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Abstract: This study evaluates the photosensitizing effectiveness of sodium copper chlorophyllin,
a natural green colorant commonly used as a food additive (E-141ii), to inactivate
methicillin-sensitive and methicillin-resistant Staphylococcus aureus under red-light illumination.
Antimicrobial photodynamic inactivation (aPDI) was tested on a methicillin-sensitive reference strain
(ATCC 25923) and a methicillin-resistant Staphylococcus aureus strain (GenBank accession number
Mh087437) isolated from a clinical sample. The photoinactivation efficacy was investigated by exposing
the bacterial strains to different E-141ii concentrations (0.0, 1.0, 2.5, 5.0, 10.0, and 20.0 µM) and to red
light (625 nm) at 30 J cm−2. The results showed that E-141ii itself did not prevent bacterial growth for
all tested concentrations when cultures were placed in the dark. By contrast, E-141ii photoinactivated
both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus
(MRSA) under red-light illumination. However, different dose responses were observed for MSSA
and MRSA. Whilst the MSSA growth was inhibited to the detection limit of the method with E-141ii
at 2.5 µM, >10 µM concentrations were required to inhibit the growth of MRSA. The data also suggest
that E-141ii can produce reactive oxygen species (ROS) via Type I reaction by electron transfer from its
first excited singlet state to oxygen molecules. Our findings demonstrate that the tested food colorant
has great potential to be used in aPDI of MRSA.

Keywords: sodium copper chlorophyllin; E-141ii; photoinactivation; Staphylococcus aureus; MRSA;
antimicrobial resistance

1. Introduction

The emergence of microbial drug resistance arises as a global challenge. A study estimates that
about 700,000 people die every year for infections caused by drug-resistant strains of microorganisms [1].
Bacterial resistance to antibiotics is one of the major challenges to global public health of the 21st
century [2] as the available antibiotics are becoming less effective due to their indiscriminate and
increasing use in humans, animals, and plants [3,4]. Consequently, infectious diseases caused
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by multidrug-resistant bacteria bring back similar issues faced during the pre-antibiotic era [5,6].
Unless innovative actions are taken, the burden of deaths from antimicrobial multidrug resistance
could rise to 10 million lives each year by 2050, with a cumulative cost of 100 trillion USD to global
economic output [1,7].

Infections caused by Staphylococcus aureus are a serious health problem as Staphylococcus aureus is
a major human pathogen which has the ability to acquire resistance to most antibiotics [8]. Nowadays,
infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a challenge to public health
worldwide because they are associated with high mortality rates when compared to ones induced
by methicillin-sensitive Staphylococcus aureus (MSSA) strains [8]. It is estimated that MRSA-infected
people are 64% more likely to die than those infected with MSSA [9]. MRSA has been the leading
cause of healthcare-associated infections in Europe, with more than 171,000 nosocomial MRSA
infections detected annually [10]. In the United States, MRSA causes at least 80,000 infections per
year, resulting in approximately 11,000 deaths annually [11]. Therefore, it is necessary to propose and
develop alternative ways to inactivate multidrug-resistant bacteria to avoid a devastating problem in
the future [1]. Consequently, the World Health Organization (WHO) has indicated an urgent need to
develop new antimicrobial medicines and treatments as a key objective in its global action plan on
antimicrobial resistance [12].

In this scenario, antimicrobial photodynamic inactivation (aPDI) emerges as a promising alternative
to conventional drugs [13,14]. It is based on the production of reactive oxygen species (ROS) by
the interaction between molecular oxygen (O2) and a light-excited photosensitizer (PS), causing cell
death [15]. Two types of reactions may occur during this interaction: (i) electron transfer from the
excited triplet or singlet states of PS to O2, generating radical species such as O2

−, OH., and H2O2

(Type I); and (ii) energy transfer from the excited triplet state of PS to O2, producing singlet oxygen
(1O2) by exciting the triplet ground state of oxygen (3O2) (Type II) [13,16–18].

