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Introduction
Through millions of years of coevolution with their hosts, viruses have become experts 
in manipulating the immune system. This has driven viruses to develop an arsenal of tac-
tics to evade immune responses [1–6]. The host innate immune response is the first line 
of defense against pathogens, aiming to prevent infection and combat invading microor-
ganisms [7, 8]. In the context of viral infections, the host innate immune system is tasked 
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with serving as the foremost protective barrier, striving to impede viral invasion or rep-
lication before the development of more targeted defenses by the adaptive immune sys-
tem [9].

The innate immune system employs numerous proteins known as pattern recogni-
tion receptors (PRRs) to detect unique molecular structures specific to pathogens, 
termed pathogen-associated molecular patterns (PAMPs), found in viruses and bacteria. 
The recognition of PAMPs by PRRs initiates a sophisticated response from the innate 
immune system that inhibits viral protein synthesis and ultimately viral replication, in 
addition to releasing signaling molecules to induce an immune response in neighboring 
cells, preparing them to suppress the spread of the infection [10, 11]. PAMPs are con-
served molecular motifs essential for the pathogen’s survival [12, 13] and are found in 
their glycoproteins, lipopolysaccharides, proteoglycans, and nucleic acids [14, 15]. PRRs 
consist of various protein families distinguished by ligand specificity, cellular localiza-
tion, and the activation of specific signaling pathways that lead to distinct anti-pathogen 
responses [16]. One of the main roles of many PRRs is to induce the production of type 
I interferons in response to viral infections. The expression of type I interferons triggers 
signaling pathways that activate the transcription of a diverse set of proteins that estab-
lish an antiviral response in target cells and act as effector proteins with direct antivi-
ral activity [11, 17, 18]. Human cells express PRR proteins that specifically interact with 
viral PAMPs (including dsRNA and proteins) and trigger the immune response [19–21].

Viruses have developed various strategies to evade the host innate immune response. 
These strategies include inhibiting the host signaling pathways that induce the innate 
antiviral immune response, such as preventing activation of host innate immune system, 
cleaving host innate immune proteins, inducing mitophagy to limit interferon induction, 
inhibiting transcription factors, and targeting antiviral proteins [22–25]. Viral proteins 
targeting host proteins to evade an innate immune response is a critical area of study 
in virology and immunology, offering insights into how viruses persist in the host and 
how we might develop therapeutic interventions [26, 27]. By targeting viral proteins 
involved in immune evasion, new therapeutics can be developed to restore the host’s 
innate immune response, offering a more effective treatment strategy against viral infec-
tions [28]. On the other hand, identifying host proteins targeted by viral evasion mecha-
nisms can lead to the discovery of biomarkers for early detection of viral infections or for 
monitoring the efficacy of antiviral therapies [29].

Machine learning plays a crucial role in studying the host’s innate immune response. 
Recent studies have used machine learning classifiers to distinguish viral and non-viral 
acute infections based on host immune response mRNAs [30]. Additionally, machine 
learning of flow cytometry data has been employed to understand host immune 
responses to SARS-CoV-2 infection [31]. In the realm of artificial immune systems, the 
study of innate immune-based algorithms, such as the dendritic cell algorithm and toll-
like receptor algorithm, has been explored to enhance self-adaptation and self-learning 
in computational intelligence [32].

Currently, there is no tool for predicting virus proteins that evade the host’s innate 
immune response. This work aims to develop a first-of-its-kind robust predictive model 
and application to identify such pathogenic virus proteins efficiently and reliably. In our 
previous work, we developed VirusHound-I, a tool for predicting viral proteins that 
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evade the adaptive immune response [6]. The present study introduces VirusHound-II, 
which significantly distinguishes itself from its predecessor by focusing on the predic-
tion of proteins that evade the innate immune response, a fundamentally different prob-
lem given the distinction in evasion mechanisms between these two types of immune 
responses. VirusHound-II represents a significant innovation in the field of computa-
tional virology, being the first tool specifically designed to predict viral proteins that 
evade the host’s innate immune response. This specificity is crucial, as the mechanisms 
for evading the innate immune response are fundamentally distinct from those affecting 
the adaptive immune response [3, 33].

