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Abstract

Background: The often dramatic effects of urbanization on community and ecosystem properties, such as primary
productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this
extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms
thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased
nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known
for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been
studied in the context of urbanization.

Methodology/Principal Findings: We designed a field experiment to test if increased plant growth often observed in cities
is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush)
plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and
nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in
the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass
and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where
wind speed is already reduced.

Conclusion/Significance: Our results indicate that reductions in wind speed due to built structures in cities contribute to
increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study
emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space
and sustainable cities.
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Introduction

Half of the world’s human population lives in cities, and urban

ecosystems are the most rapidly expanding ecosystem on the

planet [1]. Urbanization trends pose serious problems with respect

to ecosystem services and human well-being because the complex

ecological processes involved are often underestimated or

neglected by urban consumers [2]. Increasing the knowledge of

urban effects on ecosystems is fundamental to the understanding of

regional and global changes in ecosystem services [3], [4]. Studies

of urbanization effects on ecosystem functions and services have

become more common, but our working knowledge of these

complex systems is still sparse.

Primary productivity and diversity are two ecosystem properties

that are directly altered by urbanization (e.g., [5]). These

properties provide ecosystem services by maintaining nutrient

balance, increasing aesthetic value and creating recreation

opportunities for urbanites, and by providing a food base and

habitats for urban wildlife. Cities have great potential to achieve

high productivity and biodiversity (e.g., [6]), and business

developments are increasingly including green areas to support

urban biodiversity, with documented benefits to people and

wildlife [7], [8], [9]. How to optimize productivity and diversity,

however, is far from obvious since there are multiple interacting

mechanisms underlying changes in productivity from rural to

urban areas, such as nutrient and water supplements and changes

in temperature and light regimes [10], [11], [12]. In addition, the

non-linear relationship between productivity and species richness

(one common measure of biodiversity) is far from clear in all

systems, but is considered the dominant model at local scales and

across community types [13]. This unimodal relationship suggests

productivity is a key factor influencing changes in population

density, community structure and species diversity of plants and

non-human animals in urban settings [5].

One factor that may affect productivity and hence diversity is

reduced wind speed in cities, which is caused by structures such as
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buildings, walls, embankments, elevated roadways and planted

vegetation. Urban areas have significantly lower maximum and

average wind speed than do natural areas lacking these structures

[14]. Reduced wind speed in urban areas is well documented in

cities around the world [15]. For example, Warsaw, Poland,

experienced 2 m s21 lower wind speed than the surrounding area

throughout the year [14], and the annual mean difference in

Berlin, Germany, was found to be 10–20% lower than the

surroundings [16]. Other large cities, such as Delhi, India [17],

London, UK [18] and Melbourne, Australia [19] also experience

low wind speeds. Most of the studies involving wind in cities link

reduced wind speed to the urban heat island effect and higher

concentrations of pollutants. Studies that consider wind and

vegetation typically focus on how vegetation affects the urban wind

pattern. Here we examine the reverse chain of cause and effect

and ask how wind patterns altered by urbanization affect plant

productivity. Changes in urban wind have heretofore not been

linked to increases in urban productivity.

Wind is known to affect biotic communities in non-urban

systems. For example, protecting agricultural crops from wind

increases yields (e.g., [20]). Likewise, wind is a key factor in

pollination and seed dispersal (e.g., [21]), affects insect herbivory

(e.g., [22]), tree growth [23], and even bat activity (e.g., [24]).

Clearly, wind is an important factor on many levels in both natural

and urban ecosystems.

