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Nowadays, emerging evidence has shown adverse pregnancy outcomes, including
preterm birth, preeclampsia, cesarean, and perinatal death, occurring in pregnant
women after getting infected by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), but the underlying mechanisms remain elusive. Thyroid hormone
disturbance has been unveiled consistently in various studies. As commonly known,
thyroid hormone is vital for promoting pregnancy and optimal fetal growth and
development. Even mild thyroid dysfunction can cause adverse pregnancy outcomes.
We explored and summarized possible mechanisms of thyroid hormone abnormality in
pregnant women after coronavirus disease 2019 (COVID-19) infection and made a
scientific thypothesis that adverse pregnancy outcomes can be the result of thyroid
hormone disorder during COVID-19. In which case, we accentuate the importance of
thyroid hormone surveillance for COVID-19-infected pregnant women.

Keywords: COVID-19, SARS-CoV-2, adverse pregnancy outcomes, thyroid hormone, immune response
Abbreviations: ACE2, angiotensin II-converting enzyme 2; ANG, angiogenin; ANGPT2, angiopoietin-2; CTB,
cytotrophoblast; EVT, extravillous trophoblast; hCG, human chorionic gonadotropin; hPL, human placental lactogen; HPT
axis, hypothalamic–pituitary–thyroid axis; IUGR, intrauterine growth restriction; LAT, Linker for activation of T cells; MCT,
monocarboxylate transporter; MERS, Middle East respiratory syndrome; NIS, natrium/iodide symporter; NTIS, non-thyroidal
illness syndrome; OATP, organic anion-transporting polypeptide; PEDV, porcine epidemic diarrhea a-coronavirus; PVN,
paraventricular nucleus; RGD, Arg-Gly-Asp; STB, syncytiotrophoblast; T3, triiodothyronine; T4, thyroxine; Tg, thyroglobulin;
TH, thyroid hormone; TSH, thyroid-stimulating hormone; VEGF, vascular endothelial growth factor.
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GRAPHICAL ABSTRACT | A better understanding of adverse pregnant outcomes in pregnant women with COVID-19. SARS-CoV-2 causes an over-activation of
the immune response and culminates in a "cytokine storm", which, on the one hand, leads to a disturbance in maternal thyroid hormone, and on the other hand,
causes dysfunction of TH transporter and deiodinase in placenta. Thus, the overall thyroid hormone disturbance in pregnant women eventually induces placenta dysfunction.
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1 INTRODUCTION

The SARS-CoV-2 (severe acute respiratory syndrome
coronavirus 2) causes coronavirus disease 2019 (COVID-19)
and an ongoing severe pandemic. As of May 16, 2021,
confirmed infections have amounted to 162,177,376, with
casualties reaching an alarming number of 3,364,178 (https://
www.who.int/emergencies/diseases/novel-coronavirus-2019).
SARS-CoV-2, a novel enveloped RNA beta-coronavirus, infects
host through angiotensin II-converting enzyme 2 (ACE2), a
membrane-bound aminopeptidase that functions as its putative
receptor predominantly expressed within type II alveolar cells of
the lung. In addition to ACE2, SARS-CoV-2 requires the cellular
protease, TMPRSS2, to cleave viral spike protein and facilitate
fusion of viral and cellular membranes (Hoffmann et al., 2020;
Zhou et al., 2020). Judging from sequencing data, SARS-CoV-2
shares more than 80% similarity with the SARS-CoV (Gralinski
and Menachery, 2020; Xu et al., 2020; Zhou et al., 2020), which
caused an outbreak in 2002 and shares 50% sequence similarity
with Middle East respiratory syndrome (MERS) coronavirus that
erupted in 2012 (Wang et al., 2020).

Previous studies have shown that pregnant women are at
greater risk of morbidity and mortality due to many of the fatal
viral infections, including hepatitis E virus, influenza A virus,
SARS-CoV, and MERS-CoV (Rasmussen et al., 2020). Among
those cases related to SARS-CoV and MERS, a high rate of
adverse pregnancy outcomes including abortion, preterm birth,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
fetal growth restriction, and maternal or neonatal death had been
presented (Wong et al., 2004; Alfaraj et al., 2019; Rasmussen
et al., 2020). Considering the resemblance to SARS-CoV and
MERS, researchers proposed that COVID-19 has the potential to
result in maternal or perinatal adverse outcomes for pregnant
women (Favre et al., 2020). As a matter of fact, until now,
increasing cases and studies have been exhibited, recounting
occurrences of adverse pregnancy outcomes during COVID-19.
Through digging those data, it has been concluded that COVID-
19 infection is associated with a higher rate of preterm birth,
preeclampsia, cesarean, and perinatal death (Di Mascio et al.,
2020; Juan et al., 2020; Rasmussen et al., 2020). However, the
mechanism related to those clinical manifestations has not been
well elucidated. There are studies claiming a high expression of
ACE2 in the endometrium, and its protein abundance increased
during decidualization (Chadchan et al., 2020). ACE2 also
exists in maternal–fetal interface cells including stromal cells
and perivascular cells of decidua, cytotrophoblast (CTB),
and syncytiotrophoblast (STB) in placenta with a dynamic
fluctuation over time (Li et al., 2020), thus providing a target
receptor for SARS-CoV-2 entering endometrial stromal cells and
eliciting pathological manifestations in women with COVID-19.
Unified with this theory, a study comprising 11 SARS-CoV-2-
positive pregnant women reported the presence of SARS-CoV-2
in placental and fetal membrane swabs of three patients (Penfield
et al., 2020). Furthermore, localization of SARS-CoV-2 spike
protein and RNA was found in the villi and peri-villous fibrin,
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and infiltration of macrophages was reported in placental
sections (Hosier et al., 2020).