Methods
Data sets

Amino acid sequences of pathogenic virus proteins that evade the host’s immune 
response were identified and downloaded from the UniProt database [34]. After a careful 
manual review of each of the sequences, only those that met the following two criteria 
were selected: (1) Amino acid sequences with revised notation (2) and scientific litera-
ture support demonstrating the functionality of these proteins. After manual curation, 
the sequences were separated into different groups according to their type as follows: 
a dataset comprised of 1337 corresponding to pathogenic virus proteins that evade the 
host’s innate immune response (VPEINRs) and 1337 virus proteins without this activity 
(Non-VPEINRs). All sequences used are available for the reproducibility of this work in 
the code repository https:// github. com/ jfbld evs/ virus hound- II.

Molecular descriptor computation

For all the amino acid sequences in this study, the molecular descriptors, pseudo amino 
acid composition (PAAC) and dipeptide composition (DPC) were calculated. This 
approach allows representing the sequences through a set of features that incorporate 
both the information on the amino acid composition and the relevant physicochemical 
properties, as well as the sequential distribution of these components. Calculations were 
carried out with the Python 3.11 programming language (https:// www. python. org/) and 
the propy3 package (https:// propy3. readt hedocs. io/).

Training, cross‑validation, and testing

Based on the determined molecular descriptors (PAAC and DPC), datasets were created 
for each, labeling the molecular descriptors with binary notation: “1” for peptides with 
activity (VPEINRs = 1337) and “0” for those without activity (non-VPEINRs = 1337). 
These datasets were divided into proportions of 80% and 20% to form the training and 
test (independent) sets, respectively. A tenfold stratified cross-validation was imple-
mented on the training set. Various machine learning algorithms were evaluated, includ-
ing Random Forest (RF), Extra Trees (ET), Light Gradient Boosting Machine (LGBM), 
Linear Discriminant Analysis (LDA), Extreme Gradient Boosting (XGBOOST), Multi-
Layer Perceptron (MLP), Support Vector Machine with radial (SVM-RK) and linear 
(SVM-LK) kernels, Gaussian Process Classifier (GPC), Gradient Boosting Classifier 
(GBC), K-Nearest Neighbors (KNN), AdaBoost Classifier (ABC), Decision Tree (DT), 
Quadratic Discriminant Analysis (QDA), Naive Bayes (NB), Ridge Classifier (RC), 

https://github.com/jfbldevs/virushound-II
https://www.python.org/
https://propy3.readthedocs.io/
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Dummy Classifier (DC), and Logistic Regression (LR). The performance of these models 
was monitored both in the training stage with cross-validation and in the evaluation on 
the independent test set, using various performance metrics mentioned bellow. To carry 
out all the aforementioned analyses, the popular automated machine learning library 
called PyCaret (https:// pycar et. org/) was used (Fig. 1).

Finally, a web application called VirusHound-II was developed in Python 3.11 (https:// 
www. python. org/) with a modern and intuitive interface to carry out predictions on 
pathogenic virus proteins. VirusHound-II not only determines whether a specific viral 
protein exhibits the activity in question but also assigns a probabilistic value ranging 
from zero to one, based on its capacity to evade the host’s innate immune response. Viral 
proteins with a score higher than 0.5 are considered to have a high probability of evad-
ing such immune response. VirusHound-II is freely available online, with its official site 
located at https:// www. bioch emint elli. com/ Virus Hound- II. It can also be accessed at 
https:// bioch emint elli. strea mlit. app/ Virus Hound- II.

Results
The performance of various ML algorithms in predicting viral proteins that evade the 
innate immune response (VPEINRs) was evaluated using two molecular descriptors: 
PAAC and DPC. Models were assessed through tenfold cross-validation on the training 
set, followed by testing on an independent dataset.