Experiments testing the effects of wind on plant growth have

been performed since the beginning of the last century using fans,

wind tunnels and natural or artificial shelters (e.g., [25], [26], [27],

[28]). Yet, there have been no field experiments, to our knowledge,

that manipulate wind to determine its effect on plant growth in an

urban context. Observations from recent urban ecological field

studies suggest that urban plants recover faster after frost events,

and that increased plant growth in the city cannot be fully

explained by increased water or nutrient availability (C. Bang,

unpublished data). Research from New York City suggests that a

reduction in ozone concentration in the city core explained

increased tree growth [29]. Although ozone is probably important

in the desert as well (annually, Phoenix, AZ, has numerous

nonattainment days for ozone, especially in the summer [30]), we

hypothesized that the reduced wind velocity in the city increases

overall plant productivity. We designed an experiment where we

compared growth of wind-protected and wind-exposed plants in

three habitat types (desert, desert remnants and urban yards),

while keeping track of air quality data via local climate monitoring

stations. A common native ornamental shrub, Encelia farinosa was

used in the study. We predicted that in the desert, sheltered plants

would grow better than wind-exposed plants, exhibiting increased

height, diameter and biomass. Because plants in urban areas were

already subjected to reduced wind speeds as a result of

surrounding buildings, fences or walls, we expected to see no

difference between exposed and sheltered plants in the city. Desert

‘‘remnants’’ are similar in structure to native desert (open space,

similar vegetation), but are located within the city. We predicted

that sheltered plants in desert remnant habitats would display

similar differences in growth to those in the desert, unless some

other urban effect such as altered air quality or elevated

temperature subsumed the effect of wind.

Results

Wind treatment efficacy
The windbreak significantly reduced the wind speed in desert

and remnant areas similar to levels in the exposed urban habitat

(Table 1, Fig. 1). Air temperatures were not altered between

sheltered and exposed treatments, except for higher day

temperatures in urban areas in the sheltered treatment (Table 1).

Soil temperatures were not significantly different in the desert, but

urban and remnant had significantly warmer soil in the sheltered

treatment. The windbreak did not change relative humidity

significantly, but overall the desert had lower humidity than the

urban and remnant habitats. Soil moisture was significantly lower

in the desert sheltered treatment, but not in the remnant or urban

habitats.

Air quality
Ozone concentrations generally increased from February

through May, and increased along a downwind gradient from

the southwestern desert area to the northeastern desert area.

Concentrations were relatively low in the city core; however,

extremes in the hourly measurements (0 to 0.0978 ppm) were both

observed in the city. The lowest values were observed at night and

the highest during afternoon rush hours in May. Nitrogen oxides

(NOX) concentrations, on the other hand, generally decreased

from February through May, and were highest in the city core.

Hourly measurements ranged from 0 to 0.587 ppm. There were

no NOX data available for the northeastern desert area. Overall,

the city locations experienced greater variance in air quality than

outlying localities, with most of the variance attributed to diurnal

fluctuations.

Effects of wind on plant growth
Assumptions for parametric testing (independence, normality,

equal variance) were met for all measured response variables. The

treatment effect was significant for all response variables (Type III

ANOVA, Table 2). There were no significant effects of habitat or

the habitat-treatment interaction. There was no spatial autocor-

relation except in two locations, and only one of these was

significant for both Moran’s I and Geary’s C (Table S1). Because

the majority of the locations demonstrated no autocorrelation, we

ignored any such structure in the variance and assumed that in

spite of the clumped design, samples were adequately independent.

The change in estimated biomass from February to May 2008 was

significantly greater among sheltered plants than exposed plants in

desert and remnant areas (Fig. 2). Sheltered desert plants increased

in biomass by 56.667.6% (mean 6 SE) while exposed plants

increased 26.369.5% (Tukey-Kramer, 1-tailed P = 0.00845).

Sheltered remnant plants increased in biomass by 63.364.8%

while exposed plants increased 30.568.9% (P = 0.00365). There

was no significant difference in biomass change between sheltered

and exposed plants in urban areas (sheltered 72.8618.2%,

exposed 62.4628.7%, P = 0.4197). Height differences between

sheltered and exposed plants were not significant except in the

remnant habitat (sheltered 11.061.8%, exposed 23.163.6%,

P = 0.0266). The trends, however, are similar to the biomass

results (Fig. 2). There were no significant differences in diameter

between sheltered and exposed plants.

