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Neurons affected in Parkinson’s disease (PD) experience mitochondrial dysfunction and 
bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. 
Emerging findings suggest that the autophagy-lysosome pathway, which removes dam-
aged mitochondria (mitophagy), is also compromised in PD and results in the accumu-
lation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced 
animal and cellular models as well as postmortem human tissue indicate that impaired 
mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and 
the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. 
Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, 
be used as an approach to delay the neurodegenerative processes in PD.
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inTRODUCTiOn

Parkinson’s disease (PD) is an incurable chronic progressive disease affecting nearly 2% of the “over 
50” population with an approximately estimate of more than 6 million cases worldwide (1). The cause 
of PD is generally unknown, but it is believed to involve both genetic and environmental factors (2). 
Epidemiological studies have revealed that fewer than 10% of PD cases are inherited from family, 
whereas the majority of cases are sporadic (3). Discoveries of genes linked to rare familial forms of 
PD have confirmed the critical role of genes in the development of PD and made great contributions 
in understanding the molecular pathogenesis behind this common but complex illness. Autophagy 
is a conserved pathway that degrades damaged organelles and misfolded proteins (4). Here, we 
consider the roles of autophagy in neuronal health and the pathological mechanisms leading to 
disease progression to help us seek for potential targets for neuroprotective interventions, which may 
revolutionize the treatment of this incurable disease.

PROTein AGGReGATiOn AnD MiTOCHOnDRiAL  
DYSFUnCTiOn in PD

Parkinson’s disease is a neurodegenerative movement disorder characterized by the preferential 
loss of dopaminergic neurons in the substantia nigra, which results in progressive motor system 
malfunction (5). Primary motor signs that characterize PD include rigidity, bradykinesia, postural 
instability, and tremor (6). The pathology of PD remains unknown, but almost all cases show the 
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presence of intraneuronal misfolded protein aggregates forming 
Lewy bodies, the primary component of which is α-synuclein 
(7). Protein homeostasis is crucial to sustain cellular health and 
viability in neurons (8). The process of α-synuclein accumulation 
resulting in the generation of highly diffusible small oligomers 
and fibrils, which abnormally aggregate and can be visualized as 
eosinophilic cytoplasmic inclusion in neurons (9). Evidence indi-
cates that the accumulation of [α-synuclein, possibly oligomers, 
without insoluble aggregates, may lead to oxidative stress and give 
rise to deleterious effects in dopamine (DA) neurons (10–13)].

Recent evidence suggests that α-synuclein is a lipophilic pro-
tein, localized to mitochondria and connected to endoplasmic 
reticulum (ER) through mitochondrial-associated ER membrane 
(MAM) (14, 15). Overexpression of α-synuclein inhibits the 
normal function of inner-mitochondrial membrane-anchored 
respiratory chain complexes in whole brain of PD patients, but 
mostly in nigrostriatal neurons. Increased levels of reactive 
oxygen species (ROS) might be the cause of neuronal death (16).  
A study has also demonstrated that α-synuclein overexpression in 
mitochondria increases the number of fragmented mitochondria 
in  vitro (17). In addition, intermediate α-synuclein accumula-
tion (pre-fibrillar forms) reduces mitochondrial Ca2+ retention 
(18). Ca2+ is required by mitochondria for the generation of ATP 
via the tricarboxylic acid cycle (19). Perturbed neuronal Ca2+ 
levels caused by soluble pre-fibrillar α-synuclein lead to altered 
mitochondrial membrane potential and NADH oxidation, which 
indicate the dysfunction of complex I (20). The effect of complex I 
inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
and its active metabolite 1-methyl-4-phenylpyridinium (MPP+) 
on dopaminergic cell death is inhibited in mouse models lacking 
α-synuclein, which is mainly due to the inactivation of nitric oxide 
synthase (NOS) (21). In addition, siRNA-mediated knockdown 
of α-synuclein also protects cells from NOS activation in cellular 
models, rescuing cells from MPP+-induced apoptosis (22).