More conjectures about the pathogenesis of adverse pregnancy
outcomes are based on the immunological status of pregnant
women, picturing as inflammation alteration and cytokine storm
related to infection. Pregnancy is an immunological condition in
which the semi-allogeneic fetus grows in the mother’s uterus. The
immunological environment during pregnancy changes as
pregnancy proceeds initially through Th1 (pro-inflammatory
response) during the first trimester, then changes to Th2 (anti-
inflammatory response) by the second trimester, and again alters
toward a Th1 phenotype at the end of third trimester concomitant
with initiation of parturition (Weetman, 2010; Verma et al., 2020).
Break of the immunological status during pregnancy will definitely
do harm to successful delivery.

Virtually all organs and biological systems possibly suffer
from this new coronavirus infection by either direct virus-
targeted damage or indirect effects. As the pandemic rapidly
spread, thyroid dysfunction associated with COVID-19 has been
gradually reported (Brancatella et al., 2020; Ruggeri et al., 2020;
Marazuela et al., 2020). However, there is conflicting evidence
regarding the effects of COVID-19 on thyroid function. COVID-
19 has been reported to cause subacute thyroiditis manifesting as
marked thyrotoxicosis, as in Graves’ disease (Brancatella et al.,
2020; Lania et al., 2020; Muller et al., 2020). It has been found
that SARS-CoV-2 causes an overactivation of the immune
response through different T-cell lymphocytes (Th1/Th2/
Th17), which leads to the activation and release of various pro-
inflammatory cytokines including interleukins (IL-1–IL-6) and
tumor necrosis factor (TNF-a), culminating in a “cytokine
storm” (Lania et al., 2020). The shift in the immune balance
between Th1 and Th2 in the body toward Th2 is intrinsic to the
pathogenesis of Graves’ disease (Kocjan et al., 2000). Moreover,
IL-6, which is elevated in the acute phase, is a specific marker of
thyrotoxicosis (Lania et al., 2020). On the other hand, in Chinese
studies of COVID-19 patients, general reductions in thyroid-
stimulating hormone (TSH), total thyroxine (T4), and
triiodothyronine (T3) were more consistent with a non-thyroidal
disease pattern (Chen et al., 2021). The degree of decrease in TSH
levels correlates positively with the clinical severity of COVID-19
(Khoo et al., 2021). As widely recognized, thyroid hormone (TH)
acts as a pleiotropic regulator of growth, differentiation,
proliferation, and other physiological processes and is required to
maintain the metabolic rate and oxygen consumption in almost all
tissues (Chen et al., 2013). For pregnant women, more TH is
demanded to maintain the hemostasis concentration during
gestation due to the physiological change of thyroid economy
(Glinoer et al., 2010). Although it is unclear how SARS-CoV-2
virus affects pregnancy given that pregnancy outcome is influenced
by TH levels and the mechanism of SARS-CoV-2 invasion of the
thyroid has been well documented. Here, we review previously
documented changes in SARS-CoV-2-associated thyroid disease
andpregnancy and further discuss various potentialmechanisms to
help clinicians better understand the impact of SARS-CoV-2 on
pregnancy and to facilitate diagnosis and rational treatment of
COVID-19.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
In the first and early part of the second trimester, fetuses
entirely rely on maternal supply of TH (Chen et al., 2015). While
from themiddle of the second trimester and onward, bothmaternal
and fetal original THs are present in the fetus (Chan et al., 2009).
Apparently, the process of transplacental TH exchange involves
a cascade of events and masses of TH-related proteins, any
impaired link or key protein deficiency during the course will
contribute to the reduction of TH exchange, further damaging
placenta function and fetal development, leading to adverse
pregnant events. T3 and T4 exert effects not only in fetal
development but also in placenta function (Landers et al., 2009;
Li et al., 2010; Chen et al., 2015). It has been concluded that the
possible consequences of hypothyroidism during gestation
include spontaneous abortion/miscarriage, gestation-induced
preeclampsia, placenta abruption, preterm delivery, congenital
anomalies, fetal distress in labor, stillbirth or perinatal death, and
increased frequency of cesarean sections (Glinoer et al., 2010). As
we can see, outcomes causedby insufficient THduring gestation are
highly consistent with those happening in the context of SARS-
CoV-2 infection. Consistent to our thesis, there has already been a
trial of using T3 for the treatment of critically ill patients with
COVID-19 infection (Pantos et al., 2020).
2 MATERNAL THYROID HORMONE
DISTURBANCE CAUSED BY SARS-CoV-2