The present study investigated an alternative way to inactivate in vitro MRSA strains based on
aPDI and copper sodium chlorophyllin (E-141ii) as PS. E-141ii is a metal-chlorophyllin salt containing
a paramagnetic Cu2+ center, which presents absorption bands in the blue and red regions related
to the Soret and Q bands with maxima at around 404 and 628 nm, respectively (Figure 1). It is
important to point out that E-141ii is a natural green colorant derived from chlorophyll authorized
as a food additive in several countries (for instance, Europe, United States, and Brazil) [19–22]. As a
food additive, E-141ii is a non-toxic compound, and it also presents a high extinction coefficient in
the photodynamic therapy window (600–700 nm range), which is a desired feature of a good PS for
medical applications [23]. Furthermore, in contrast to chlorophyll, E-141ii is water-soluble and stable
to oxidation.
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There are only a few reports on the antibacterial photoactivity of E-141ii [5,23–29]. Lopez-Carballo
et al. tested the aPDI efficacy of E-141ii against Gram-positive and Gram-negative bacteria when
incorporated into gelatin films [24]. Caires et al. showed that E-141ii subjected to red light efficiently
inhibits the growth of Gram-positive bacteria [5]. Nevertheless, no aPDI effect was observed
on Gram-negative bacteria. Despite being more effective against Gram-positive strains, it was
demonstrated recently that E-141ii might be applied to photoinactivate Gram-negative bacteria when
using a high PS concentration [26]. Although previous work has reported the application of E-141ii
in aPDI of multidrug-sensitive Gram-positive bacteria [5,24,25], here, it is demonstrated for the first
time that E-141ii can be successfully applied to photoinactivate MRSA strains. Moreover, the aPDI
mechanism of action promoted by E-141ii is discussed.

2. Results and Discussion

Figure 2 shows representative images of MSSA and MRSA colonies on plate count agar for all
used E-141ii concentrations when subjected to the red-light irradiation and kept in the dark. The mean
values (±SEM) of the CFU/mL, obtained from replicate measurements, are presented in Figure 3.
The findings revealed that for both bacterial strains, no bacterial growth inhibition was promoted
by E-141ii for all tested concentrations for the non-illuminated samples. Thus, E-141ii was not toxic
in the dark. Additionally, the result also demonstrates that the red light only was not toxic for both
bacteria because the illuminated bacterial samples containing non-E-141ii did not present a statistically
significant reduction of the bacterial growth (Figure 2(C(a),D(a))). Nevertheless, E-141ii was able to
photoinactivate both MSSA and MRSA strains under red light irradiation. However, these strains
required different concentrations of E-141ii to inhibit bacterial growth (Figure 3). While the aPDI
effect of E-141ii caused a 2.1-log unit reduction in CFU/mL at 1.0 µM and was able to inhibited to the
detection limit of the method the MSSA growth at concentrations over 1.0 µM (in the 2.5 to 20 µM
range), a log reduction of 1.4, 2.8, 3.4, and 3.6 was induced at 1.0, 2.5, 5.0, and 10 µM in MRSA,
respectively. Nevertheless, the MRSA was totally photoinactivated at 20 µM.
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Figure 2. Growth of methicillin-sensitive Staphylococcus aureus (MSSA) (A) and (C), and methicillin-resistant
Staphylococcus aureus (MRSA) (B) and (D) colonies in Petri dishes containing (a) 0.0, (b) 1.0, (c) 2.5, (d) 5.0,
(e) 10.0, and (f) 20.0µM of E-141ii. The illuminated groups were submitted to 625 nm light for 1 h (30 J cm−2).



Molecules 2020, 25, 4464 4 of 11

Molecules 2020, 25, x 4 of 11 

Figure 2. Growth of methicillin-sensitive Staphylococcus aureus (MSSA) (A) and (C), and methicillin-

resistant Staphylococcus aureus (MRSA) (B) and (D) colonies in Petri dishes containing (a) 0.0, (b) 1.0, 

(c) 2.5, (d) 5.0, (e) 10.0, and (f) 20.0 µM of E-141ii. The illuminated groups were submitted to 625 nm

light for 1 h (30 J cm−2).

Figure 3. Growth response of MSSA (a) and MRSA (b) when submitted to different concentrations of 

E-141ii. The irradiated groups were illuminated at 625 nm for 1 h (30 J cm−2). * indicates a significant

difference (paired sample t-test, p < 0.05) between the illuminated and non-illuminated groups when

compared at a fixed E-141ii concentration. Error bars represent the standard deviation.

