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movement behaviour across expertise
while viewing brain MRIs
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Abstract

Brain tumour detection and diagnosis requires clinicians to inspect and analyse brain magnetic resonance images.
Eye-tracking is commonly used to examine observers’ gaze behaviour during such medical image interpretation
tasks, but analysis of eye movement sequences is limited. We therefore used ScanMatch, a novel technique that
compares saccadic eye movement sequences, to examine the effect of expertise and diagnosis on the similarity of
scanning patterns. Diagnostic accuracy was also recorded. Thirty-five participants were classified as Novices, Medics
and Experts based on their level of expertise. Participants completed two brain tumour detection tasks. The first
was a whole-brain task, which consisted of 60 consecutively presented slices from one patient; the second was an
independent-slice detection task, which consisted of 32 independent slices from five different patients. Experts
displayed the highest accuracy and sensitivity followed by Medics and then Novices in the independent-slice task.
Experts showed the highest level of scanning pattern similarity, with medics engaging in the least similar scanning
patterns, for both the whole-brain and independent-slice task. In the independent-slice task, scanning patterns were
the least similar for false negatives across all expertise levels and most similar for experts when they responded correctly.
These results demonstrate the value of using ScanMatch in the medical image perception literature. Future research
adopting this tool could, for example, identify cases that yield low scanning similarity and so provide insight into why
diagnostic errors occur and ultimately help in training radiologists.

Keywords: Brain tumour detection, Eye-tracking, ScanMatch, Expertise, Magnetic resonance imaging, Medical image
perception

Significance
According to the American Brain Tumor Association
(2017), nearly 80,000 cases of primary brain tumour are
expected to be diagnosed in 2017. Clearly, the successful
detection of brain tumours is essential for diagnosis, patient
monitoring, treatment planning and patient prognosis.
Current best practice requires clinicians to inspect and ana-
lyse MRIs. Eye-tracking has commonly been used to exam-
ine the gaze behaviour of observers in this task, but limited
research has examined the sequence of eye movements
observers engage in when searching for abnormalities. We
used a novel technique, ScanMatch, to compare saccadic
eye movement sequences in a brain tumour detection task.
This method utilises both temporal and spatial components

of eye movement sequences and therefore enables a more
detailed investigation into the search behaviour of
observers. This research demonstrates the effective applica-
tion of ScanMatch to the medical image perception litera-
ture thus offering a new approach to the analysis of eye
movement behaviour.

Background
Medical imaging is a crucial tool when making diagnostic
and treatment decisions. Clinicians inspect an image to first
detect and then interpret any abnormalities in the context
of a given medical problem. Approximately 5 billion diag-
nostic examinations are performed worldwide each year
(Ciarrapico et al., 2017), with radiologic image perception
and interpretation occurring at a rate of more than one per
second in the United States (Beam, Krupinski, Kundel,
Sickles, & Wagner, 2006). Despite advances in computer-
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aided detection (CAD), final medical decision-making
resides with clinicians and so is constrained by their per-
ceptual and cognitive abilities. A large body of eye-tracking
research has been conducted to better understand how
clinicians engage in these interrelated processes and so pro-
vide insight into the relationship between visual search and
diagnostic decision-making (Reingold & Sheridan, 2011).
Novice-expert studies, which examine the effect of

expertise on gaze behaviour, have revealed that experts
have faster overall search times to detect and confirm the
presence of an abnormality (Krupinski, 1996; Krupinski et
al., 2006). Experts fixate on lesions, or other regions of
interest, faster and for longer than Novices (Kundel,
Nodine, Conant, & Weinstein, 2007; Nodine, Kundel,
Lauver, & Toto, 1996) and, in clear images, spend more
time fixating regions that are most likely to contain abnor-
malities (Kundel, 1974). Nodine et al. (1996) suggested
that Novices engage in less efficient searches as indexed
by their greater coverage of the medical image (Krupinski,
1996; Manning, Ethell, Donovan, & Crawford, 2006;
Nodine et al., 1996). Such research demonstrates that gaze
behaviour changes as a function of expertise and hints at
the possibility that we may be able to identify what
characterises expertise and how knowledge of this can be
used to improve training practices, and efficiency, for
future clinicians.
Clinicians make diagnostic mistakes, with estimates sug-

gesting approximately 30% false-negative and false-positive
rates in radiology (Krupinski, 2010). The prevalence effect
reveals that observers often miss rare targets, which are not
often encountered in daily medical screening, compared to
more frequently encountered targets (Evans, Tambouret,
Evered, Wilbur, & Wolfe, 2011; Wolfe et al., 2007).
Berbaum et al. (2001) revealed that radiologists are suscep-
tible to satisfaction of search, whereby detection of a first
abnormality detracts for the detection of subsequent abnor-
malities. Drew, Võ, and Wolfe (2013) demonstrated inatten-
tional blindness in radiologists who failed to report seeing a
gorilla within a lung-nodule detection task. Eye-tracking
has therefore been used to investigate why and where
errors occur. Kundel, Nodine, and Carmody (1978)
developed a nodule detection model based on the assump-
tion that prolonged dwell times indicate intensive process-
ing of visual data to enable classification of false-negative
responses to pulmonary nodules into different types of
error. Scanning errors reflect a failure to fixate the lesion
areas and recognition errors occur when the lesion area has
been fixated but an observer does not detect the lesion.
Decision-making errors are those where the interpretation
of a lesion is incorrect. Out of 20 false-negative diagnoses
performed by four radiologists, 30%, 25% and 45% were
classified as scanning, recognition and decision-making
errors, respectively (Kundel et al., 1978). Several researchers
have reported longer fixations for false negatives (Kundel &