2.1 SARS-CoV-2 Directly Attacks
Thyroid Gland
Assessmentof thyroid function forCOVID-19 isnot recommended
by theWorld Health Organization clinical management guidelines
(Piva et al., 2020). So far, studies associating thyroid or THs with
COVID-19havebeen indeedscarce, and thyroidgland involvement
in COVID-19 infection is not yet clearly defined. Yet, as the
pandemic keeps progressing, more than one case of subacute
thyroiditis caused by SARS-CoV-2 infection have been reported,
showing the direct harm of SARS-CoV-2 to the thyroid gland
(Brancatella et al., 2020; Ruggeri et al., 2020). The histopathological
report of the thyroid gland in patients with SARS-CoV-2 infection
has also been published, noting the follicular epithelial cell
disruption (Hanley et al., 2020). However, the significance of this
histopathological data regarding the thyroid gland in patients with
COVID-19 is uncertain.While in cases of SARS, pathology showed
follicular cells were remarkably damaged after infection of SARS,
followed by thyroid dysfunction and fibrosis after the acute phase
(Wei et al., 2007). And clinical evidence also showed the deficiency
of THs relying on lab tests (Scappaticcio et al., 2020). Given the
similarities SARS-CoV-2 shareswith SARS, it is highly possible that
newly affected COVID-19 patients are also suffering from similar
thyroid impairment, though the extent may be subclinical.

On the other hand, a study indicated that ACE2 expression in
the thyroid gland was among the top 10 in all body tissues (Wang
et al., 2020).More studies have also confirmed that both ACE2 and
TMPRSS2 are highly expressed in the thyroid gland (Lazartigues
et al., 2020; Li et al., 2020). Whether the expression of those two
January 2022 | Volume 11 | Article 791654
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proteins can indeed offer targets for virus entry or not still requires
more research to define.

2.2 SARS-CoV-2 Indirectly Suppresses
Thyroid Hormone
As we all know, SARS-CoV-2 infection appears to induce an
acute inflammatory status combined with a mixture storm of
cytokines and chemokines, including IL-1a/b, IL-2, IL-6, IL-8,
IL-17, IL-10, TNF-a, interferon (IFN)-g, macrophage colony-
stimulating factor (M-CSF), and granulocyte colony-stimulating
factor (G-CSF) (Wei et al., 2007; Hanley et al., 2020; Piva et al.,
2020). Those cytokines and acute reactive chemokine eruption
were also observed in pregnant women (Scappaticcio et al., 2020;
Verma et al., 2020). Such pro-inflammatory status after SARS-
CoV-2 infection is definitely unfavorable during pregnancy and
is responsible for the pathogenesis of non-thyroidal illness
syndrome (NTIS). Its effect expands the predominant central
downregulation of hypothalamic–pituitary–thyroid (HPT)-axis
feedback loop mechanism, enrolling local TH management
turbulence. Thus, both maternal systemic and local TH
deficiency in placenta can be caused. The possible pathways
are concluded below (Figure 1).

2.2.1 Deficiency of Central Hypothalamic–Pituitary–
Thyroid-Axis Feedback Loop
NTIS is characterized by reduced circulating levels of T3, increased
levels of rT3, normal or low serum total concentrations of T4,
increased or decreased free T4 (FT4) level, unaltered or
inappropriately low serum thyroid-stimulating hormone (TSH),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
indicating impaired TH conversion, and profoundly altered
negative feedback in the pituitary and hypothalamus (Economidou
et al., 2011; Farwell, 2013; Hercbergs et al., 2018). It occurs in a
variety of non-thyroidal illnesses (NTIs). The condition of NTIS
is considered as an adaptive response rather than true
hypothyroidism during acute inflammation or critical disease
(Mancini et al., 2016).