Posttranslational modification of α-synuclein is also a crucial 
factor in the pathological mechanisms of PD. Many PD-associated 
mutations in α-synuclein also induce mitochondrial dysfunc-
tion. The H50Q mutation is proved to induce aggregation of 
α-synuclein oligomers in SH-SY5Y cells and increase the number 
of fragmented mitochondria in hippocampal neurons in  vivo 
(23, 24). Ser129-induced α-synuclein aggregation is involved 
in the formation of Lewy bodies and plays a critical role in the 
neurodegenerative process (25). SH-SY5Y cells expressing A53T 
α-synuclein exhibit depolarized mitochondrial and increased 
ROS levels when exposed to rotenone (26). Studies in transgenic 
mice overexpressing the A53T-mutant human α-synuclein 
revealed that intracerebral inoculation of aggregated α-synuclein 
or preformed recombinant α-synuclein fibrils induces a pro-
gressive and ultimately lethal α-synucleinopathy in inoculated 
animals (27, 28).

Damaged cellular function and decreased ATP levels induced 
by α-synuclein are detrimental to dopaminergic neurons and 
provide implications for disease pathogenesis in PD. Impaired 
mitochondrial function may lead to a reduction in cellular energy 
levels and excessive ROS production in neurons, which in turn 
exacerbate mitochondrial damage (29). As a result, measures 
to enhance the degradation of abnormally aggregated proteins 

and the clearance of damaged mitochondria seem to be the 
most promising strategies in rescuing neurodegeneration in PD 
patients.

PD-ReLATeD GeneS AnD THeiR ROLeS 
in MiTOPHAGY AnD MiTOCHOnDRiAL 
DYSFUnCTiOn

Autophagy is an evolutionarily conserved process in which cyto-
plasmic substrates are engulfed in autophagic vesicles and fused 
to lysosomes for degradation and recycling (30). The specific 
autophagic elimination of mitochondria is defined as mitophagy 
(31). Autophagy is classified into various subgroups based on 
the mechanism of substrate delivery to the lysosome, including 
macroautophagy, chaperone-mediated autophagy (CMA), and 
microautophagy (4). The process of mitophagy is directed mainly 
by macroautophagy. Genome-wide association studies implicate 
that PD-related genes and their products are responsible for 
mitochondrial homeostasis and mitophagy (32, 33).

PINK1 and Parkin are the most well-known proteins related 
to PD. PINK1, encoded by PARK6 gene, is a mitochondrial-
targeted serine/threonine kinase, while Parkin, encoded by the 
PARK2 gene, is a 465-amino acid E3 ubiquitin ligase (34, 35). 
“Loss-of-function” mutations in either PINK1 or Parkin lead to 
autosomal recessive forms of PD (35, 36). PINK1-dependent acti-
vation of Parkin is recognized as a major pathway of mitophagy 
(37). When mitochondria become depolarized, PINK1 accu-
mulates on the surface of the outer membrane of mitochondria, 
where it phosphorylates both ubiquitin and Parkin and activates 
Parkin’s ubiquitin E3-ligase activity. Moreover, it was recently 
shown that wild-type PINK1 recruits Parkin to damaged 
mitochondria during mitophagy rather than the PD-linked 
PINK1-mutant forms (38). The subsequent recruitment of 
ubiquitin-binding mitophagy receptors lead to the formation 
of LC3-positive phagophores, which sequester damaged mito-
chondria from the cytosol and eventually degrade by lysosomal 
hydrolases (39). PINK1 and Parkin are also important for 
sustaining mitochondrial homeostasis through the regulation 
of mitochondrial fission and fusion. A study has shown that the 
ubiquitination process of mitochondrial fusion protein mitofu-
sin (Mfn) is mediated by both PINK1 and Parkin. Loss of PINK1 
or Parkin causes damaged mitophagy process and elongated 
mitochondria in Drosophila (40). Genetic loss of Mfn1 and Mfn2 
leads to the dissipation of membrane potential in a subset of 
mitochondria, preventing Parkin’s recruitment process through 
the translocase of the inner membrane complex (41). Parkin-
mutant or PINK1-mutant Drosophila display a severe defect in 
flight muscle, leading to behavioral locomotive problems and 
greater susceptibility to oxidative stress (42, 43). Indirect flight 
muscles and DA neurons in this model are filled with swollen 
mitochondria (44, 45). Mutant-Parkin displays degeneration 
of a subset of DA neurons, exhibiting shrinkage in morphol-
ogy and decreased DA level in Drosophila brains (42, 46, 47).  
PINK1 knockout fibroblasts and neurons exhibit reduced 
membrane potential, overloaded Ca2+ levels and increased ROS 
production in mitochondria (48, 49). Meanwhile, mitochondria 
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isolated from the brain of PINK1 knockout mice show defects in 
Ca2+-buffering capacity and increased vulnerability of neurons 
in oxidative stress caused by inflammation (50). DA neuronal 
death is also observed in a conditional Parkin ablation mouse 
model after lentivirus delivers the Cre recombinase to the 
mouse brain, which suggests that Parkin plays an important role 
in neuronal survival (51).