Nodine, 2004; Nodine, Mello-Thoms, Kundel, & Weinsten,
2002), indicative of prolonged visual attention. Krupinski
(2005) examined the effect of lesion subtlety on gaze behav-
iour and found that when subtler lesions were detected,
dwell time was longer than for both the more obvious
lesions and false negatives. Taken together these findings
demonstrate a relationship between gaze behaviour and
diagnostic accuracy, with certain behaviours characterising
certain responses.
Scan paths which can capture both temporal and spatial

components of an individual’s search have also been inves-
tigated in the medical image perception literature. Kundel
and Nodine (2004) revealed that quantitative parameters
derived from scan paths can be used to separate mammo-
graphers and trainee mammographers. Gandomkar, Tay,
Brennan, and Mello-Thoms (2017) developed a model
with 86.3% and 85.2% sensitivity and specificity, respect-
ively, that distinguished expert and less experienced
radiologists based on the spatial dynamics of their eye
movements. Such research indicates that gaze behaviours
characterise expertise in medical image interpretation
tasks. Litchfield, Ball, Donovan, Manning, and Crawford
(2008, 2010) revealed that viewing another person’s eye
movements on a lung nodule detection task can improve
performance while Sridharan, Bailey, McNamara, and
Grimm (2012) reported higher sensitivity and specificity
when Novices used a subtle gaze direction (SGD) tech-
nique that actively guides Novices along the scan path of
an expert. Taken together, these studies indicate that
visual guidance aids medical image interpretation.
Research also suggests that scanning patterns are related

to diagnostic accuracy. Davies et al. (2016) examined how
practitioners perceived electrocardiograms (ECGs) and
determined whether visual behaviour can indicate differ-
ences in interpretation accuracy. Their results demon-
strated a difference in the gaze behaviour between correct
and incorrect interpretations of various heart-related
measurements (e.g. identifying hyperkalaemia, torsades de
pointes and atrial flutters) and so highlighted this as a
factor in interpretation accuracy. Voisin, Pinto, Morin-
Ducote, Hudson, and Tourassi (2013) used machine learn-
ing to successfully predict radiologists’ errors during the
diagnosis of mammographic lesions by merging their gaze
behaviour and textural characteristics of the image.
Tourassi, Mazurowski, Harrawood, and Krupinski (2010)
examined the potential of a context-sensitive computer-
assisted detection (CADe) system that is guided by the
user’s focus of attention. The context-sensitive mode of
the system, which analysed radiologists scanning patterns
and diagnostic decisions while inspecting 20 mammo-
grams, reduced radiologists’ perceptual and cognitive
errors in the diagnostic interpretation of screening
mammograms more effectively than the conventional
CADe system. Taken together, the eye-tracking literature
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indicates that scanning patterns are related to diagnostic
accuracy.
However, only a limited amount of research has investi-

gated similarities between the scan paths of participants
viewing medical images. Wooding, Roberts, and Phillips-
Hughes (1999) reported that trainee radiologists (16.5
months experience) showed the least within-group
consistency compared to laymen (0 months experience),
novices (2.3 months experience) and radiologists (90
months experience). Trainee radiologists also showed the
least amount of similarity to radiologists compared to all
other comparison groups. The authors suggested that
trainees go through a developmental phase characterised
by idiosyncratic patterns of attention allocation and eye
movements. Leong, Nicolaou, Emery, Darzi, and Yang
(2007) examined whether experience improves the
consistency of visual search behaviour in fracture identifica-
tion in plain radiographs. Using Kullback-Leibler diver-
gence and Gaussian mixture model fitting, these authors
reported that experts exhibited higher consistency in their
search patterns.
The present study will extend the limited literature exam-

ining the similarity of scan paths. More specifically, we use
ScanMatch (Cristino, Mathôt, Theeuwes, & Gilchrist, 2010)
, a well-established approach to quantifying the similarity
between scanning patterns of individuals. At its core, Scan-
Match is based on the Needleman-Wunsch algorithm, used
commonly for comparing DNA sequences. We chose this
method because it accounts for the temporal, spatial and
sequential components of fixations and so overcomes limi-
tations of existing string edit methods (Cristino et al.,
2010). Moreover, the substitution matrix allows researchers
to encode information about the relationship between
specific regions of interest and so can account for semantic
information as well (Cristino et al., 2010). Madsen, Larson,
Loschky, and Rebello (2012) used ScanMatch to examine
differences in the eye movements of individuals answering
physics questions to examine if there was a difference for
correct versus incorrect answers. This method has also
been used to examine differences in scanning patterns
between Novices and Experts evaluating paintings (Pihko et
al., 2011) and while viewing surgical procedures (Kübler,
Eivazi, & Kasneci, 2015), problem-solving (Nyamsuren &
Taatgen, 2013), face-processing (Chaby, Hupont, Avril,
Luherne-du Boullay, & Chetouani, 2017), and decision-
making (Zhou et al., 2016). Anderson, Anderson,
Kingstone, and Bischof (2015) compared the ability of sev-
eral scan path comparison methods to reveal similarities
both within and between individuals looking at natural
scenes and concluded that ScanMatch is a remarkable
improvement on more simple method string-edit and linear
distance methods. Using this tool, we will investigate the
effect of expertise and diagnosis on the similarity of scan-
ning patterns in a brain tumour detection task using MRIs.