Notably,Muller et al. (2020) found that 15% (13/85) ofCOVID-
19 patients admitted to high intensity of care units (HICUs) had
atypical thyroiditis, which is recognized as a form of subacute
thyroiditis without neck pain. Those patients are characterized by
low concentrations of TSH and free T3 (FT3) alongwith normal or
elevated concentrations of FT4. Depending on that study, this
‘atypical thyroiditis’ is more frequently appeared in women,
which points to the gender disparity in immune status. Recent
large cohort study including completed thyroid function tests also
confirmed coronavirus disease 2019 associated with a lower
thyrotropin and FT4, but no significant sign of thyrotoxicosis was
defined (Khoo et al., 2021). Similarly, according to documents from
SARS outbreak in 2003, it has been reported that serumT3, T4, and
TSH were all lower in patients with SARS as compared to controls
during both the acute and convalescent phases. This could simply
imply an underlying NTIS (Marazuela et al., 2020). The synchronic
decrease of TSH and T4 suggests impaired feedback loop of HPT
axis. Later, in human autopsy, decreased postmortem TRH gene
and TRH mRNA expression were observed in the hypothalamic
paraventricular nucleus (PVN) of patients with NTIS, suggesting
central downregulation of the HPT axis (Fliers et al., 1997).
Namely, even though less T4 circulates in peripheral blood, the
FIGURE 1 | Overview of indirect effects of SARS-CoV-2 on thyroid hormone level in pregnant women. SARS-CoV-2 infection can promote disarrangement of
thyroid hormone in pregnant women directly through thyroid gland damage or indirectly through inflammation-induced suppression in diverse links of hypothalamic–
pituitary–thyroid axis. Acute inflammation caused by coronavirus infection can respectively reduce TRH and TSH production or release. Pro-inflammatory cytokines,
especially IL-1a, IL-1b, IL-6, IFN-g, and TNF-a, are responsible for diminished iodide uptake, TH secretion, or Tg production by means of individual or collaborative
style. On the other hand, the expression and activity of deiodinases in tissues, i.e., D1 and D3 are directly suppressed or inactivated by inflammation or illness. TRH,
thyrotropin-releasing hormone; TSH, thyroid-stimulating hormone; TH, thyroid hormone; D1, deiodinase 1; D3, deiodinase 3.
January 2022 | Volume 11 | Article 791654
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hypothalamic in NTIS patients cannot effectively respond to the
feedback to trigger more TH production and release. Similarly,
acute inflammation is found to contribute to remarkable
downregulation of hypothalamic TRH expression (Kakucska
et al., 1994) and pituitary TSHb mRNA expression (Fekete et al.,
2004; Mebis et al., 2009), which indicates that acute inflammation
is capable of inducing NTIS and both hypothalamic and pituitary
are pinned down under such circumstance.

2.2.2 Suppressed Thyroid Hormone Synthesis
and Release
Afterward, the experimental induction of NTIS in rodents resulted
in synchronous changes in hypothalamic, pituitary, and peripheral
TH metabolism (Boelen et al., 2004), arguing that NTIS is more
than a central-level downregulation feedback loop of HPT axis but
also a combination of local organ derangement. It has been
documented that pro-inflammatory cytokines, either alone or
synergistically, are able to downregulate various components of
the TH synthesis pathway in the thyroid, consequently leading to
decreased secretion of T4 and T3 (Bartalena et al., 1998). Among
those associated cytokines, IL-1a, IL-1b, IL-6, IFN-g, and TNF-a
are most frequently mentioned (Figure 2).

IL-1a and IL-1b inhibit the TSH-induced thyroglobulin (Tg)
mRNA expression and Tg release in human cultured thyrocytes
(Krogh Rasmussen et al., 1988). On the other hand, IL-1b is also
responsible for the impairment of basal and TSH-stimulated
uptake of iodide by the natrium/iodide symporter (NIS) in
porcine thyroid follicle (Nolte et al., 1994).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
It is demonstrated that IL-6 was found to be negatively
correlated with serum T3 concentrations in hospitalized
patients (Boelen et al., 1993). Such manifestation can be partly
explained by the reason that IL-6 inhibits the TSH- and
cathelicidin antimicrobial peptide (cAMP)-induced increase in
thyroid peroxidase (TPO) mRNA expression and T3 secretions
(Tominaga et al., 1991). Apart from that, IL-6 induces oxidative
stress (OS), so that a unifying mechanism might be that
cytokine-induced OS alters secondarily the expression and
activity of deiodinases (Marsili et al., 2011).

IFN-g, as one of the cytokines mainly involved in antiviral and
antibacterial responses, poses multiple threats on human thyrocytes.
It inhibitsTSH-inducedTHandTg secretion (Nagayamaet al., 1987)
and Tg mRNA expression (Sato et al., 1990), TSH-induced TPO
expression (Ashizawa et al., 1989), and theTSH- and cAMP-induced
upregulation of TSH receptors on the thyrocyte (Nishikawa et al.,
1993). Besides, TSH-induced increase in NIS expression is inhibited
by IFN-g in rat FTRL-5 cells, which further results in diminished
iodide uptake and subsequent TH synthesis (Ajjan et al., 1998).
TNF-a is known to inhibit the TSH-induced cAMP response and
Tg production (Deuss et al., 1992) and release (Poth et al., 1991;
Rasmussen et al., 1994) in cultured thyrocytes. TNF-a also inhibits
NIS expression in rat FTRL-5 cells (Ajjan et al., 1998).