Although few studies have indicated the potential use of E-141ii to promote aPDI of S. aureus, 

its capability of acting successfully as a PS against an MRSA strain is demonstrated here for the first 

time. Despite demanding a higher concentration to photoinactivate the MRSA, the present findings 

demonstrated that the E-141ii can be applied to efficiently photoinactivate both MRSA and MSSA 

under red-light illumination as successfully applications using E-141ii and other chlorophyll 

derivatives typically apply concentrations in the 1.0 to 100.0 µM range, depending on the light dose 

and wavelength [23–30,32,33]. We also verified that MRSA was less susceptible to aPDI than MSSA 

at p < 0.05 (paired sample t-test) as presented in Figure 4, requiring a higher concentration of E-141ii 

to inhibit bacterial growth. This observation agrees with previous findings presented by Grinholc et 

Figure 3. Growth response of MSSA (a) and MRSA (b) when submitted to different concentrations of
E-141ii. The irradiated groups were illuminated at 625 nm for 1 h (30 J cm−2). * indicates a significant
difference (paired sample t-test, p < 0.05) between the illuminated and non-illuminated groups when
compared at a fixed E-141ii concentration. Error bars represent the standard deviation.

López-Carballo et al. showed that E-141ii under blue light promoted a 4- and 5-log reduction
in S. aureus and L. monocytogenes growth (Gram-positive strains), respectively. On the other hand,
no bacterial growth reduction was observed for E. coli and Salmonella spp. [24]. Caires et al. showed that
E-141ii subjected to red light efficiently inhibits the growth of S. aureus [5]. Nevertheless, no aPDI effect
was observed on E. coli. However, López-Carballo demonstrated that it is possible to photoinactivate
E. coli by using E-141ii when combining high PS concentration and white-light illumination (halogen
lamp) [26]. Gram-negative bacteria are usually more resistant to aPDI than Gram-positive bacteria
due to their cellular morphology, which presents an extra cell wall layer that is difficult for the PS
to penetrate the cell [18]. In turn, Krüger et al. showed that E. coli strain NR698 (a deficient outer
membrane Gram-negative strain of E. coli) was almost as sensitive to the aPDI effect promoted by
chlorophyllin as the Gram-positive B. subtilis strain [30]. This result confirms that the outer membrane
plays a significant role in aPDI. Josewin et al. also evaluated the application of E-141ii in association
with blue illumination (LED) to inactivate L. monocytogenes and Salmonella spp. on cantaloupe rind [27].
However, they observed that the E-141ii aPDI efficacy against both bacteria was not statistically different
from photoinactivation promoted by blue light alone [27]. Although either blue or red illumination
could be used to excite the E-141ii molecules, it is worth stressing that we choose red light to avoid the
phototoxicity of blue light [27,31]. Furthermore, red light has a better ability to penetrate biological
tissues, a desirable feature for efficient photosensitization in medical applications [5].

Although few studies have indicated the potential use of E-141ii to promote aPDI of S. aureus,
its capability of acting successfully as a PS against an MRSA strain is demonstrated here for the
first time. Despite demanding a higher concentration to photoinactivate the MRSA, the present
findings demonstrated that the E-141ii can be applied to efficiently photoinactivate both MRSA and
MSSA under red-light illumination as successfully applications using E-141ii and other chlorophyll
derivatives typically apply concentrations in the 1.0 to 100.0 µM range, depending on the light
dose and wavelength [23–30,32,33]. We also verified that MRSA was less susceptible to aPDI than
MSSA at p < 0.05 (paired sample t-test) as presented in Figure 4, requiring a higher concentration
of E-141ii to inhibit bacterial growth. This observation agrees with previous findings presented by
Grinholc et al. [34], which determined that MRSA strains are less responsive than MSSA to aPDI
by evaluating more than 400 clinical samples of MRSA and MSSA. However, they did not find any
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plausible mechanism of the strain-dependent response to aPDI by trying to correlate the antibiotic
susceptibility with intracellular and extracellular bacterial proteins [34]. In general, other studies have
demonstrated that a multidrug sensitive strain is more susceptible to aPDI when compared with its
multidrug-resistant strain [35,36]. By contrast, there is a study reporting that aPDI similarly inactivates
multidrug-sensitive and multidrug-resistant strains of the same bacterial species, regardless of drug
resistance [37]. Notwithstanding, the mechanisms underlying strain-dependent response to aPDI
remain unclear [34,35].
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under red-light illumination at 625 nm for 1 h (30 J cm−2). * indicates a significant difference (paired
sample t-test, p < 0.05) between the sample groups when compared at a fixed E-141ii concentration.
Error bars represent the standard deviation.