Medical image perception tasks include both static two-
dimensional (2D) image viewing and dynamic stack view-
ing. Stack viewing involves a clinician quickly scrolling
through a stack of 2D images to get a three-dimensional
(3D) impression of the anatomical structure of an organ
(Nakashima, Komori, Maeda, Yoshikawa, & Yokosawa,
2016). The shift from static to dynamic viewing has chan-
ged the task of medical image interpretation with a tiled
set of 2D images containing less information than a volu-
metric image (Krupinski et al., 2012). Medical students
tend to perform worse on volumetric images than on 2D
images (Ravesloot, van der Gijp et al., 2015; Ravesloot,
Van Der Schaaf et al., 2015). van der Gijp et al. (2015)
showed that radiology clerks take more time, and engage
in more and different cognitive processes, when interpret-
ing volumetric images than 2D images with Stuijfzand et
al. (2016) reporting an effect of image information (i.e. 2D
or 3D) on self-reported mental effort used to index cogni-
tive load. 3D volumetric image interpretation better re-
flects the clinical setting for inspecting brain MRI images
in which the brain is separated into cross-sections or
‘slices’. Therefore, in this experiment, it is important to in-
vestigate eye-gaze behaviour in dynamic viewing and the
visual search of clinicians viewing sequentially presented,
dependent, medical images (Drew, Võ, Olwal et al., 2013;
Nakashima et al., 2016). The dependence between sequen-
tial images from the same brain is important as the clin-
ician may use information from previous slices to direct
their attention on the current slice.
Despite the wealth of research into medical image inter-

pretation, most studies have used either the chest or breast
as stimuli (see Reingold & Sheridan, 2011, for a review).
Ostrom et al. (2015) predicted that in 2016 approximately
77,670 primary brain and central nervous system tumours
were expected to be diagnosed in the United States.
Although eye-tracking-based research has assessed clini-
cian’s inspection of brain MRI images for glioma diagnosis
(Cavaro-Ménard, Tanguy, & Le Callet, 2010) and the eye-
gaze distribution of neurologists when viewing CT images
of stroke patients (Matsumoto et al., 2011), there is signifi-
cantly less work examining how clinicians and novices view
MRI images of the brain. To start to address this gap, the
current study uses MRI brain images as stimuli.
Here, we use a novice-expert design to examine how

eye-gaze parameters change across three expertise levels
(i.e. undergraduate students: Novices; third and fourth year
undergraduate medical students: Medics; and medical pro-
fessionals: Experts) in a brain tumour detection task using
MRIs. This study is the first to apply ScanMatch to the
medical image perception literature to better understand
the temporal dynamics of image interpretation. Thirty-five
participants completed both a whole-brain (Experiment
1a) and independent-slice (Experiment 1b) brain tumour
detection task to further investigate a prevalent issue in
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the literature, namely the effect of viewing modality on
visual search and performance. In the whole-brain task,
eye-gaze data was recorded while participants sequentially
viewed 60 slices of a patient’s brain MRI and in the
independent-slice task, both eye-gaze data and perform-
ance measures were recorded when participants inspected
32 brain MRIs (16 tumorous; 16 healthy). This exploratory
work examines the efficacy of a novel technique, Scan-
Match, within the medical image perception literature.
The application this technique could have practical impli-
cations including the development of medical training and
monitoring of students’ acquisition of expertise.

Experiment 1a: whole-brain
Method
Participants
Thirty-five participants were recruited into three groups
based on their level of expertise in brain MRI interpret-
ation. The Novice group consisted of 18 undergraduates at
the University of Bristol studying any subject apart from
medicine, dentistry or veterinary sciences. The Medic group
were ten medical students from the University of Bristol in
either their third (n = 8) or fourth (n = 2) year of study.
Seven Experts were recruited from a National Health
Service (NHS) hospital and consisted of trainee neuroradi-
ologists (n = 3; mean experience 2.5 years), consultant
neuroradiologists (n = 2; mean experience 8 years) and con-
sultant neurologists (n = 2; mean experience 12 years). All
participants had normal or corrected-to-normal vision and
gave written informed consent in accordance with the
Declaration of Helsinki (2008). Ethical approval was ob-
tained from the Faculty of Science Human Research Ethics
Committee at the University of Bristol.

Stimuli and apparatus
All brain images and diagnoses were obtained from a UK
NHS hospital. Stimuli for the whole-brain task consisted
of 60 T2 brain MRI images from one patient with a right
medial temporal lobe intrinsic tumour (see Fig. 1 for

example slices). T1 and T2 images are commonly ac-
quired medical images used in clinical settings for inspect-
ing brains. We used T2 images for the whole-brain task
because this is most heavily relied upon for brain tumour
detection. All stimuli were registered using SPM5 (Penny
et al., 2001). Stimuli were presented using a custom-made
programme written using MATLAB (The MathWorks,
Inc., 2013) and the Psychophysics Toolbox (Psychtoolbox-
3; Brainard, 1997; Kleiner, Brainard, & Pelli, 2007; Pelli,
1997). Eye-gaze data were recorded from the participant’s
dominant eye using the Eye-Link 1000 (SR Research, Mis-
sissauga, ON, Canada), an infrared tracking system that
uses the pupil centre in conjunction with corneal to sam-
ple eye position at 1000 Hz. For each data sample, a dedi-
cated parser algorithm (SR Research, Mississauga, ON,
Canada) computes the instantaneous velocity and acceler-
ation of the eye. These are then compared to threshold
criteria for velocity (30°/s) and acceleration (8000°/s2). If
either is above threshold, the eye movement is classified
as a saccade. A MATLAB script (The MathWorks, Inc.,
2013) was then used to extract all the saccades from the
Eyelink Data File. Using a chin rest, participants viewed
stimuli on a colour laptop monitor (1280 × 800 pixel reso-
lution) from a distance of 50 cm in a darkened room.