Mutations in the PARK7 gene, which encode DJ-1, cause a rare 
autosomal recessive form of PD (52, 53). DJ-1, a transcriptional 
regulator, is often known as a redox sensor/reductase which influ-
ences mitochondrial homeostasis and mitophagy (54). It is long 
believed that DJ-1 is a neuroprotective factor (55). Mitochondria 
localized DJ-1 is a component of thioredoxin/apoptosis signal-
regulating kinase 1 (Trx/Ask1) complex, which regulates the 
clearance of endogenous ROS through the modulation of scaveng-
ing systems (56). DJ-1 deficiency decreases brain mitochondria 
consumption of H2O2, leading to the increased level of oxidative 
stress, and eventually causes cell death in DA neurons (54, 57). 
In addition, DJ-1 directly interacts with α-synuclein. The mutant 
form of DJ-1 in PD causes misfolded α-synuclein aggregate in DA 
neurons, while the overexpression of DJ-1 reduces the dimeriza-
tion of α-synuclein (55).

LRRK2 is a member of the leucine-rich repeat kinase family 
that is encoded by the PARK8 gene (58). Mutations in LRRK2 
are associated with autosomal-dominant PD (33). Expression 
of mutant LRRK2 may have a variety of negative effects on 
mitochondrial and cellular health (59, 60). Endogenous LRRK2 
directly interacts with the mitochondrial fission and fusion 
regulators dynamin-related protein 1, Mfn, and optic atrophy 1 
(OPA1) to maintain the balance among mitochondrial biogen-
esis, intracellular material trafficking, metabolic demands, and 
mitochondrial morphology (61–63). G2019S mutant LRRK2 in 
sporadic PD patients showed decreased levels of OPA1, indicat-
ing that LRRK2 kinase activity is also an important factor in mito-
chondrial dynamics (64). The overexpression of G2019S mutant 
LRRK2 in mouse brains showed mitochondrial uncoupling 
accompanying with an increased basal oxygen consumption in 
both fibroblast and neuroblastoma cells, resulting in decreased 
ATP level and compromised cellular function (65). Fibroblasts 
with G2019S mutant LRRK2 from PD patients showed increased 
susceptibility to MPP+ induced cell death (66). Meanwhile, the 
depletion of LRRK2 or mutant LRRK2 impair the autophagy/lys-
osomal pathway, leading to the accumulation of autophagosomes  
(67, 68). The degradation of LRRK2 in lysosomes is mediated 
by CMA in nervous system, while the mutant forms of LRRK2 
and also high concentrations of wild-type LRRK2 interfere with 
the CMA translocation complex, resulting in defective CMA  
(67, 69). Inhibition of CMA in neurons induces the accumulation 
of both soluble and insoluble α-synuclein, which in turn could 
compromise the degradation of α-synuclein and initiate protein 
aggregation in PD (70, 71).

Lysosomal defects in the clearance of cytosolic substrates 
also contribute to the progression of PD (72). PARK9 encoded 
lysosomal ATPase ATP13A2 is a P-type transport ATPase which 
protects against cellular dysfunction caused by α-synuclein 
(73). PD-linked mutations in ATP13A2 reduce the activity of 
proteolytic processing enzymes, disturbing the acid environment 

in lysosomes, resulting in the impaired degrading capacity of 
autophagosomes (74).

As we can see, these PD-related genes not only play a role in the 
maintenance of mitochondrial homeostasis but also are important 
for the clearance of aggregated proteins and damaged organelles 
through mitophagy. Mitochondrial deficiency is responsible for 
neurodegeneration in PD, but the specific mechanism between 
mitochondrial deficiency and α-synuclein aggregation remains 
to be discovered.