Discussion

The field of urban ecology has recently focused on the

ecological services provided by the urban environment, and how

we might more wisely manage ecosystems to enhance those

services and make cities more livable. One aspect of livable cities is

increased green space (e.g., [31]). In cities around the world, plants

provide a number of critical ecosystem services, including

regulating air quality, water balance, and ground surface

temperatures (e.g., [16]). In this paper we provide evidence that

the unique urban topography imposed by built structures, such as

Wind and Urban Plant Growth
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walls, fences and buildings reduces wind speeds and increases

growth and biomass accumulation of a common native ornamen-

tal plant. This finding has broader implications for the services

urban ecosystems provide. For example, increased productivity

due to reduced wind speed may partially offset CO2 emissions in

cities. Moreover, since higher plant productivity may be correlated

with increased species richness (e.g., [32]), reduced wind speeds in

cities may increase species richness of animals that can benefit

from faster growing plants.

Plant growth
Our results for E. farinosa in the metropolitan Phoenix area

strongly suggest that reduced wind speed improves plant growth.

We have demonstrated that plants protected against wind in

natural environments, such as the Sonoran Desert, increased

twofold in biomass compared to unprotected plants. Consistent

with our predictions, the sheltered plants in both desert and desert

remnant habitats responded similarly to plants growing in urban

areas. Also consistent with our predictions, extra wind protection

in urban habitats did not have any effect on plant growth, because

plants there are already sheltered by the structural design of the

city.

Reduced wind speed in urban habitats enhances aboveground

growth, but it is difficult to pinpoint the underlying physiological

mechanisms. Wind speed determines leaf boundary layer

conductance, which directly influences photosynthetic rate,

transpiration rate, and leaf temperature via the energy balance

equation [33]. In addition, the boundary layer alters variables

influencing guard cells and can indirectly control stomatal

conductance [34]. Although our study was not designed to test

the exact mechanism, we believe that the combination of high

water availability and reduced wind speed allow stomata to remain

open, contributing to the increased gas exchange observed by

Martin and Stabler [35]. Reduced wind speed also reduces

chances for mechanical damage [28] and thigmomorphogenetic

responses (altered growth as response to mechanical stimulation

[36]). Lack of mechanical stimulation can lead to stem elongation

and poorly developed root systems [37]. We did however not

measure root extension.

Desert remnants and urban ecology
The effects of wind speed on primary productivity are likely

highly variable within the city, given that wind speeds vary with

proximity to built structures [38]. Our desert remnant sites are

examples of localities within the city that experience wind speeds

comparable to the outlying desert (albeit somewhat lower, Fig. 2,

Table 1), and consequently have reduced plant growth similar to

the desert sites.

Remnant areas provide urban ecologists with a unique form of

experimental control. In our setup, desert remnants serve as ‘‘true

replicas’’ of desert located within the city development, and are

thereby generally exposed to the same heat island effect and the

fluctuating concentrations of pollutants (e.g., NOX, ozone) and

CO2 as other urban localities. Ozone and NOX concentrations

varied from one side of the city to the other, without having any

visible effect on the plants growing in the desert locations at each

side of the city. If air quality factors are important in controlling

plant growth in this city as observed in other cities [29], the plant

Table 1. Daily averages of environmental variables measured in the study.

Environmental factor Habitat Sheltered Exposed Significant difference

Wind speed (m s21)1 Desert 0.026660.0048 0.684860.0511 ***

Remnant 0.074760.0113 0.574160.0445 ***

Urban 0.001360.0004 0.012560.0026 ***

Air temperature, day (uC)2 Desert 27.70160.520 26.92560.528 n.s.

Remnant 28.23860.512 26.65860.502 n.s.

Urban 27.94260.457 25.28560.423 ***

Air temperature, night (uC)2 Desert 19.12160.466 19.51460.460 n.s.

