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Numerous studies conducted on obese humans and various rodent models of obesity have identified a correlation between hepatic
lipid content and the development of insulin resistance in liver and other tissues. Despite a large body of the literature on this topic,
the cause and effect relationship between hepatic steatosis and insulin resistance remains controversial. If, as many believe, lipid
aggregation in liver drives insulin resistance and other metabolic abnormalities, there are significant unanswered questions as to
which lipid mediators are causative in this cascade. Several published papers have now correlated levels of diacylglycerol (DAG),
the penultimate intermediate in triglyceride synthesis, with development of insulin resistance and have postulated that this occurs
via activation of protein kinase C signaling. Although many studies have confirmed this relationship, many others have reported a
disconnect between DAG content and insulin resistance. It has been postulated that differences in methods for DAGmeasurement,
DAG compartmentalization within the cell, or fatty acid composition of the DAGmay explain these discrepancies. The purpose of
this review is to compare and contrast some of the relevant findings in this area and to discuss a number of unanswered questions
regarding the relationship between DAG and insulin resistance.

1. Introduction

Hepatic insulin resistance, lipid accumulation, and inflam-
mation seem to be tightly interconnected. Indeed, strong cor-
relations among these variables have been detected in obese
human subjects and in studies conducted on a variety of
mouse and ratmodels. However, the cause and effect relation-
ship among these factors is not always clear and usually diffi-
cult to discern [1]. Furthermore, the largest genetic predictors
of NAFLD are not always associated with hepatic insulin
resistance [2, 3]. Experimental approaches to modulate the
abundance of a given lipid unavoidably lead to changes in the
abundance of other interconverted lipids such that manip-
ulating the concentrations of one lipid in isolation seems
impossible. Furthermore, difficulties in measuring the abun-
dance of lipids present at very low levels and reproducibility
across different model systems have raised questions regard-
ing whether a specific lipid can be causally linked to develop-
ment of insulin resistance.Whereas several lipids accumulate

in steatotic liver, this review will focus on diacylglycerol
(DAG), the evidence linking it to insulin resistance, and the
controversy surrounding this linkage.

On the surface, DAG is a simple hydrophobic lipid that is
normally a component of cellular membranes or is stored in
lipid droplets. DAG is composed of a glycerol backbone and
two fatty acyl groups. However, the biophysical properties
and the physiological effects of DAG can be strongly influ-
enced by the composition of the fatty acyl groups and its
physical location within the cell. For example, acyl moieties
can be esterified at either the sn-1,2 or the sn-1,3 positions of
glycerol depending upon the pathway used to generate the
DAG molecule. These two stereoisomers have different bio-
physical properties in membranes and previous work has
shown that the sn-1,2 stereoisomer is much more potent,
compared to sn-1,3-DAG, at activating certain signaling
cascades linked to insulin resistance [4]. Accumulation of
DAG containing saturated fatty acids has also been linked
to development of insulin resistance. There is also correlative
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Figure 1: Proposed mechanism for DAG-mediated insulin resistance through activation of PKC is shown.

evidence that the abundance of DAG in the various intracel-
lular compartments (membrane versus lipid droplet) can be
more strongly associated with insulin resistance [5, 6].

2. Connections between DAG and
Insulin Resistance

Some of the original work correlating tissue DAG concentra-
tions to insulin resistance was conducted in obese rats almost
25 years ago [7]. Based on previous work showing that phor-
bol ester, aDAGanalog, could impair insulin action, Turinsky
and colleagues hypothesized that endogenous DAGmight be
increased in insulin-resistant rodents. Measurement of DAG
in obese Zucker rat tissues revealed that 1,2-DAGwas elevated
inmultiple tissues in thismodel of type 2 diabetes. Since then,
elevated DAG has been correlated to impaired insulin action
in a variety of studies [8–13]. Ectopic accumulation ofDAG in
livermay be due to a variety of factors including consumption
of a high fat or high sugar diet, inability of adipose tissue
to appropriately store lipids leading to elevated circulating
free fatty acids [14–16], or effects of oxidative stress in the
liver causing DAG formation [17–19]. Because many lipids
accumulate ectopically in obesity, which is correlated with
insulin resistance, a variety of lipid species can be correlated
with insulin resistance in obese animal models or humans.
However,much of the recent attention in this area has focused
onDAGdue to the identification of clearmechanisms linking
DAG to impaired insulin signaling.

Specifically, DAG has been shown in a variety of model
systems to activate protein kinase C (PKC) family kinases,
which physically interact with membrane-embedded DAG
[20]. In hepatocytes or intact liver, links among DAG accu-
mulation, PKC activation, and impaired insulin action have
been made for PKC𝜀 [21] and PKC𝛿 [22]. The mechanism of
PKC𝜀 inhibition of insulin action was mediated via a direct
interaction of PKC𝜀 with the insulin receptor to inhibit its
intrinsic kinase activity [21] (Figure 1). The link between
PKC𝜀 activation and hepatic insulin resistance is supported
in correlative fashion by several papers [12, 13, 16, 23, 24] and
in more convincing fashion by “knocking down” PKC𝜀 in
liver by RNAi [21]. PKC𝜀 knockout mice exhibit improved
glycemic control on a high fat diet, but this is likely mediated
via enhanced insulin secretion [25]. PKC𝛿 is also activated in
steatotic liver [22, 25] and PKC𝛿 knockoutmice are protected

from high fat diet induced hepatic steatosis while PKC𝛿
overexpression was sufficient to drive insulin resistance [22].

