conclude the 14-day regimen. Migraine, stomach discomfort,
bloating, malnutrition, and anomalous stools were the most common gastrointestinal
negative effects [228].

8.4. Tocilizumab

In humans, tocilizumab has a number of negative health consequences, including
upper respiratory infection, migraine, nasopharyngitis, site of injection response, and
increased blood pressure [229].

8.5. Favipiravir

Reduced locomotor activity, anemia, nausea, weight loss, enhanced demyelination
in hepatocytes, and elevated blood concentrations of liver function enzymes are all side
effects of favipiravir. It can potentially cause birth defects; thus, it should not be taken
during pregnancy [230,231].
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8.6. Azithromycin

It has been confirmed that azithromycin is the cause of adverse effects, including
nausea and dizziness. Nonetheless, treating COVID-19 patients with azithromycin and
hydroxychloroquine has resulted in very serious complications, including the risk of
mortality from abrupt heart failure [232–234].

9. Conclusions and Future Perspectives

COVID-19 is a life-threatening infection. It has sparked the interest of everyone on the
planet, irrespective of age or educational level. The virus’s effects have ceased all business,
education, and travel operations, as well as disrupting people’s daily lives across the world.
Everyone who has been afflicted is hoping for a quick scientific reaction to put an end
to the pandemic and lessen its devastating consequences. Unfortunately, developing a
new drug is protracted, and the development of a new drug is improbable in a pandemic
situation where an effective therapy is required right away. Natural products have been
used for many years to treat viral infections and stimulate the immunological response of
the host. Natural products have shown to be effective in past coronavirus illnesses, such
as SARS and MERS; thus, natural products may be beneficial and provide hope during
this new outbreak. In the combat against viruses, natural compounds can be used as both
preventative and therapeutic agents. The following ways may be valuable in increasing
and supporting research projects on COVID-19 treatment and prevention using natural
products: more investigation on the use of natural chemicals as anti-coronavirus agents;
quality-assurance studies for herbal extracts for use as immune-boosting medicines should
be standardized; find novel targets for battling coronavirus; investigate the pharmacokinet-
ics, pharmacodynamics, and toxicities of purified natural compounds; and expand new
promiscuous drugs using SAR analysis and scientific in vivo and clinical studies.
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