Remnant 18.53360.470 20.26860.577 n.s.

Urban 21.32160.334 20.78260.330 n.s.

Soil-temperature (uC)3 Desert 24.62160.368 23.99960.331 n.s.

Remnant 24.39460.387 23.21260.336 *

Urban 23.95260.297 22.44960.272 **

Relative humidity (%)4 Desert 15.10961.331 14.24561.348 n.s.

Remnant 19.25661.128 17.53361.102 n.s.

Urban 17.46761.008 18.13961.059 n.s.

Soil moisture (m3/m3)3 Desert 0.194860.0077 0.228060.0063 *

Remnant 0.232060.0056 0.232660.0053 n.s.

Urban 0.264560.0046 0.257960.0036 n.s.

Daily averages 61SE of environmental factors based on hourly averaged data. In cases with unequal variance, we used the Satterthwaite t-statistic. Significance is
determined using sequential Bonferroni test.
*’ **’ *** Exposed plants significantly different from sheltered at P,0.05, 0.001 and 0.0001, respectively.
1n = 10 days.
2n = 31 days.
3n = 48 days.
4n = 33 days.
n.s. = not significant.
doi:10.1371/journal.pone.0011061.t001
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growth in the remnant areas would be more similar to the urban

plant growth than to outlying desert plant growth. Instead,

remnants show the same growth patterns as the desert when either

sheltered or unsheltered, despite all the other factors experienced

by urban plants. This suggests, at least in this desert city, that wind

is a key factor for plant growth, and may override more well-

studied factors, such as altered temperatures and air quality.

Because our study was of a relatively short-term character (four

months), and the plants were in pots, we cannot exclude legacy

effects in soil [39] or the potential long-term effects of changes in

air quality [29], nutrient depositions (Hall et al. in review) or air

temperature [40]. Whereas altered wind patterns due to built

structures are common in all cities [38], topography and

vegetation surrounding the city determine the magnitude of wind

speed differences. For example, Seoul, South Korea, is surrounded

by forest and agricultural land, and the wind speed is in fact higher

in the city than the rural areas [41]. Studies from Beijing, China,

demonstrate diurnal, seasonal and spatial variation in wind speed

depending on topographical factors such as building design, road

corridors and surrounding landscape [42], [43]. This complex

relationship is also found elsewhere. For example in Buenos Aires,

Argentina, a change in wind direction can lead to an inverse heat

island effect [44]. All of these factors likely play a role in primary

production and diversity in cities, and thus require further

experimental studies [45].

Carbon sequestration and biodiversity
Cities are major sources of CO2 and are thus large contributors

to the global increase in atmospheric CO2 [46]. Although the

magnitude of carbon storage by urban trees is relatively small

compared to emissions from burning of fossil fuel [47] urban

forests may provide an important ecosystem service in terms of

carbon balance [48]. Martin and Stabler [35] estimated that plants

in urban residential yards acquired 2.8 times more atmospheric

carbon than plants in desert sites. Because our study suggests that

wind is an important driver of plant growth and productivity in

cities, understanding the effect of wind will be important in urban

design and landscaping to optimize carbon storage.

Because cities are the most rapidly expanding habitat worldwide,

urban planners and conservation biologists are increasingly

interested in the contribution of cities to diversity [49], rather than

dismissing them as habitats where diversity often declines [50].

Primary productivity is often linked with higher species richness of

both plants and higher trophic levels, albeit in a unimodal pattern

(e.g., [32]). Changes in plant productivity may therefore cascade

upward to alter trophic dynamics in arthropod and bird

communities [51]. Future studies in urban ecology could focus on

higher trophic levels along a productivity gradient, to which we have

provided a simple way to manipulate productivity. As new efforts in

urban landscape design seek to increase the amount and

heterogeneity of green spaces to maintain or enhance biodiversity

in cities (e.g., [52]), it will be imperative to consider altered wind

patterns in cities and their effects on plant growth and productivity.