As delineated above, numerous studies have correlated
altered DAG concentrations to PKC activation and insulin
resistance. However, it should be noted that several notable
exceptions to these correlations have been detected where
DAG accumulation in liver was not associated with devel-
opment of insulin resistance [26–33]. One interpretation of
these data is that DAG elevation is not, per se, sufficient
to cause insulin resistance. The caveat to this conclusion is
that it is not always clear whether all species, stereoisomers,
or subcellular compartments are affected similarly. Could a
change in the ratio or absolute amounts of sn-1,2 and sn-1,3
affect downstream signaling cascade activity? Similarly, could
the chain length and degree of saturation also impact inter-
pretation of these findings? Lastly, the subcellular compart-
mentalization of DAG has been reported to impact whether
DAG accumulation drives insulin resistance or not [5, 6].

Though a large number of studies have examined the
correlation between DAG and insulin resistance, this review
is going to focus primarily on data generated by targeting
enzymes that directly synthesize or degrade DAG. These
studies were mostly conducted in animal models with gene
deletion, gene expression knockdown, or overexpression.
As discussed below, there are multiple enzymatic reactions
involving glycerolipid and phosphoglycerolipid substrates
that can result in DAG synthesis. The compartmentalization
of many of these pathways, the substrate used, and the sub-
cellular location where the reaction occurs could influence
the resulting effect on metabolism and signaling. Moreover,
despite the focus on enzymes that directly regulate DAG
synthesis or turnover, this is not to say that other lipids
derived from DAG or substrates for DAG synthesis are not
affected. Indeed, as noted above, it is practically impossible
to affect the concentration of one lipid in isolation.

3. Mechanisms for DAG Synthesis

In the liver, one of the primary pathways for synthesizingDAG
is from the dephosphorylation of ER membrane-embedded
phosphatidic acid (PA) by the lipin family of proteins (lipin
1, lipin 2, and lipin 3) (Figure 2) [34, 35]. This pathway can
only produce 1,2-DAG since PA is phosphorylated at the sn-3
position. Evidence exists that both lipin 1 and lipin 2 encode
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Figure 2: The pathways for DAG synthesis and hydrolysis are
shown. FA: fatty acid, P: phosphate, G-3-P: glycerol-3-phosphate,
PA: phosphatidic acid (PA), MAG:monoacylglycerol, MGAT:MAG
acyltransferase, DAG: diacylglycerol, DGAT: DAG acyltransferase,
TAG: triacylglycerol, ATGL: adipose tissue triglyceride lipase, HSL:
hormone sensitive lipase, and DAGK: DAG kinase.

significant hepatic PAP activity [36] and may play a role in
development of NAFLD and relatedmetabolic abnormalities.
Acute adenoviral-mediated knockdown of lipin 1 or lipin 2
was shown to reduce hepatic DAG, PKC𝜀 activation, and
associated insulin resistance [37, 38]. However, when hepatic
steatosis was examined in liver-specific lipin 1 knockout mice
fed a diet containing high amounts of ethanol, alcoholic
hepatic steatosis and liver diseases were exacerbated by lipin
1 deficiency [39]. Similarly, we have recently found that liver-
specific lipin 1 knockout mice are not protected from hepatic
steatosis and insulin resistance after high fat diet (our unpub-
lished results). It is not clear whether these discordant results
between knockout mouse studies and RNAi approaches are
due to duration of lipin inhibition, chronic compensatory
mechanisms, or some other experimental differences.

Monoacylglycerol acyltransferase enzymes (MGAT1,
MGAT2, and MGAT3) also generate DAG by acylating
monoacylglycerol (Figure 1), and both sn-1,2 and sn-1,3 DAG
can be synthesized by MGAT enzymes. Recent work has
suggested that the expression of genes encoding MGATs
(Mogats) is markedly induced in human patients with
NAFLD [40] as well as rodent models of obesity [29, 41].
Mogat1 knockdown or Mogat2 KO in mice led to a reversal
or prevention of insulin resistance in high fat diet fed mice
[29, 41–43]. Interestingly,Mogat1 knockdown in diet-induced
obese mice, which caused a marked insulin sensitization,
did not affect hepatic DAG content or compartmentalization
[29, 42]. Despite this, membrane-associated PKC activity
was reduced by Mogat1 knockdown, with the caveat that the
PKC activity was not increased by the high fat diet compared
to low fat controls [29].