Design
This was a mixed design with Expertise Level (Novice,
Medic, Expert) as the between-subject factor and Run
Through (Run 1, Run 2) as the within-subjects factor. In
order to assess intra-group similarity in scanning patterns,
within-group comparison was included as a between-subject
factor (i.e. Novice-Novice, Medic-Medic, Expert-Expert). To
investigate between-group similarity, between-group com-
parison was included as a within-subject factor (e.g. Novice-
Novice, Novice-Medic, Novice-Expert).

Procedure
A standard nine-point calibration and validation pro-
cedure was performed in which observers were asked

Fig. 1 Example slices from the entire brain set used in the stack viewing task, Experiment 1a
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to fixate on a black cross that appeared randomly on a
3 × 3 grid. Following this, participants were instructed
to search the stack of brain MRI images for any
tumorous tissue. Each slice was presented for 1500 ms
and was immediately followed by the subsequent slice.
This process was completed twice with a 2000-ms
break between runs. Participants were told to freely
inspect the brain during both runs. The stimuli were
selected so that the tumour was very clear to all
observers and therefore participants were not required
to provide a diagnosis (see Fig. 1). The task lasted
approximately 4 min.

Analysis
Our analysis focused on the fixation patterns. We mea-
sured the similarity of the sequences of fixations using
ScanMatch (Cristino et al., 2010). A letter-based string
sequence was generated for each participant that
described their fixations. The sequences of different par-
ticipants are then compared using ScanMatch. An align-
ment score is generated and then normalised to provide
a ScanMatch similarity score, namely an index of scan-
ning similarity. A similarity score of 1 indicates that the
sequences are identical while a score of 0 indicates that
there is no similarity. Figure 2 shows details of the Scan-
Match method. More specifically, within-group compari-
sons and between-group comparisons were examined
for Run1 and Run 2. The sequence of fixations for Run
1 and Run 2 were those that were recorded during the
first and second presentation of the 60 slices which
constituted an entire brain, respectively. For each run,
the sequence was presented across all slices, because the
first fixation location on a given slice would have
depended on the final fixation location of the previous
slice. The sequence and duration of fixations were used
to generate a letter-string sequence that corresponded to
spatial locations. We then compared this sequence with
other participants’ sequences.
Figure 3 explains how to interpret different ScanMatch

similarity scores in the context of this experiment. In
order to gain a clearer insight into this, we used the
experimental data as the reference sequence and com-
pared this with a test sequence. The first test sequence
had one fixation replaced with a randomly selected alter-
native fixation. After each comparison, another random
replacement was made in the same manner. This ana-
lysis demonstrates effect of the number of different fixa-
tions between two scanning sequences on ScanMatch
similarity score (see Fig. 3). Of course, the actual pattern
is more complicated than this as ScanMatch takes into
account temporal order, so it does not simply reflect the
number of fixation differences (this is a proxy in order
to illustrate what a difference may mean in terms of
fixation differences).

Results
The results reported below lie in the middle range of Scan-
Match similarity scores (see Fig. 3). This indicates that
scanning patterns are not in high agreement nor entirely
random. Moreover, while many of the reported differences
between conditions are small, they are statistically reliable.

Fig. 2 Simplified details of the ScanMatch method used to calculate
similarity in scanning patterns. The top panel shows the fixations of
two participants overlaid on an example stimulus. A grid-based
region-of-interest (ROI) mask is also overlaid with a combination of
lower- and upper-case letters used to define each ROI. The middle
panel demonstrates the generation of letter sequences used to
describe each participants’ search behaviour and the substitution
matrix that provides information on the relationship between two
ROIs. The bottom panel shows how two participants scanning
behaviour are compared. The colour-coded substitution matrix is
used to calculate an alignment score which indexes how similar two
participants’ scanning behaviour is. Red squares indicate a high score
because the two participants fixated in the same ROI whereas blue
squares indicate a low score because the two participants fixated in
different ROIs. Alignment scores are then normalised to generate a
score between 0 (low similarity) to 1 (high similarity). See Cristino et
al. (2010) for a full description of the ScanMatch method
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A 3 × 2 mixed ANOVA revealed that scanning patterns
were more similar for Run 1 (M = 0.56, 95% confidence
interval [CI] = 0.55–0.57) than Run 2 (M = 0.52, 95% CI =
0.50–0.54), F(1,32) = 27.98, p < 0.001, ηp

2 = 0.466. An
effect of within-group comparison on ScanMatch similarity
scores was also found, F(1,32) = 6.86, p = 0.003, ηp

2 = 0.
300. Experts displayed the most similar scanning patterns
(M = 0.58, 95% CI = 0.55–0.61), followed by Novices (M =
0.54, 95% CI = 0.52–0.56) and then Medics (M = 0.50, 95%
CI = 0.47–0.53). There was no interaction, F(2,32) = 1.72, p
= 0.196, ηp

2 = 0.097.
A similar qualitative pattern of results was observed for

between-group comparisons (see Table 1). Across all
between-group comparisons, scanning similarity was higher

Fig. 3 An illustration of the relationship between scanning sequences and ScanMatch similarity scores. The top panels show the scanning sequence
of a Participant N (note fixations are plotted according to the correct ROIs not the specific fixation location for presentation purposes). The middle
panel shows the effect number of different fixations between two sequences on ScanMatch similarity score. The bottom panel shows scanning
sequences that have 2 (red), 8 (green) and 15 (blue) random fixations inserted into the scanning sequence of Participant N to show the effect of this
on ScanMatch similarity score

Table 1 Means (95% CI) for each between-group comparison
and run through for ScanMatch similarity score

Novice Medic Expert

Novice Run 1 0.55 (0.53–0.58) 0.54 (0.52–0.57) 0.57 (0.54–0.60)

Run 2 0.53 (0.50–0.56) 0.50 (0.47–0.52) 0.54 (0.50–0.57)