Materials and Methods

Study plant
We chose the native shrub brittlebush (Encelia farinosa Gray ex

Torr. [Asteraceae]) because of its ubiquity in the Sonoran Desert,

and because, as a popular landscaping plant in the Phoenix

metropolitan area, it occurs in all habitats studied. The

Table 2. Effect of treatments on growth.

Source DF
Type
III SS

Mean
Square F-value One-tailed

P-value

Estimated biomass

Habitat 2, 6 24163.58 12081.79 0.92 0.2238

Treatment 1, 166 24373.90 24373.90 21.23 ,0.0001

Habitat6Treatment 2, 166 3795.37 1897.69 1.66 0.0971

Height

Habitat 2, 6 5310.21 2655.10 2.25 0.0936

Treatment 1, 166 1960.87 1960.87 9.37 0.0013

Habitat6Treatment 2, 166 861.58 430.79 2.06 0.0652

Diameter

Habitat 2, 6 2024.45 1012.22 0.31 0.3721

Treatment 1, 166 7810.71 7810.71 12.58 0.0003

Habitat6Treatment 2, 166 323.22 161.61 0.26 0.3854

Analysis of variance, mixed model procedure, Type III tests of fixed effects for
three growth responses: Estimated biomass, height and average crown
diameter. Sum of squares and mean squares are obtained from the generalized
linear model procedure, Type III, using site nested in habitat as error term.
doi:10.1371/journal.pone.0011061.t002

Figure 1. Wind speed in three habitats. Daily average wind speed
(m s21) over 10 days in our three habitat types. Error bars are 61SE.
doi:10.1371/journal.pone.0011061.g001
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physiological characteristics of E. farinosa related to photosynthetic

optima, carbon assimilation, drought adaptation, heat tolerance,

and seasonal morphological changes have been extensively

described (e.g., [53], [54], [55], [56]). Others have described

variation among and within populations (e.g., [57], [58], [59]), and

chemical defense properties (e.g., [60]). In brief, E. farinosa respond

to seasonal water stress at the end of rainy seasons by replacing

larger leaves with smaller, pubescent leaves. Small pubescent

leaves reduce water loss (lower surface area and fewer stomata)

and maintain lower leaf temperatures due to reflection of radiation

by leaf hairs. Smaller leaves also reduce the total photosynthetic

capacity of the plant. As summer temperatures rise and water

becomes scarce, E. farinosa eventually drop all their leaves and

remain dormant until the next rainy season, when they quickly

respond to the available soil water through rapid CO2 uptake, leaf

production, and stem growth [56]. Differences in water availability

are reflected in size differences between plants in wet and dry

areas; the size of E. farinosa is documented to increase by 35% in

irrigated versus non-irrigated gardens [61]. Despite abundant

information on physiological responses of this plant, no studies

have directly considered the effects of wind on E. farinosa growth.

Study sites and design
The metropolitan area of Phoenix, Arizona, is situated in the