Adipose tissue triglyceride lipase (ATGL) is a major
hepatic triglyceride lipase [44]. Genetic deficiency in ATGL
leads to ectopic lipid accumulation, due to the inability to

mobilize stored triglycerides, in a number of tissues including
the liver [28, 31]. ATGL deficiency led to hepatic steatosis,
but this was not associated with development of hepatic
insulin resistance, inflammation, or fibrosis [28, 31, 32, 45],
despite the accumulation of DAG [31]. ATGL activity is
also controlled by an enhancer protein called CGI-58 [46].
Knockdown of CGI-58 also resulted in accumulation of
hepatic lipids, including DAG, but this did not cause insulin
resistance in high fat diet fed mice [26]. A follow-up study
concluded that loss of CGI-58 caused accumulation of DAG
specifically in lipid droplets rather than ectopically in cell
membranes, which prevented activation of PKC𝜀 signaling
[6]. However, this contradicted another previous study by
the same group showing a strong correlation between lipid
droplet DAG content and insulin resistance in human liver
[5]. These contradictory findings have not been reconciled.

4. Mechanisms for DAG Degradation

There aremultiple enzymes that convert DAG to other chem-
ical forms. This can be accomplished by addition or removal
of a fatty acyl molecule or addition of a phosphate group.The
effects of some of these pathways have now been examined by
using transgenic mouse systems or RNAi methodology.

The terminal step in triglyceride synthesizes the diacyl-
glycerol acyltransferases (DGAT1 and DGAT2). DGATs are
well expressed in liver and have been targeted for gene dele-
tion or knockdown by a number of studies. DGAT1 inhibition
did not affect insulin sensitivity in high fat diet fed rats, while
DGAT2 knockdown reduced hepatic lipid accumulation and
improved hepatic and whole body insulin sensitivity [47].
The improvement in insulin sensitivity was correlated with
a reduction in hepatic content of DAG and a corresponding
reduction in PKC𝜀 activity [47]. Liver-specific overexpression
of DGAT2 in transgenic mice somewhat surprisingly led to
an accumulation of DAG and TAG but, interestingly, did not
affect insulin sensitivity [27]. Subsequent analyses of these
mice contradicted this and suggested that hepatic insulin
sensitivity was impaired [11]. The discrepant results between
the two studies have not yet been explained. It is also unclear
why DGAT deficiency and overexpression had paradoxical
effects on DAG content, though an unexpected increase in
DAG was also observed with Mogat1 inhibition [29].

Hydrolysis of a fatty acyl group from DAG by fatty acid
lipases is another way to degrade DAG to other chemical
forms. Two genes encoding DAG lipases (Dagla and Daglb)
have been cloned, but their role in the liver and in hepatic
lipid homeostasis seems to be unknown. Hormone sensitive
lipase (HSL) was once considered the primary triglyceride
hydrolase but is now considered to be primarily a DAG
lipase. HSL deficient mice exhibit increased hepatic insulin
sensitivity with reduced hepatic triglyceride content [30,
48], while adenoviral-mediated overexpression of HSL also
reduced hepatic steatosis [49]. It is not clear whether hepatic
DAGcontentwas affected byHSL loss or gain of function, and
thus the evidence provided by these studies may not inform
us about the linkage between DAG and insulin resistance.

DAG phosphorylation by DAG kinase to produce PA is
another mechanism by which DAG concentrations could be
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affected.Whereas DAG kinase 𝛿 (DAGK𝛿) activity in skeletal
muscle has been linked to obesity-related insulin resistance,
no effect of diminished DAGK𝛿 activity in liver was detected
[50]. Could this mean that DAGK𝛿 is not well expressed in
liver or that another isoform of this family, of which there
are many, could be the predominant form in liver? This has
not been explored to our knowledge and it is not clear which,
if any, DAGK family members are highly expressed in liver.
Future studies may address this question.

5. Conclusions

The review of the relevant literature focused on enzymes
that directly synthesize or metabolize DAG reveals a pattern
of findings that is extremely mixed. Whereas some of the
studies support a link between altered DAG content and
insulin resistance through PKCs, other works fail to find
a relationship. Again, there is an important limitation to
interpreting data from this area; all of the generated data are
essentially correlative. It is also unclear how the proposed
mechanism for PKC𝜀-mediated impairment in insulin action
through inhibiting insulin receptor phosphorylation fits with
the concept of selective insulin resistance [51]. Selective
insulin resistance refers to the observation that although
insulin-mediated suppression of gluconeogenic pathways is
impaired in insulin-resistant liver, another pathway that
stimulates de novo lipogenesis through the sterol response
element binding protein (SREBP1) remains intact [51–54].
Though there are somewhat contradictory findings regarding
at which step in the bifurcating insulin signaling cascades
the selective insulin resistance occurs [52–54], it is generally
believed to be downstream of the insulin receptor. Therefore,
it is unclear how the PKC𝜀-mediated impingement on insulin
receptor activity fits with this widely observed concept and
meshes into the broader model of hepatic insulin resistance.
Futureworkwill be needed to address these discrepancies and
reconcile existing inconsistencies.
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