Medic Run 1 0.54 (0.51–0.58) 0.53 (0.50–0.56) 0.54 (0.51–0.58)

Run 2 0.51 (0.47–0.55) 0.47 (0.44–0.50) 0.50 (0.43–0.56)

Expert Run 1 0.57 (0.54–0.60) 0.56 (0.53–0.59) 0.61 (0.60–0.62)

Run 2 0.54 (0.49–0.58) 0.51 (0.48–0.53) 0.55 (0.52–0.58)
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for Run 1 than Run 2 (all F > 6.34, p < 0.014). There was an
effect of between-group comparison when comparing
novices against all other expertise levels F(2,34) = 13.10, p <
0.001, ηp

2 = 0.435. Novice-Novice and Novice-Expert com-
parisons were more similar than Novice-Medic compari-
sons. There was also an interaction, F(2,34) = 8.56, p = 0.
001, ηp

2 = 0.335, with all between-group comparisons
revealing higher scanning similarity for Run 1 than Run 2.
Medic-Medic comparisons were less similar than

Medic-Novice comparison and Medic-Expert compari-
son, F(2,18) = 7.34, p = 0.008, ηp

2 = 0.413. Expert-Expert
and Expert-Novice comparisons were more similar than
Expert-Medic comparisons, F(2,12) = 15.83, p < 0.001,
ηp

2 = 0.725. Study participants did not consent to data
sharing so supporting data cannot be made available.

Experiment 1b: independent-slices
Since most existing research uses 2D viewing modalities,
we also examined the effect of expertise and diagnosis
on eye-gaze behaviour and diagnostic accuracy in an
independent-slice brain tumour detection task. This pro-
vides insight into the effect that viewing modality may
have on gaze behaviour in such tasks.

Method
Participants
All participants who completed Experiment 1a also par-
ticipated in Experiment 1b.

Design
This was a mixed design with expertise level (Novice,
Medic, Expert) as the between-subject factor and diagno-
sis (clear, tumorous) as the within-subject factor. For some
analyses, we included stimulus-response classification (i.e.
true positive, false negative, false positive, true negative) as
the within-subject factor. In order to assess within-group
similarity in scanning patterns, within-group comparison
was included as a between-subject factor (i.e. Novice-
Novice, Medic-Medic, Expert-Expert). To investigate
between-group similarity, between-group comparison was
included as a within-subject factor (i.e. each participant
has a similarity score with all expertise groups).

Stimuli and apparatus
Figure 4 shows the stimuli for the static viewing task con-
sisted of 32 images from five patients (four unhealthy; one
healthy). Four slices (two T1; two T2) were used as stimuli
from each unhealthy patients’ scan and so the conspicuity
varied (by-item accuracy: M = 79%, 95% CI 72–85%, with
three cases at ceiling [i.e. 100%]) dependent upon the
location within the scan from which the slice was taken.
Sixteen slices (eight T1; eight T2) were used as stimuli
from the healthy patients’ scan. Registration and

presentation of stimuli was the same as reported for Ex-
periment 1a and the same apparatus was used.

Procedure
Participants completed this task straight after the stack
viewing task. Participants were instructed to inspect the
images freely and decide whether they believed a tumour
was present or absent. Each trial started with a fixation
cross in the centre of the screen upon which participants
had to fixate for the test stimuli to appear. Test stimuli
were presented for 5 s after which participants had to
provide a diagnosis (i.e. tumorous or clear) and confidence
rating (in this case: Guess, Maybe, Probably, Definitely).
All participants were instructed to freely inspect the
images and then provide a diagnostic decision by moving
a mouse over a centrally located array which had the
response options within. Participants were not required to
localise the tumour because we did not want the response
procedure to interfere with scanning patterns. The testing
session took approximately 40 min.

Analysis
Accuracy and confidence ratings were recorded and we
calculated standard signal detection statistics d’, which
indexes observer’s ability to distinguish between tumorous
(target-present) and clear (target-absent) images, and C,
which gives a measure of an observer’s bias to respond
positively or negatively to an image. As with Experiment
1a, ScanMatch similarity scores were calculated. We
calculated scores using both the actual diagnosis (i.e.
tumour-present or absent) and the four categories of the
stimulus-response matrix (true positive, false negative,
false positive, true negative) as independent variables to
fully reflect the diagnostic decision of each participant.

Results
Table 2 shows the mean and standard deviation for the
performance measures. There was an effect of expertise
level on accuracy, F(1,32) = 15.42, p < 0.001, ηp

2 = 0.491.
Experts were more accurate than Medics who were more
accurate than Novices. Expertise level also affected
confidence ratings, F(1,32) = 20.28, p < 0.001, ηp

2 = 0.559.
Experts were more confident than Medics who were more
confident than Novices. Participants reported higher
confidence for tumorous compared to clear images, F(1,32)
= 15.47, p < 0.001, ηp

2 = 0.326. There were no other effects
on accuracy or confidence (all F < 1.51, p > 0.236). There
was an effect of expertise level on discriminability, F(2, 34)
= 19.34, p < 0.001, ηp

2 = 0.547. Medics were more sensitive
than Novices and Experts were more sensitive than Medics.
There was no effect of expertise level on bias, F(2, 34) = 1.
78, p = 0.185, ηp

2 = 0.100.
We first analysed the results using a 3 (within-group

comparison: Novice-Novice, Medic-Medic, Expert-Expert)
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× 2 (diagnosis: tumorous, clear) by within-group compari-
son and diagnosis (i.e. tumorous or clear). A main effect
of within-group comparison, F(1,32) = 12.88, p < 0.001,
ηp