(1)Accuracy (ACC) = TP+ TN/(TP+ FP+ FN+ TN)

(2)F1 score (F1) = 2TP/(2TP+ FP+ FN)

(3)Precision (PRE) = TP/(TP+ FP)

(4)Sensitivity (SEN ) = TP/(TP+ FN)

(5)kappa (κ) =
Po − Pe

1− Pe

(6)

Matthews correlation coeficient (MCC) =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(See figure on next page.)
Fig. 1 General workflow used in this study. Starting from sequences of real VPEINRs and non-VPEINRs, 
molecular descriptors (PAAC and DPC) were computed. The obtained descriptor values were used to create 
datasets with binary labels (1 for VPEINRs, 0 for non-VPEINRs). These datasets were split into 80% training 
and 20% testing sets. Various machine learning algorithms, including RF, ET, LGBM, XGBoost, MLP, SVM 
(radial and linear kernels), GPC, GBC, KNN, ABC, DTC, QDA, NB, RC, and LR, were evaluated using tenfold 
stratified cross-validation on the training set. The models were then assessed on the independent test set. 
Performance was monitored using multiple metrics including accuracy, precision, recall, F1 score, kappa, and 
MCC. Based on these performance measures, the best predictive model was selected for incorporation into a 
web application developed in Python 3.11

https://pycaret.org/
https://www.python.org/
https://www.python.org/
https://www.biochemintelli.com/VirusHound-II
https://biochemintelli.streamlit.app/VirusHound-II
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Overall, PAAC-based models outperformed DPC-based models, with the best-per-
forming algorithms achieving high metrics across both training and testing phases. 
Tables 1 and 2 present the results for PAAC-based models during cross-validation and 

Fig. 1 (See legend on previous page.)
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testing, respectively, while Tables  3 and 4 show the corresponding results for DPC-
based models. For PAAC-based models, the ET classifier demonstrated the best per-
formance during cross-validation, achieving an ACC of 0.9322, SEN of 0.9206, PREC 
of 0.9434, and F1 of 0.9314 (Table  1). Interestingly, during testing, the RF classifier 

Table 1 Stratified tenfold cross-validation of the models generated with different machine learning 
algorithms on the training dataset using the PAAC descriptor

Model Accuracy Recall Prec F1 Kappa MCC

ET 0.9322 0.9206 0.9434 0.9314 0.8644 0.8655

SVM-RK 0.9247 0.9393 0.9135 0.9258 0.8495 0.8505

RF 0.9121 0.915 0.9105 0.9124 0.8242 0.8249

MLP 0.9079 0.9262 0.8955 0.9097 0.8158 0.818

LGBM 0.9074 0.9224 0.8969 0.9087 0.8149 0.8167

XGBOOST 0.906 0.9215 0.8952 0.9074 0.8121 0.8138

GPC 0.8939 0.9626 0.8475 0.901 0.7877 0.796

GBC 0.878 0.9 0.863 0.8808 0.756 0.7572

KNN 0.8574 0.9477 0.8035 0.8694 0.7148 0.7272

ABC 0.8364 0.8579 0.8231 0.8398 0.6727 0.6741

DT 0.8172 0.8271 0.8129 0.8189 0.6344 0.6363

QDA 0.8153 0.8748 0.7828 0.8257 0.6306 0.6361

NB 0.7714 0.8383 0.7412 0.7858 0.5427 0.5492

LDA 0.7298 0.7178 0.7365 0.7267 0.4596 0.4602

RC 0.7293 0.7178 0.7359 0.7264 0.4587 0.4593

LR 0.7256 0.7215 0.7284 0.7246 0.4512 0.4516

SVM-LK 0.6489 0.5776 0.7297 0.5554 0.2976 0.3473

DC 0.4998 0.9 0.45 0.6 0.0 0.0

Table 2 Evaluation of the models generated with different machine learning algorithms on the test 
dataset using the PAAC descriptor