2.2.3 Dysfunction of Thyroid Hormone Transporter
and Deiodinases
Apart from the systemic deficiency of THs as a result of central
depression and decreased TH synthesis, local regulation and
FIGURE 2 | The effects of pro-inflammatory cytokines on TH synthesis pathway in the thyroid. During the process of TH production and release, IL-1a and IL-1b
inhibit the TSH-induced Tg mRNA expression and Tg release in human cultured thyrocytes. IL-1b is also responsible for the impairment of basal and TSH-stimulated
uptake of iodide by the NIS in porcine thyroid follicle. IL-6 inhibits TPO mRNA expression and T3 secretions. IFN-g inhibits TSH-induced Tg mRNA expression, Tg
and TH secretion, and TSH-induced TPO expression. Besides, TSH-induced increase in NIS expression is eliminated by IFN-g in rat FTRL-5 cells. TNF-a is known to
downregulate Tg production and release in cultured thyrocytes. TNF-a also inhibits NIS expression in rat FTRL-5 cells. TH, thyroid hormone; Tg, thyroglobulin; NIS,
natrium/iodide symporter; TPO, thyroperoxidase.
January 2022 | Volume 11 | Article 791654
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conversion of THs also encounter alteration in the context
of inflammation.

Cellular entry of TH is necessary before intracellular conversion
of TH by deiodinases and binding to the nuclear thyroid hormone
receptor (TR) can take place. TH transporters, monocarboxylate
transporter-10 (MCT10), and organic anion transporting
polypeptide-4C1 have been presented to be altered in illness or
acute inflammation, but the underlying function is still elusive
(de Vries et al., 2015). Whether other TH transporters are affected
by inflammation still need more investigation.

Another pathogenesis for inflammation causing TH
derangement is through influence on deiodinases, leading to
TH production and degradation imbalance. There are three types
of deiodinases, D1 and D2 are T3-producing enzymes while D3
inactivates T4 and T3. The expression and activity levels of all
three deiodinases are likely to be altered during illness or
inflammation, in divergent ways, depending on their locations
in specific tissues or organs and the severity of illness (Yu and
Koenig, 2000; Yu and Koenig, 2006; de Vries et al., 2015).
Notably, cytokines are able to suppress the activation of D1
and D2, thus inhibiting T3 generation (Wajner et al., 2011). It
has been testified that women in early pregnancy infected by
COVID-19 had a higher concentration of FT3 and a lower
concentration of FT4 in comparison to those normal ones (Lin
et al., 2020). Such phenomenon can be partly explained by the
disorder of TH transition and balance.

To sum up, inflammation, together with cytokines triggered by
SARS-CoV-2 infection, can negatively impact the maternal TH in
the manner of disrupting central feedback loop, suppressing TH
synthesis and inhibiting TH transport and conversion, ultimately
leading to decreased secretion of T4 and T3.
3 EFFECTS OF THYROID HORMONE
DISTURBANCE INDUCED BY
SARS-CoV-2 ON PREGNANT WOMEN

3.1 Non-Thyroidal Illness Syndrome
Induces Greater Risk During
SARS-CoV-2 Infection
The structural protein of the plasma membrane, integrin avb3, is
generally expressed and activated in rapidly dividing cells and tumor
cells (Ferretti et al., 2007; Davis et al., 2011). The majority of the
integrin heterodimeric protein is extracellular and is involved in
intercellular binding and in binding to extracellular matrix proteins
(Xiong et al., 2007). But this integrin also has a cell surface small
molecule receptor for TH and its derivative, tetraiodothyroacetic
acid (tetrac) (Davis et al., 2014; Davis et al., 2020). Via this receptor,
T4 and T3 can activate both the extracellular signal-regulated kinase
(ERK)1/2 and phosphatidylinositol 3-kinase (PI3K) pathways (De
Vito et al., 2011), subsequently leading to protein trafficking,
angiogenesis, and tumor cell proliferation. In contrast, tetrac, a
naturally occurring analog of T4, inhibits the binding of both T4
and T3, blocking angiogenesis induced by TH (Davis et al., 2004;
Davis et al., 2015). What is notable is that CTBs in human placenta
share similarities with neoplastic cells for their proliferative
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
capacities. For that, it is not surprising that CTBs, like endothelial
cells during angiogenesis, express avb3 (Ferretti et al., 2007). With
the aid of TH, this integrin facilitates the invasion, migration of
trophoblasts (Ferretti et al., 2007), and brain angiogenesis in the
embryo (Davis et al., 2015).