northern end of the Sonoran Desert. The metropolitan area is a

widespread heterogeneous patchwork of impervious surfaces and

human made landscapes, interspersed with remnants of the

Sonoran desert, pasture and irrigated cropland [62]. The majority

of residential houses are single family one story homes with large

garages, or two-story apartment complexes [63]. High-rise

buildings are generally restricted to downtown areas in Phoenix,

and are not typical for this city. Our study area ranged from

approximately 300 m above sea level (asl) southwest of the city to

600 m asl east of the city. Most of the urban locations were at

350 m asl. To compare urbanized habitats with natural habitats,

we identified three habitat categories: outlying desert, desert

remnants, and urban sites; and we selected three replicate sites for

each habitat type. Outlying desert sites were typical of the Sonoran

Desert with scattered perennials such as creosote bush (Larrea

tridentata), bursage (Ambrosia deltoidea), cholla cacti (Cylindropuntia

spp.), palo verde trees (Parkinsonia spp.), ironwood trees (Olneya

tesota) and other E. farinosa. Sites were generally flat with open soil

in the spaces between the shrubs or trees. Desert remnants were

defined as natural desert patches of varying sizes that have become

islands in the urban landscape, completely surrounded by, or at

the fringe of, urban development. They were similar to the desert

sites in structure and vegetation, but we assumed that remnants

had similar air quality conditions as nearby urban sites and

experienced general climatic changes associated with the city (e.g.,

urban heat island). Since urban locations could potentially be very

different in terms of wind speed, we chose sites near different

building structures. One of the locations was inside an open

garden on Arizona State University, Tempe campus, surrounded

by buildings approximately 15 m tall. The second urban location

was also on Tempe campus, but located in a potential wind

corridor (between two buildings, 14 and 15.2 m tall). The third

urban location was an empty lot adjacent to one major highway,

sheltered by a 1.5 m fence and one 3 m tall mesquite tree. The

urban locations represent typical urban commercial settings of the

region.

At each site, we placed 20 potted E. farinosa which were

obtained from local nurseries (seeds collected locally, all plants

approximately seven months old and 67.2611.2 cm tall, average

61 standard deviation). Ten plants were randomly assigned for

protection by a windbreak shield, while the other ten plants had

similar alignment, but without the windbreak (Fig. 3). Wind

direction was determined prior to position of the windbreak to

ensure optimal functioning [64], since the winds in the Phoenix

area tend to be diurnal – upslope in daytime, and downslope at

night [30]. Because slope (north or south facing) may affect plant

growth by altering soil-temperature and moisture [65], all of our

plants were placed on flat ground.

We chose a windbreak design so as to limit any impacts of

shading and to allow us to directly measure the effect of wind.

Some wind turbulence is inevitable when constructing wind

barriers [66], but occasional accelerated wind speed at ground

level is a common feature of the urban climate [38]. Our low-cost

solution consisted of 18 fence posts (1.52 m long) arranged in a

grid, with poultry netting stretched between them creating 10

cubicles of approximately 1.2 m61.2 m61.2 m each. Clear plastic

sheets (0.1524 mm thick) were sewn to the poultry netting creating

the wind barrier. The sheet reduced direct sunlight by 18% during

some parts of the day; however light is likely at saturating levels in

this region [67]. Air was able to circulate freely because one side

was left open, there was no roof, and a 15–20 cm opening was left

near the ground, thereby preventing any greenhouse effects. Grass

Figure 2. Plant growth. Growth of E. farinosa in wind-protected and
exposed treatments, February–May 2008, across three habitats with
three replicates of each. Percent growth is given for estimated
aboveground biomass, height and mean crown diameter. Error bars
are standard errors, and asterisks indicate significant pair-wise
differences (Tukey-Kramer adjusted 1-tailed P-values).
doi:10.1371/journal.pone.0011061.g002
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and annuals growing around the pots and windbreak were

regularly removed to improve air circulation.

All plants received ample watering (2 L drip twice per day), and

were grown in insulated pots (to moderate root temperatures of all

plants since they were above ground) to exclude confounding

effects of different soil types in the desert versus the urban area.

The pots contained soil consisting of J native top soil and L

composted mulch, and two tablespoons of OsmocoteH slow-release

fertilizer to maintain a sufficient soil nutrient level. Since our

biomass estimates did not include reproductive parts (Supporting

Information S1, Fig. S1), flower buds were cut off regularly to

ensure maximal allocation to vegetative growth [68], [69], [70].

Wind speed, air temperature and relative humidity (% RH) were

measured 0.8 m above ground (at plant level), and soil moisture

and soil-temperature were measured 5–15 cm below the soil

surface in the middle of the pot. We used OWL2pe data loggers

with soil-temperature probes (EME Systems) and Davis Instru-

ments cup-anemometers for wind speed, and HOBOH Micro

Stations (Onset Computer Corporation) for air temperature,

% RH, soil moisture and additional soil-temperature measures.