Model ACC Recall Prec F1 k MCC

MLP 0.9065 0.9363 0.8834 0.9091 0.8131 0.8146

LR 0.7495 0.7453 0.7509 0.7481 0.4991 0.4991

KNN 0.8467 0.9625 0.7812 0.8624 0.6936 0.713

NB 0.8131 0.8727 0.7793 0.8233 0.6263 0.6308

DT 0.8262 0.8352 0.8199 0.8275 0.6523 0.6525

SVM-LK 0.7477 0.7715 0.7357 0.7532 0.4954 0.496

SVM-RK 0.9215 0.9401 0.9061 0.9228 0.843 0.8436

GPC 0.8897 0.9625 0.8399 0.897 0.7795 0.7879

RC 0.7495 0.7453 0.7509 0.7481 0.4991 0.4991

RF 0.929 0.9213 0.9354 0.9283 0.8579 0.858

QDA 0.8224 0.8801 0.7886 0.8319 0.6449 0.6493

ABC 0.8729 0.8989 0.8541 0.8759 0.7458 0.7468

GBC 0.8991 0.9139 0.8873 0.9004 0.7981 0.7985

LDA 0.7495 0.7453 0.7509 0.7481 0.4991 0.4991

ET 0.929 0.9139 0.9421 0.9278 0.8579 0.8583

XGBOOST 0.9196 0.9288 0.9118 0.9202 0.8393 0.8394

LGBM 0.9308 0.9326 0.9291 0.9308 0.8617 0.8617

DC 0.4991 1.0 0.4991 0.6658 0.0 0.0
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slightly outperformed ET, with an ACC of 0.9290, SEN of 0.9213, PREC of 0.9354, 
and F1 of 0.9283 (Table 2). The SVM-RK and LGBM also showed strong performance, 
consistently achieving ACC, PREC, and F1 scores above 0.92 in both phases.

Table 3 Stratified tenfold cross-validation of the models generated with different machine learning 
algorithms on the training dataset using the DPC descriptor

Model Accuracy AUC Recall Prec F1 Kappa MCC

LGBM 0.9261 0.9723 0.9252 0.9269 0.9259 0.8522 0.8526

RF 0.9238 0.9658 0.9065 0.939 0.9222 0.8476 0.8485

XGBOOST 0.9219 0.9732 0.9206 0.9239 0.9218 0.8438 0.8448

ET 0.921 0.956 0.8888 0.9502 0.9182 0.842 0.8442

GBC 0.9028 0.9641 0.9093 0.8979 0.9032 0.8055 0.8063

MLP 0.8911 0.9502 0.9449 0.8542 0.8969 0.7821 0.7873

SVM-RK 0.8654 0.9376 0.9243 0.8274 0.8729 0.7307 0.7363

LR 0.8453 0.8892 0.9121 0.8056 0.8551 0.6905 0.6976

LDA 0.8448 0.9164 0.9299 0.7953 0.8571 0.6896 0.7004

ABC 0.8434 0.9187 0.8598 0.8327 0.8456 0.6867 0.6879

RC 0.8424 0.9146 0.9271 0.7944 0.8551 0.6849 0.6958

DT 0.8237 0.8292 0.8486 0.8088 0.8279 0.6475 0.6488

QDA 0.8205 0.914 0.6888 0.9362 0.7929 0.641 0.6652

SVM-LK 0.8186 0.8815 0.8262 0.8144 0.8175 0.6372 0.6413

NB 0.7648 0.8196 0.8645 0.7217 0.7864 0.5296 0.5409

GPC 0.64 0.8639 0.9701 0.5846 0.7295 0.2797 0.3727

KNN 0.625 0.7453 0.9439 0.5767 0.7159 0.2499 0.3242

DC 0.4998 0.5 0.9 0.45 0.6 0.0 0.0

Table 4 Evaluation of the models generated with different machine learning algorithms on the test 
dataset using the DPC descriptor