Recently, it has been suggested that integrin avb3 is highly
possible to be enrolled in the process of SARS-CoV-2 virus uptake
(Davis et al., 2020). As widely acknowledged, SARS-CoV-2 is
thought primarily to depend on ACE2 (Shang et al., 2020) for
entry and the serine protease TMPRSS2 for S protein priming
(Hoffmann et al., 2020). While SARS-CoV-2 sequencing analysis
revealed a conservedRGD(Arg-Gly-Asp)motif (Sigrist et al., 2020),
which is the minimal peptide sequence required for binding
proteins of the integrin family (Hussein et al., 2015; Sigrist et al.,
2020). According to previous studies, host cellular uptake and the
replication of another epidemiologically important coronavirus,
porcine epidemic diarrhea a-coronavirus (PEDV), have been
proven to require integrin avb3 (Li et al., 2019). Given that the
integrins containing the binding site for RGD peptides are
frequently involved in human virus infection (Hussein et al.,
2015), avb3 is potentially drown into cellular uptake of
SARS-CoV-2 (Davis et al., 2020). Referring to the study of Lin
et al. (2013), cellular internalization of avb3 is driven by the
binding of T4 to the integrin, namely, presence of T4 may
support cellular virus uptake. At the same time, via avb3, TH
also generates transcription of a number of cytokines and
chemokines (Davis et al., 2020). While the elevation of FT4, as
part of the NTIS, may enhance the cell surface abundance
and uptake of avb3 (Shinderman-Maman et al., 2016).
This theory puts tissues containing integrin avb3, including
placenta, into more dangerous circumstances where they will
easily become victims for SARS-CoV-2 and become the victim of
a cytokine storm.

3.2 Thyroid Hormone Disturbance Induces
Placenta Dysfunction
During pregnancy, the uterus undergoes a series of changes that
results in extensive tissue reorganization, mainly to accommodate
the developing fetus (Correia-da-Silva et al., 2004). The placenta is
an organ that provides thematernal–fetal interface betweenmother
and fetus, which is responsible for hormone secretion, fetal
nourishment, fetal thermoregulation, fetal waste removal, fetal
gaseous exchange regulation, and fetal protection from the
maternal immune system and xenobiotics (Burton and Fowden,
2015). During the biological process of mammalian placentation,
diverse trophoblast populations gradually form. As the first
trophoblast phenotype differentiated from precursors, CTBs
subsequently yield STBs and extravillous trophoblasts (EVTs)
through further proliferation and differentiation. Those
trophoblasts collaboratively mediate the establishment of
uteroplacental circulation and placenta formation (Ji et al., 2013).
Placental dysfunction is the central characteristic of pregnant
complications of human pregnancy, and abnormalities in
placental formation and physiology are implicated in miscarriage,
preeclampsia, and intrauterine growth restriction (IUGR) (Silva
et al., 2012). To maintain robust placental function for a healthy
pregnancy, a balance between proliferation and apoptosis, further
January 2022 | Volume 11 | Article 791654
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differentiation, together with normal angiogenesis of placenta
are indispensable.

TH is vital for a healthy pregnancy and fetal development,
playing multifaceted roles in maintaining the normal function of
the placenta. It has been found to be intimately associated with
placenta hormone secretion, trophoblast proliferation and
differentiation, EVT invasiveness, and decidual angiogenesis
(Adu-Gyamfi et al., 2020). As clarified above, the infection of
SARS-CoV-2 and the following inflammation can trigger TH
derangement for pregnant women. That can be a great threat to
pregnancy, since high incidences of mal-placentation-mediated
pregnancy complications such as preeclampsia, miscarriage,
and IUGR have been reported in women with abnormal levels
of THs (Korevaar et al., 2017). The underlying mechanisms are
concluded as follows.

3.2.1 Disturbance of Trophoblast Proliferation
and Differentiation
CTB cell fusion and hormone secretion indicate the differentiation
of CTB to STB (Ji et al., 2013). Treating CTB with T3 at optimal
concentration led to a significant increase in human chorionic
gonadotropin (hCG) secretion (Silva et al., 2012), indicating the
involvement of THs in STB formation. Besides, both T3 and T4 are
capable of eliciting a stimulatory effect on placenta hormone
secretion of human placental lactogen (hPL), estradiol-17 beta,
progesterone, and hCG. However, lower doses of T3 or T4
attenuated such stimulatory effects (Adu-Gyamfi et al., 2020).
Which means insufficient T3 and T4 supplementation hampers
the endocrine secretion of placenta and deters trophoblast
differentiation. Hypothyroid rats present a decrease in the
placenta thickness, which attributes to a reduction in the
proliferation of trophoblast cells and increase in apoptosis (Oki
et al., 2004; Shinderman-Maman et al., 2016; Korevaar et al., 2017).
This phenomenon may be caused by the downregulation of
placental leptin and increased Toll-like receptor (TLR)2
expression promoted by hypothyroidism (Oki et al., 2004;
Vissenberg et al., 2015). As a result, TH insufficiency can be one
of the reasons for placenta fragileness and dysfunction.