2 = 0.446, was revealed. Medics (M = 0.51, 95% CI = 0.
48–0.54) had less similar scanning patterns than both
Novices (M = 0.55, 95% CI = 0.53–0.57) and Experts (M =
0.58, 95% CI = 0.57–0.59). There was also a main effect of
diagnosis, F(1, 32) = 4.59, p = 0.040, ηp

2 = 0.125. Scanning
patterns were more similar for clear (M = 0.55, 95% CI =
0.54–0.56) than tumorous images (M = 0.54, 95% CI 0.
53–0.55). There was no interaction, F(2, 32) = 0.19, p = 0.
829, ηp

2 = 0.012.
Table 3 shows the between-group comparison for each

diagnosis. Three 3 × 2 repeated measures ANOVAs were
conducted to examine between-group similarity in scan-
ning patterns (e.g. Novice-Novice; Novice-Medic; Novice-
Expert). When comparing Novices to all other expertise
levels there was a main effect of between-group compari-
son, F(2,34) = 78.75, p < 0.001, ηp

2 = 0.822. Novices had
less similar scanning patterns to Medics than to
themselves and Experts. There was an effect of diagnosis,
F(1,37) = 4.98, p = 0.039, ηp

2 = 0.227. Scanning patterns
were more similar for clear compared with tumorous
images. There was also an interaction, F(2,34) = 12.06, p <
0.001, ηp

2 = 0.541, with scanning patterns being most
similar for clear images across all between-group compari-
sons (see Fig. 5).
We also examined differences in Medics scanning pat-

terns compared to themselves, Novices and Experts. There
was a main effect of between-group comparison, F(2,18) =

12.33, p < 0.001, ηp
2 = .578. Medics were less similar in

their scanning patterns to themselves than to Novices and
Experts. There was no effect of diagnosis, F(1,9) = 2.46, p =
0.151, ηp

2 = 0.215, and no interaction between diagnosis
and between-group comparison, F(2, 18) = 2.75, p = 0.091,
ηp

2 = 0.234.
Using Experts as the reference, there was a main effect

of between-group comparison, F(2,12) = 91.97, p < 0.001,
ηp

2 = 0.939. Experts were more similar to themselves than
Novices and Medics. There was a main effect of diagnosis,
F(1,6) = 8.30, p = 0.028, ηp

2 = 0.580. Scanning patterns
were more similar for clear compared to tumorous
images. There was an interaction, F(2, 12) = 9.44, p = 0.
003, ηp

2 = 0.611, with scanning patterns being most
similar for clear images across all comparisons (see Fig. 6).
A 3 × 4 mixed ANOVA was used to examine differences

in the scanning patterns within each expertise group and
the effect of stimulus-response classification (i.e. true posi-
tive, false positive, true negative, false negative) on scanning
pattern similarity. There was a main effect of within-group
comparison, F(2,26) = 8.74, p = 0.001, ηp

2 = 0.402. Medics
engaged in less similar scanning patterns with each other
(M = 0.50, 95% CI = 0.47–0.53) than Novices (M = 0.55,
95% CI = 0.52–0.58) and Experts (M = 0.55, 95% CI = 0.
50–0.60). There was also a main effect of stimulus-
response category, F(3,78) = 7.28, p = 0.002, ηp

2 = 0.219.
Scanning patterns were less similar for false negatives (M =
0.51, 95% CI = 0.49–0.53) than true positives (M = 0.54,
95% CI = 0.53–0.55), false positives (M = 0.54, 95% CI = 0.
52–0.56) and true negatives (M = 0.55, 95% CI = 0.53–0.

Fig. 4 Example slices from the static viewing task. Images (a) (T2) and (b) (T1) are from patient 1, (c) (T2) and (d) (T1) are from patient 2, (e) (T2)
and (f) (T1) are from patient 3, (g) (T2) and (h) (T1) are from patient 4 and (i) (T2) and (j) (T1) from are from patient 5

Table 2 Mean and standard deviations (in parentheses) for performance measures in Experiment 1B

Accuracy Confidence d’ C

Tumour Clear Tumour Clear

Novice 0.68 (0.13) 0.79 (0.13) 1.47 (0.46) 1.29 (0.48) 1.43 (0.53) 0.20 (0.35)

Medic 0.81 (0.12) 0.84 (0.18) 2.07 (0.25) 1.88 (0.42) 2.09 (0.58) 0.08 (0.48)

Expert 0.95 (0.04) 0.90 (0.12) 2.61 (0.35) 2.15 (0.44) 2.88 (0.47) 0.13 (0.30)
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57). There was some evidence for an interaction, F(6,78) =
2.38, p = 0.063, ηp

2 = 0.155. Figure 7 shows that Experts
were more similar in their scanning patterns for true
positives (M = 0.58, 95% CI = 0.57–0.59) and true negatives
(M = 0.59, 95% CI = 0.58–0.60), namely on correct trials,
than false positives (M = 0.50, 95% CI = 0.45–0.55) and
false negatives (M = 0.49, 95% CI = 0.44–0.54). Medics
were less similar for false negatives (M = 0.46, 95% CI = 0.
44–0.48) than true positives (M = 0.52, 95% CI = 0.51–0.
53), false positives (M = 0.50, 95% CI = 0.46–0.54) and true
negatives (M = 0.51, 95% = 0.49–0.53). It was not possible
to examine between-group similarity in scanning patterns
using stimulus-response classification because this requires
two participants to provide the same response on a given
stimuli which resulted in very small sample sizes. Study
participants did not consent to data sharing so supporting
data cannot be made available.