THeRAPeUTiC iMPLiCATiOnS FOR 
PHARMACOLOGiCAL TARGeTinG  
AnD Gene THeRAPY

Intracellular misfolded proteins contribute to cellular dysfunc-
tion and neuronal death in PD patients. Moreover, compromised 
clearance pathways aggravate the pathological process of this 
neurodegenerative disease. Since autophagy plays an important 
role in selectively degrading misfolded proteins and damaged 
organelles, it could be an interesting target for the development 
of efficient treatment for PD. Nowadays, up-to-date researches 
also give us implications on PD-related genes and their influence 
on mitochondrial homeostasis. The obstacles between this prom-
ising therapeutic targets and mitochondrial dynamic are still a 
major challenge for us to overcome.

Methods identified to enhance autophagy in several preclini-
cal PD models are proven to be effective. The serine/threonine 
protein kinase mTOR is a component of the mTOR complex 1 
and suppresses autophagy under nutrient-rich conditions (75). 
The mTOR inhibitor rapamycin, which stabilizes the association 
of mTOR complex and inhibits the kinase activity, is the most 
widely used small molecule drug which is proved effective in 
enhancing autophagy activity in many disease models (76–81). 
Rapamycin selectively suppresses the activity of mTOR through 
the dephosphorylation of Akt kinase, which is crucial for neu-
ronal survival in PD models (82, 83).

Beclin 1 is encoded by autophagy-related gene 6. This protein 
interacts with either BCL-2 or the class III phosphatidylinositol 
3-kinase (PI3K) VPS34, playing a critical role in the localization of 
other autophagy-regulatory proteins to the preautophagosomal 
structure (84). Beclin 1 is negatively regulated by BCL-2 and 
BCL-XL at ER membranes (85). Mutations in BH3-related domain 
in Beclin 1 disrupt the formation of Beclin 1–BCL-2 complex, 
leading to enhanced autophagy (86). Chronic administration 
of trehalose results in a reduction of the frontal cortex p62/
beclin 1 level, suggesting an elevated state of autophagy (87–90). 
Moreover, ER stress is responsible for the activation of autophagy 
through the unfolded-protein response (UPR) (91). Tunicamycin 
Induced mild ER stress shows a promising treatment potential in 
protecting dopaminergic neurons from death in PD models (92). 
Gene therapy approaches to handle the unfolded protein load 
via the activation of UPR are designed to manipulate autophagy 
in a more specific manner (93). Beclin 1 gene therapy mediated 
by lentivirus exhibits not only positive effects in the clearance of 
intraneuronal α-synuclein proteins but also a proved synaptic 
function in PD models (94). Gene therapy also exhibits great 
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potential in the clearance of abnormally aggregated proteins 
in other neurodegenerative diseases through the activation of 
autophagy (95–97).

Although methods to activate autophagy are promising 
novel therapeutic approaches for PD, a complex scenario 
is emerging in which the alteration of distinct regulatory 
steps in autophagy may perturb the homeostasis of the cell, 
contributing to the disease progression as well (98). Therefore, 
the mere enhancement of autophagy may have detrimental 
consequences by provoking neurodegeneration and exacerbat-
ing disease progression. Thus, it is critical that this biological 
process should be precisely regulated and strictly monitored. 
Moreover, the specific mechanism behind each subtype of 
the disease that may link the defects of autophagy to PD still 
remains to be discovered. Considering the complex nature of 
PD, individualized interventional targets seem to be the most 
promising method for deciding the right timing and appropri-
ate degree of activation of autophagy.

COnCLUDinG ReMARKS

Significant progress has been made in understanding the 
causes of this neurodegenerative disorder. The accumulation of 

dysfunctional mitochondria and compromised mitophagy have 
emerged as common features of affected neurons in patients and 
animal models that may cause the accumulation of misfolded 
protein aggregates. In addition, aggregation of α-synuclein and 
deficiency in PD-related genes can impair neuronal mitophagy 
and mitochondrial homeostasis. It is crucial to find out the key 
factors and their roles involved in the pathogenesis of different 
form of PD. Further studies aiming at modulating the process 
of autophagy accurately and individually may provide novel 
therapeutic strategies for this widespread disease.
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