3.2.2 Disturbance of Extravillous
Trophoblast Invasiveness
T3 facilitates EVT invasion of the decidua. On one hand, it has been
proven that T3 is responsible for increasing themRNA expression of
matrix metalloproteinases 2 (MMP2), matrix metalloproteinases 3
(MMP3), and fetal fibronectin (Oki et al., 2004; Vissenberg et al.,
2015), which are the fundamental elements demanded in the normal
biological process of EVT invasiveness (Liao et al., 2015; Zhao et al.,
2018). On the other hand, T3 has also been found to suppress EVT
apoptosis through the downregulation of Fas and the Fas ligand
(Laoag-Fernandez et al., 2004).Without enoughT3, themigration of
EVTs is markedly reduced in hypothyroid pregnancies (Silva
et al., 2014).

3.2.3 Disturbance of Angiogenesis
L-thyroxine induces the gene expression of placental growth factor
(PGF) and vascular endothelial growth factor (VEGF) (Silva et al.,
2015), which, in early gestation, are considered as the dominant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
pro-angiogenic factors involved in the vascular development of
the maternal–fetus interface (Adu-Gyamfi et al., 2020). In different
periods of gestation, decidual cells respond distinctively to T3 as
increasing the secretion of vascular endothelial growth factor-A
(VEGFA) andangiopoietin-2 (ANGPT2) in thefirst trimesterwhile
increasing angiogenin (ANG) secretion in the second trimester
(Vasilopoulou et al., 2014). Researchers had detected a remarkable
reduction in the placental expression of VEGF (Silva et al., 2012;
Silva et al., 2014) along with increment in placental vascular
resistance (Barjaktarovic et al., 2017) in hypothyroid status.
Consistent with those findings, both dilation of the maternal
venous sinuses in the placental labyrinth (Silva et al., 2012) and
reduction in the size of the decidua (Adu-Gyamfi et al., 2020) have
also been observed possibly as the consequences of impaired
angiogenesis and spiral arteries’ remodeling. Given those solid
proofs, abnormal placental TH supplement has a great tendency
to affect placental vascularity, which might account for the high
incidence of preeclampsia and miscarriage reported among
hypothyroid women (Landers and Richard, 2017).

3.2.4 Alteration of Immune Status
As mentioned above, a successful pregnancy requires comparatively
suppressive modulation of the immune system to ensure the
coexistence of mother and fetus. And maternal immune status
fluctuates as the gestation advances. Decidua is responsible for
releasing inflammatory mediators during pregnancy (Toder et al.,
2003; Koga et al., 2009; Hu and Cross, 2010), and abnormal
alterations of such molecules have been reported to be associated
with miscarriage (Vassiliadis et al., 1998) and preeclampsia
(Valencia-Ortega et al., 2019). In hypothyroid conditions, there is a
compromise in the establishment of an anti-inflammatory
environment in the placenta, which is evidenced by a decrease in
placental IL-10, leptin, and nitric-oxide synthase 2 (NOS_2)
expression (Silva et al., 2014). Similarly, hypothyroid women
exhibit reduced expression of IL-4 and IL-10 in the decidua (Twig
et al., 2012). The release of inflammatory cytokines at the fetal–
maternal interface partly depends on the activation of TLRs.
Interestingly, placental TLR expression is also affected by THs, as
evidenced by the reported increase in TLR2 levels and a reduction in
TLR4 levels in the placenta of hypothyroid pregnancies (Silva et al.,
2014), similarly leading to a reduction in the gene and/or protein
expression of the anti-inflammatory cytokines IL-10 and NOS2.
After being infected by SARS-CoV-2, there will be a tendency for
establishing a pro-inflammatory response against viruses, adding up
with TH turbulence, and pregnant women definitely will face
greater risks.
4 DYSFUNCTION OF THYROID HORMONE
TRANSPORTER AND DEIODINASE AND
RELATED PREGNANT COMPLICATIONS

TH enters and exit the placental cells through six TH membrane
transporters: large amino acid transporter-1 (LAT1), LAT2,
organic anion transporting polypeptide-1A2 (OATP1A2),
OATP4A1, monocarboxylate transporter-8 (MCT8), and
MCT10 (Adu-Gyamfi et al., 2020). As mentioned above, TH
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transporters may be altered during inflammation, such as MTC-
10. Interestingly, in severe IUGR villous placentas, MCT8
expression is significantly increased, while MCT10 expression
is significantly decreased (Loubiere et al., 2010). Although MCT-
10 may not serve as the most essential TH transporter in the
placenta, at least it suggests that the abnormalities of TH
transporters during inflammation are not purely innocent in
pregnant complications.