Equipment malfunction and rodents chewing on cables kept us

from obtaining continuous climate data throughout the growing

season, but the reported time periods are nonetheless represen-

tative. Local air quality data were obtained from Maricopa

County Air Quality Department (MCAQD) and the Arizona

Department of Environmental Quality (ADEQ) networks. This

provided quantitative and qualitative information about major

local differences in ozone and NOX concentrations between the

city core and outlying desert areas.

Plant growth was measured monthly from February to May

2008, and final growth reported in terms of estimated biomass,

height and crown diameter [71]. Biomass was estimated based on

an equation developed by measuring and weighing the dry mass of

E. farinosa plants (Supporting Information S1, Figs. S1 and S2).

Since there may be discrepancies between stem elongation and

actual biomass allocation [37], we also performed analyses on

height and diameter.

Statistical analyses
Statistical tests were performed using SASH (Version 9.2 for

Windows, SAS Institute, Inc., Cary NC, USA). Environmental

factors were measured in one of each habitat category and

compared (exposed vs. sheltered) with two-sample t-tests using the

PROC TTEST procedure. In cases with unequal variance, we

used the Satterthwaite t-statistic. We used sequential Bonferroni

correction for the significance tests [72]. To allow for a general

interpretation about habitat, we treated sites as nested within

habitat. All response variable data were tested for normality using

normal probability plots, and homogeneity of variance was

evaluated by plotting residuals versus predicted values from a

preliminary fixed factor model. A mixed model with habitat,

treatment and the interaction term was analyzed using PROC

MIXED and PROC GLM in SAS. Extensive earlier ecophysio-

logical work describing negative effects of wind speed on plant

growth in general (e.g., [73], [74], [27], [75], [23]), justified the a

priori hypothesis that wind-protected plants would deviate

positively from wind-exposed plants, in terms of biomass, height

and diameter. We therefore report one-tailed P-values for the post-

hoc comparisons. Type III sums of squares were evaluated and

multiple comparisons were based on Tukey-Kramer adjusted P-

values. To ensure that there was no cross-contamination of the

windbreak effect on the exposed treatment plants, the pots within

treatments were clumped together (Fig. 1). This compromise made

the experiment vulnerable to potential non-demonic intrusions

(sensu [76]). To see if placement had any effect on plant growth

regardless of treatment, we tested for spatial autocorrelation using

PASSaGE 2 (beta version, used with permission, Supporting

Information S1). Moran’s I (global spatial autocorrelation) and

Geary’s C (local spatial autocorrelation) for each site is listed in

Table S1.

Figure 3. Experimental setup. The windbreak at one of the desert remnant locations. Exposed plants in the foreground and sheltered plants in
the back. The plants were in insulated 5-gallon pots (<18.9 L) with individual drip irrigation ensuring optimal water availability. (Photo: CB).
doi:10.1371/journal.pone.0011061.g003

Wind and Urban Plant Growth

PLoS ONE | www.plosone.org 6 June 2010 | Volume 5 | Issue 6 | e11061



Supporting Information

Supporting Information S1 Description of method used for

biomass estimation, and test for spatial autocorrelation.

Found at: doi:10.1371/journal.pone.0011061.s001 (0.04 MB

DOC)

Figure S1 Schematic drawing of an E. farinosa in a 5-gallon

(<18.9 L) pot, side view (left) and top view (right). The letters

indicate the monthly measures to estimate aboveground drymass.

Found at: doi:10.1371/journal.pone.0011061.s002 (0.60 MB TIF)

Figure S2 Relationship between the height6diameter and

aboveground drymass of brittlebush, E. farinosa (R2 = 0.8223,

n = 360). The dotted lines indicate a 95% confidence interval.

Found at: doi:10.1371/journal.pone.0011061.s003 (0.07 MB TIF)

Table S1 Test for spatial autocorrelation.

Found at: doi:10.1371/journal.pone.0011061.s004 (0.20 MB

DOC)
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