Model Accuracy Recall Prec F1 Kappa MCC

MLP 0.8804 0.8876 0.8745 0.881 0.7608 0.7608

LR 0.8393 0.8914 0.8068 0.847 0.6786 0.6823

KNN 0.6449 0.9288 0.5919 0.723 0.2905 0.3528

NB 0.7645 0.8652 0.7196 0.7857 0.5291 0.5403

DT 0.8318 0.8165 0.8417 0.8289 0.6635 0.6638

SVM-LK 0.8393 0.8652 0.8221 0.8431 0.6785 0.6795

SVM-RK 0.8505 0.8839 0.8281 0.8551 0.701 0.7026

GPC 0.6299 0.9476 0.5789 0.7188 0.2607 0.3374

RC 0.8449 0.9101 0.8046 0.8541 0.6898 0.6958

RF 0.9121 0.8577 0.9622 0.9069 0.8243 0.8292

QDA 0.843 0.7303 0.942 0.8228 0.6858 0.7038

ABC 0.8579 0.8502 0.8631 0.8566 0.7159 0.716

GBC 0.9065 0.8801 0.9289 0.9038 0.8131 0.8142

LDA 0.8411 0.9213 0.7935 0.8527 0.6823 0.6913

ET 0.9065 0.839 0.9697 0.8996 0.813 0.8205

XGBOOST 0.914 0.8876 0.9368 0.9115 0.828 0.8292

LGBM 0.9178 0.8764 0.9551 0.9141 0.8355 0.8383

DC 0.4991 1.0 0.4991 0.6658 0.0 0.0
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Moderate performance was observed for algorithms such as GBC and ABC, which 
achieved ACC and F1 scores between 0.85 and 0.90 during testing (Table 2). While not 
top performers, these models still demonstrated reasonable predictive capability. The 
worst-performing models for PAAC-based prediction included LR, LDA, and SVM-
LK, which had ACC and F1 scores below 0.75 during both cross-validation and testing 
(Tables 1 and 2). Notably, SVM-LK performed particularly poorly, with an ACC of only 
0.6489 during cross-validation. For DPC-based models, LGBM showed the best perfor-
mance during cross-validation (ACC: 0.9261, SEN: 0.9252, PREC: 0.9269, F1: 0.9259; 
Table 3) and testing (ACC: 0.9178, SEN: 0.8764, PREC: 0.9551, F1: 0.9141; Table 4). RF 
and XGB also performed well, consistently achieving ACC and F1 scores above 0.90.

Moderate performance in DPC-based models was seen with algorithms like GBC and 
ABC, achieving ACC and F1 scores between 0.85 and 0.90 during testing (Table 4). The 
poorest performance for DPC-based prediction was observed with KNC and GPC, both 
achieving ACC below 0.65 during testing (Table 4). This stark underperformance com-
pared to other algorithms suggests these methods may be ill-suited for this specific pre-
diction task using DPC descriptors.

A critical analysis of these results reveals two important points: (1) the consistently 
high performance of ensemble methods (RF, ET, LGBM, XGB) across both descriptor 
types suggests these algorithms are particularly well-suited for this prediction task, and 
(2) the discrepancy in performance between PAAC and DPC descriptors indicates that 
PAAC may capture more relevant features for VPEINR prediction.

The selection of the RF model using PAAC descriptors for incorporation into the 
VirusHound-II application is justified by several key factors. Firstly, RF demonstrated 
exceptional performance during the testing phase, achieving an ACC of 0.9290, PREC 
of 0.9354, and an F1 of 0.9283 (Table  2), the highest values among all models evalu-
ated with PAAC descriptors. Furthermore, RF showed notable consistency between the 
cross-validation and testing phases, suggesting good generalization capability. However, 
it is important to note that the LGBM model with DPC descriptors showed comparable 
performance (Table 4) and could be considered as a viable alternative or complementary 
approach.