Within the placenta, TH is mostly acted on by D2 and D3. As
clarified above, during inflammation, cytokines are able to suppress
D2 activation, thus inhibiting T3 generation. That means
inflammation caused by SARS-CoV-2 can become a risk factor
for pregnancy, leading to lack of T3 in placenta and fetus.
Furthermore, the main regulator of TH homeostasis in the
placenta is D3 (Adu-Gyamfi et al., 2020), which protects the fetus
from an overexposure to T3. D3 activity possibly alters in the
context of inflammation. During acute and chronic inflammation
and during sepsis, liver Dio3 mRNA expression and activity levels
are decreased (de Vries et al., 2015). If it is a similar case within the
placenta during SARS-CoV-2-induced inflammation, that can
negatively affect fetus because of overexposure to T3. Notably,
there is an observation suggesting a possible blunting of D3
activity in preeclampsia (Kurlak et al., 2013). Abnormal
upregulation of the placental D3 gene is a potential contributor to
fetal hypothyroidism because the more D3 remains active, the less
active TH will be transferred to the fetus (Wilcoxon and Redei,
2004). The upregulation of D3 is rarely seen and usually occurs in
conditions of prolonged critical illness or inflammation (de Vries
et al., 2015), but further study indicated that the prolonged
reduction of food intake during illness may be the dominant
trigger for D3 upregulation (de Vries et al., 2014). Hence, it may
serve as a reminder that during SARS-CoV-2 infection and
treatment, pregnantwomenshouldbetter avoid fasting for too long.
5 NEW INSIGHTS INTO THE
MANAGEMENT OF PREGNANT WOMEN
DURING THE COVID-19 PANDEMIC

Significant physiological changes in the THs of pregnant women
occur during pregnancy (Fan et al., 2019). Around the fifth or
sixth week of pregnancy, although the fetal thyroid is beginning
to develop, the fetus is not yet able to synthesize its own THs at
this time (Patel et al., 2011). Therefore, the fetal TH required for
normal neurodevelopment comes exclusively from the mother.
Current studies suggest that SARS-CoV-2 infection alters thyroid
function in early pregnancy and that there is an increased risk of
adverse pregnancy outcomes (Lin et al., 2020). The relationship
between ACE2 expression levels during SARS-CoV-2 infection is
intricate, with high ACE2 expression favoring the entry of SARS-
CoV-2 host cells, while reduced ACE2 expression following
infection may lead to severe disease (Ni et al., 2020). THs play
a key role in determining ACE and ACE2 expression in plasma
and different tissues, which in turn may play a role in the severity
of SARS-CoV-2 infection and disease (Kumari et al., 2020).
Therefore, TH levels in COVID-19 pregnant women are of
interest. However, further research is needed to determine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
whether such monitoring and treatment will lead to safe and
effective outcomes.

Vaccines are currently one of the most promising preventive
measures against COVID-19 (Iqbal Yatoo et al., 2020). Vaccination
during pregnancy is a promising strategy to protect mothers and
newborns from SARS-CoV-2 infection (Saxena et al., 2020).
However, live or live attenuated vaccines may not be safe because
of the risk of disease in the immune-regulated gestational state
(Kumar et al., 2021). Recently, there have been some reports of
thyroid problems following vaccination (Joob and Wiwanitkit,
2021; Vera-Lastra et al., 2021). For example, Vera-Lastra et al.
(Vera-Lastra et al., 2021) noted that SARS-CoV-2 vaccination may
induce hyperthyroidism. Furthermore, adjuvants may cause
alterations in the immune system and cause thyroid problems. In
terms of pathophysiology, COVID-19 vaccination causes an
increase in blood viscosity (Joob and Wiwanitkit, 2021). High
blood viscosity is an important factor in abnormally high TH
levels (Tamagna et al., 1979). On the other hand, inactivated or
nucleic acid vaccinesmay be safer because there is no risk of disease
from this kind of vaccine (Vora et al., 2020). Overall, we considered
that the selection of a reasonable COVID-19 vaccine is essential to
induce a balanced humoral and cell-mediated immune response
without overactivating the maternal immune system (Vora et al.,
2020). An inappropriate vaccine will lead to TH disorders, thereby
inducing an adverse pregnancy.
6 CONCLUSION

We provide a plausible overview relating to COVID-19, TH, and
pregnancy, elucidating the possible mechanism that COVID-19
would give rise to adverse pregnancy outcomes. SARS-CoV-2
causes an overactivation of the immune response and culminates
in a “cytokine storm,” which, on one hand, leads to a disturbance in
maternal TH, and on the other hand, causes dysfunction of TH
transporteranddeiodinase inplacenta.TheoverallTHdisturbance in
pregnant women eventually induces placenta dysfunction, including
disturbance of EVT invasiveness and angiogenesis, and alteration of
immune status. Therefore, physicians should raise alertness on TH
abnormality when treating pregnant COVID-19 patients.
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