Discussion
This study examined the effect of expertise and diagnosis
on performance and gaze behaviour in a brain tumour
detection task using MRI scans. Novices, medical students
and experts completed both a whole-brain tumour

detection task, which better reflects the clinical setting,
and an independent-slice brain tumour detection task
commonly used in experimental research. In the inde-
pendent task (Experiment 1b), diagnostic accuracy was re-
corded and revealed that Experts were the most accurate,
confident and sensitive, followed by Medics and then
Novices. This fits with the existing literature that diagnos-
tic performance improves with expertise (Crowley, Naus,
Stewart, & Friedman, 2003; Donovan & Litchfield, 2013)
and confirms that participants were appropriately classi-
fied according to expertise level. A limitation of the task,
however, was that participants were not required to local-
ise the tumour and therefore could have been correct for
the wrong reasons. Future research should collect localisa-
tion responses to provide more insight into the decision-
making process. In addition, this result offers some insight
into the development of expertise because three expertise
levels were included. Medics, whose previous exposure to
brain MRIs was to learn about brain structures and who
had no formal training on the interpretation of brain
MRIs, were more accurate and displayed higher sensitivity
than Novices. We propose that their superior performance
was driven by their knowledge of brain anatomy rather
than perceptual skill. This fits with both Snowden, Davies,
and Roling (2000) who reported that experience with a
given stimulus enhances one’s sensitivity to critical
features essential for detecting abnormalities and Nodine
et al. (1999) who suggested that differences in resident
performance resulted primarily from a lack of perceptual-
learning experience. These findings indicate that percep-
tual skill is acquired with expertise but, since our Medics
had little exposure to brain MRIs, it is unlikely that the
perceptual component of medical image interpretation dif-
ferentiated Novices’ and Medics’ performance on this task.

Fig. 5 Interaction between between-group comparison and diagnosis on ScanMatch similarity score when Novices are the reference group. Error
bars represent standard error

Table 3 Means (95% CI) for each between-group comparison
and actual diagnosis for ScanMatch similarity scores

Novice Medic Expert

Novice Tumorous 0.55 (0.53–0.57) 0.52 (0.51–0.53) 0.55 (0.53–0.57)

Clear 0.56 (0.54–0.57) 0.53 (0.52–0.55) 0.57 (0.55–0.59)

Medic Tumorous 0.53 (0.48–0.58) 0.50 (0.47–0.53) 0.52 (0.48–0.56)

Clear 0.54 (0.49–0.58) 0.51 (0.48–0.54) 0.53 (0.49–0.58)

Expert Tumorous 0.55 (0.54–0.56) 0.53 (0.52–0.54) 0.57 (0.56–0.59)

Clear 0.57 (0.56–0.58) 0.54 (0.53–0.55) 0.59 (0.57–0.60)
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Since cross-sectional image interpretation now commonly
uses volumetric images for diagnostic decision-making, we
were interested in whether the same qualitative pattern of
results was revealed when participants completed a whole-
brain and independent-slice brain tumour detection task.
This study was novel in examining eye-gaze behaviour in
both viewing conditions which is a prevalent issue in the
literature given the different demands of either tasks
(Krupinski et al., 2012; Stuijfzand et al., 2016). A limitation
of the whole-brain task was that each slice was presented
for a fixed 1500-ms duration which does not reflect clinical
practice in which clinicians can scroll freely through the
image in any direction at their desired speed. Nevertheless,

such dynamic stimulus presentations are still used within
the literature (Nakashima et al., 2016). By controlling the
presentation of stimuli, we were also able to directly
compare Novices and Experts, which would not be possible
if viewing times and styles varied greatly. The whole-brain
task revealed that scanning patterns were more similar for
Run 1 than Run 2. One interpretation is that scanning
patterns in Run 1 were largely driven by saliency which sup-
ports models of visual saliency whereby fast and primitive
bottom-up processes bias the observer towards the most
salient stimuli in the early stages of exposure (Parkhurst,
Law, & Niebur, 2002). In contrast, during Run 2, top-down
processes such as prior experience (i.e. information from

Fig. 7 Interaction between within-group comparison and stimulus-response classification on ScanMatch similarity score. Error bars represent
standard error

Fig. 6 Interaction between between-group comparison and diagnosis on ScanMatch similarity score when Experts are the reference group. Error
bars represent standard error
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Run 1) and clinical knowledge guided visual attention in a
goal-oriented manner that contributed to larger disparities
in scanning patterns. We must acknowledge that the task
given to participants, namely ‘Search for a tumour’ is much
more well-defined than that experienced in a real clinical
setting in which clinicians must search for various different
diseases (e.g. haemorrhages) and therefore future research
should try to replicate the clinical setting more closely.
The effect of expertise on scanning pattern similarity was

consistent across both tasks. Experts engaged in the most
similar inspection techniques, followed by novices and
finally medical students (see Tables 1 and 3). This finding
fits with both Leong et al. (2007) and Wooding et al. (1999)
who reported that the most experienced observers showed
greater consistency in their search patterns. Radiologists
have undergone specific training and so acquired clinical
knowledge that guides their search. More specifically,
knowledge of the informative areas within an image and
the probability distribution of areas likely to contain a
tumour which increases the chances that they will fixate
these regions in a similar order. We therefore propose that
similar scanning patterns among experts are a consequence
of specialised radiology training or expertise. Novices had
no clinical knowledge of brain anatomy, so their searches
were likely more driven by saliency cues such as asymmetry
and contrast. This fits with research from standard visual
search tasks in which visual features of an image, such as
asymmetry, guide visual attention (Wolfe & Horowitz,
2004) and Matsumoto et al.’s (2011) finding that, when
viewing brain computed tomography (CT) images, the
areas novices frequently fixated often coincided with areas
identified as outstanding in saliency maps. Medics had
some clinical knowledge of the brain and so their search
will have been driven by a combination of saliency cues and
knowledge of brain anatomy. Several factors, such as age,
nationality and sex, motivation and enthusiasm predict
outcomes at medical school (Adam et al., 2015; Vaughan,
Sanders, Crossley, O’neill, & Wass, 2015) and so it is likely
that these medical students had different levels of clinical
knowledge that contributed to more idiosyncratic scanning
patterns. In line with Wooding et al. (1999), we propose
that it is possible that the acquisition of expertise is not a
smooth transition and that trainee radiologists become
more dissimilar during their training.
According to ScanMatch, the least similar scanning pat-