Discussion
The human immune system is a complex network designed to defend the body against 
infections and diseases. It can be broadly divided into two main categories: the innate 
immune response and the adaptive immune response. Each has distinct characteristics 
and plays a crucial role in protecting the body [35]. Throughout evolution, viruses have 
developed highly specialized proteins that allow them to evade the host’s immune sys-
tem. These proteins mimic or target specific components of the immune system, prevent 
immune recognition, and modulate immune responses [36, 37]. For example, Vaccinia 
virus and Molluscum contagiosum virus produce proteins that bind to and neutralize 
immune molecules like interleukin 18 (IL-18). Similarly, viruses like Human cytomeg-
alovirus (HCMV) have proteins like US28 vCKR that interact with chemokines [38]. The 
Epstein-Barr Virus protein vIL-10 mimics human interleukin-10 to suppress the activa-
tion of effector immune cells, a strategy that affects both innate and adaptive immunity 
[39–42]. These interactions enable viruses to evade immune detection and response, 
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showcasing the sophisticated mechanisms viruses have developed to counteract the 
host’s immune system.

In recent years, machine learning has significantly advanced immunology by provid-
ing robust tools for analyzing complex data, predicting disease susceptibility, and cre-
ating personalized medicine strategies. By utilizing large datasets, these techniques 
reveal patterns not discernible through conventional methods, enhancing both our 
understanding of immune mechanisms and the development of diagnostic and thera-
peutic solutions [43–46]. Machine learning has been extensively applied in immunol-
ogy, particularly in predicting B-cell and T-cell epitopes. These epitopes are crucial for 
designing epitope-based vaccines and understanding immune responses. In this con-
text, various algorithms, including random forests, artificial neural networks, and sup-
port vector machines, have been used to predict epitopes accurately [47–49]. However, 
to date, no tool has been reported capable of predicting proteins that evade the host’s 
innate immune response. The closest in this line is our tool named VirusHound-I, which 
allows the prediction of viral proteins that evade the host’s adaptive immune response 
with high efficiency [6].

The RF has been highlighted as essential tool in the field of bioinformatics, particu-
larly in the development of predictive models for peptides and proteins based on the 
calculation of molecular descriptors [50]. To date, many studies have been reported that 
make use of RF for the development of predictive models based on the computation 
of molecular descriptors. These research areas include the prediction of antimicrobial 
peptides [51], antiviral peptides [50], prediction of T [52] and B [53] cell epitopes, pep-
tides with antitumor activity [54], antigens [55, 56], and toxins [57], among many oth-
ers. In this study, we observed that the RF classifier outperformed the other algorithms 
during both the training and testing phases. The superiority of RF in this and work on 
this type of data has not been studied yet. However, we believe this could be because 
the RF is especially effective in tabular data classification due to its resistance to over-
fitting, attributable to multiple decision trees and random feature selection [58–60]. It 
can efficiently handle high-dimensional data without requiring dimension reduction and 
operates well with data at its original scales, eliminating the need for normalization [60]. 
Moreover, RF handles missing data during training, provides valuable information about 
the importance of features to facilitate model interpretation, and is flexible and adapt-
able for different types of tasks and parameter settings, optimizing its performance in 
various applications [58–60].

In this study, we used PAAC to analyze viral protein sequences because it effectively 
captures protein composition and physicochemical properties [61–63]. PAAC offers 
an enriched representation by incorporating important amino acid characteristics 
directly impacting protein function. These characteristics include hydrophobicity, side 
chain volume, and amino acid composition, which are crucial for the immune evasion 
mechanisms of viruses [64–66]. This molecular descriptor has been extensively evalu-
ated due to its characteristics and the excellent results it has produced, as seen in our 
study, where it enabled the generation of predictive models with strong performance 
when used alongside the RF algorithm. In this regard, several studies have reported simi-
lar findings, such as the prediction of ion channel inhibitors [67], bitter peptides [68], 
animal toxins [69], anti-inflammatory peptides [70], HIV-1 and HIV-2 proteins [71], 
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cell-penetrating peptides [72], amyloidogenic regions of proteins [73], bacterial cell wall 
lyase [74], among many other cases.

The model based on RF was selected and incorporated into a web application called 
VirusHound-II (www. bioch emint elli. com), which offers a minimalist interface facilitat-
ing the efficient prediction of VPEINRs. VirusHound-II complements VirusHound-I 
[6], differentiating both in their capacity to predict proteins that evade the two types 
of immune responses: the innate immune response and the adaptive immune response, 
respectively. VirusHound-II represents a potentially transformative tool in the field of 
antiviral therapy discovery and development. Its ability to accurately predict viral pro-
teins involved in evading the innate immune response could significantly accelerate the 
identification of new therapeutic targets. This model not only facilitates a deeper under-
standing of viral evasion mechanisms but could also guide the design of more effective 
intervention strategies. Looking ahead, integrating VirusHound-II with broader genomic 
data platforms, and applying it to emerging pathogens could substantially improve our 
responses to epidemics and pandemics. In terms of real impact, the implementation of 
this tool in clinical practice and public health programs could translate into faster and 
more precise diagnoses, as well as more targeted and personalized treatments, under-
scoring its value in improving global health.

While several computational approaches have been developed to study virus-host 
interactions, most focus on general protein–protein interactions (PPIs) between viruses 
and hosts. Tools such as MP-VHPPI [75], Trans-PPI [76], and LSTM-PHV [77] have 
made significant contributions to predicting virus-host PPIs. However, VirusHound-II 
distinguishes itself by specifically targeting viral proteins involved in evading the host’s 
innate immune response. This specialized focus offers several advantages over gen-
eral PPI prediction tools. Firstly, it provides direct insights into a critical aspect of viral 
pathogenesis. Secondly, it offers higher interpretability, as the results are directly appli-
cable to understanding immune evasion mechanisms. Lastly, by bypassing the need to 
analyze all possible virus-host protein interactions, VirusHound-II provides a more effi-
cient approach to identifying immune evasion factors.

VirusHound-II represents an advancement in the prediction of viral proteins that 
evade the host innate immune response. Its high accuracy and generalization capacity 
demonstrate its potential as a valuable tool in virological research and the development 
of antiviral therapies. However, as with any predictive model, there are opportunities for 
future improvements and expansions. We plan to continuously update our dataset to 
include information on emerging viruses and new variants, maintaining the model rele-
vance and adaptability. The incorporation of protein structural data could further enrich 
our predictions, providing insights into the molecular mechanisms of immune evasion. 
Furthermore, we are exploring the possibility of predicting not only the evasion capabil-
ity but also the specific mechanisms employed by viral proteins.

Conclusions
VirusHound-II represents a significant advance in the field of computational virology, 
being the first tool specifically designed to predict viral proteins that evade the host’s 
innate immune response. Our Random Forest model, using pseudo amino acid composi-
tion descriptor, demonstrated superior performance, achieving an accuracy of 92.90% 
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on the independent test set. The robustness of our results is supported by a rigorous 
methodology that includes tenfold cross-validation and testing on an independent data-
set. The comprehensive comparison of various machine learning algorithms provides 
a solid foundation for future studies in this field. VirusHound-II, accessible through a 
user-friendly web application, has the potential to significantly accelerate research on 
virus-host interactions and the development of antiviral strategies. This study highlights 
the importance of computational approaches in understanding viral evasion mecha-
nisms, providing a valuable tool for the scientific community. Overall, VirusHound-II 
represents an important step towards the efficient prediction of viral proteins that evade 
the innate immune response, with potential implications for the development of antivi-
ral therapies and a better understanding of viral pathogenesis.
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