terns were observed on false-negative trials across all
within-group comparisons (see Fig. 7). The Global-Focal
Search Model postulates that, when viewing a medical
image, observers obtain a global impression of the image
which constrains subsequent search (Nodine & Kundel,
1987). Similarly, the Two-Stage Detection Model (Swens-
son, 1980) asserts that experts use visual mechanisms that
act as a filter to constrain the features that warrant further
examination. Kundel, Nodine, Krupinski, and Mello-

Thoms (2008) proposed that the strategy used by
radiologists in interpreting medical images consists of a
‘look-detect-scan’ pattern which has a prominent role for
a gestalt-like stage of processing. These models fit with
the dual-pathway model of visual awareness (Drew, Evans,
Võ, Jacobson, & Wolfe, 2013; Wolfe, Vo, Evans, & Greene,
2011) which proposes that search in natural scenes is best
explained by two routes: (1) a ‘non-selective’ pathway
enables the extraction of global statistical information
from within an image (global processing); (2) a ‘selective
pathway’ in which individuals select candidate objects for
focal processing (Wolfe et al., 2011). It is possible that the
lowest scanning similarity was revealed for false negatives
because observers did not detect the global irregularities
that would drive the subsequent search. Therefore,
observers engaged in a less systematic search of the brain
and failed to detect the tumour. However, this line of
reasoning would also suggest that low scanning similarity
would be observed for true negatives because there are
also no global irregularities to guide the subsequent
search, but this result was not observed. Such findings
indicate that models of medical image perception should
incorporate the visual search process undertaken when
global irregularities are not detected by an observer.
Classifying diagnostic accuracy into stimulus-response
categories without systematically manipulating the level of
conspicuousness of each tumour is a limitation of the
present study. It is possible that diagnostic accuracy was
affected by the conspicuity of the stimuli and therefore
future research should be conducted to address this issue.
For the Expert group, correct diagnosis (i.e. true posi-

tives and true negatives) were characterised by higher
scanning similarity (see Fig. 7). In line with models of
visual search in medical image perception, we postulate
that scanning similarity is higher for experts on true-
positive trials because experts extract the global proper-
ties of an image to constrain the subsequent search in a
similar manner to each other. It is possible that high
similarity was observed for true-negative trials because
experts did not extract global irregularities at the start of
their search and instead reverted to a more default
scanning pattern. More research is required to under-
stand the training processes undertaken by radiologists
to explore whether such default patterns are taught
during training.
Where studies have looked at the similarities or agree-

ment in observers, they have tended to use brain tumour
delineation tasks. Low inter- and intra-observer variability
is well documented in clinicians delineating brain tumours
(Crowe, Alderson, Rossiter, & Kent, 2017; Mazzara,
Velthuizen, Pearlman, Greenberg, & Wagner, 2004; Mura-
kami, Hirai, Toya, Nakamura, & Yamashita, 2012; Weltens
et al., 2001). This line of research highlights the need to
obtain high agreement in tasks relevant to medical image
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perception to assure consistency both within and between
clinicians responsible for making diagnostic decisions.
Future research is needed to apply ScanMatch to larger
datasets and address questions with clear practical implica-
tions. For example, examining intra-observer variability at
different timepoints (e.g. first and last case of the day) could
provide insight into the effect of internal factors on
performance (e.g. fatigue) and comparing scan paths could
facilitate monitoring the development of expertise among
trainee radiologists. Moreover, identifying scanning patterns
that are related to a certain diagnosis could provide insight
into why certain diagnostic errors occur and therefore
contribute the development of innovative training routines
(Krupinski, 2006). A limitation of our study was that we did
not obtain any localisation information (i.e. where partici-
pants thought the tumour was). These data would have
enabled us to use free-responses ROC (FROC) analysis to
evaluate observers’ performance which is a statistically
more powerful method (Krupinski, 2010). Moreover, exam-
ining location information would facilitate differentiating
between certain types of error.
This study extends the limited literature examining

the effect of expertise and diagnosis on brain tumour de-
tection using MRI images. Both whole-brain and
independent-slice brain tumour detection tasks revealed
a similar qualitative pattern of results but the effect of
viewing modality on gaze behaviour and diagnostic ac-
curacy remains understudied in the literature. We dem-
onstrate the effective application of ScanMatch to the
medical interpretation literature and revealed that both
expertise level and diagnosis affects the similarity of
scanning patterns. Although this is preliminary work,
the ScanMatch method is a novel analysis tool that pro-
vides insight into both the temporal and spatial compo-
nents of saccadic eye-movement sequences.

Conclusion
In summary, this is the first study to apply ScanMatch
to the medical image perception literature and suggest
that both expertise and diagnosis affect the similarity of
scanning patterns in a brain tumour detection task using
MRI images. Experts engaged in the most similar scan-
ning patterns for both whole-brain and independent
slice viewing modalities and, in the independent-slice
viewing task, these patterns were most similar when ex-
perts gave a correct diagnosis. We demonstrate the effi-
cacy of using ScanMatch in medical image perception
research and so propose that further research is war-
ranted to identify scanning patterns in different present-
ing medical problems to help increase diagnostic
success. Subsequent research adopting this method can
address research questions with the potential to inform
training practices undertaken by trainee radiologists.
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