It is important to highlight that E-141ii (sodium copper chlorophyllin) is more resistant and stable
to light, acid, and heat when compared with other chlorophyll derivatives [20,32,38], and it is widely
employed in cosmetic and medicinal products as an additive or dye, in addition to its application as
food colorant [38]. However, despite its potential as a PS for photoinactivation, metal-free sodium
chlorophyllin (E-140ii) is the chlorophyll derivative most applied in aPDI. The rare use of E-141ii in
aPDI may be related to a premise that E-141ii could not work as a PS because of the lack of long-lived
excited state due to the presence of the paramagnetic Cu2+ in its chemical structure [23]. Sciuti et al.
reported that E-141ii does not have an electronic population in long-lived excited states, as a triplet
state, and has no fluorescence, exhibiting a rapid deexcitation of the first excited singlet state (~25 ps)
due to the internal conversion process [39]. Nonetheless, all these features did not preclude E-141ii
acting as a PS, as demonstrated here. Even so, its aPDI mechanisms are not yet well understood.

Figure 5 shows the absorption spectra of 1,3-diphenylisobenzofuran (DPBF) in the presence of
E-141ii as a function of the 625 nm light illumination time. These spectra reveal thatE-141ii did not
produce 1O2 under light exposure (Type II reaction) [40] because DPBF is an optical probe that has its
absorbance and fluorescence quenched when reacting with 1O2 [41,42]. This result was expected as it
is well-known that E-141ii does not present an excited triplet state, a needed long-lifetime state to allow
1O2 formation by energy transfer from the excited PS (3PS*) to 3O2. The reliability of this protocol
to assess the 1O2 production was evaluated using methylene blue (MB), a well-established PS that
produces 1O2 [43]. The data demonstrate that DBPF in the presence of MB rapidly degraded under
red-light illumination due to the generation of 1O2 (Figure S1 in the Supplementary Material). Therefore,
our data confirm that E-141ii is not capable of inducing the aPDI via Type II reaction mechanism.
This result agrees with the observed by Uchoa et al. [23], which showed by a phosphorescence detection
method that E-141ii does not produce 1O2.
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By contrast, Figure 6a displays an increase of the fluorescence signal as a function of illumination
time as a consequence of the ROS generation by E-141ii (Type I reaction). Dihydroethidium (DHE) is
a non-fluorescent molecule that produces a fluorescent molecule (ethidium) when interacting with
different ROS species, such as superoxide (O2

−), hydrogen peroxide (H2O2), peroxynitrite (ONOO−),
and hypochlorous acid (HOCl) [44]. Figure 6b shows that a correlation coefficient of 0.9937 was
obtained by fitting the fluorescence intensity at 610 nm versus illumination time by using Equation (1),
with k f = 1.61 × 10−4 s−1 (Section S2 in the Supplementary Material). As k f = kROS [DHE] and [DHE] =

2 µM, E-141ii promoted a kROS of 80.5 M−1 s−1, which is in the range value usually found for the rate
constant of reactions of H2O2 and O2

− with various molecules [45]. The results suggest that E-141ii
induced aPDI by producing ROS for the electron transfer from its first singlet excited state to oxygen
molecules (Type I mechanism).

Molecules 2020, 25, x 6 of 11 

mechanism. This result agrees with the observed by Uchoa et al. [23], which showed by a 

phosphorescence detection method that E-141ii does not produce 1O2. 

Figure 5. UV-vis absorption of DPBF in the presence of E-141ii as a function of the red-light 

illumination time. 

By contrast, Figure 6a displays an increase of the fluorescence signal as a function of illumination 

time as a consequence of the ROS generation by E-141ii (Type I reaction). Dihydroethidium (DHE) is 

a non-fluorescent molecule that produces a fluorescent molecule (ethidium) when interacting with 

different ROS species, such as superoxide (O2−), hydrogen peroxide (H2O2), peroxynitrite (ONOO−), 

and hypochlorous acid (HOCl) [44]. Figure 6b shows that a correlation coefficient of 0.9937 was 

obtained by fitting the fluorescence intensity at 610 nm versus illumination time by using Eq. 1, with 

𝑘𝑓 =1.61 10−4 s−1(section S2 in the supplementary material). As 𝑘𝑓 = 𝑘𝑅𝑂𝑆[DHE] and [DHE] = 2 μM, E-

141ii promoted a 𝑘𝑅𝑂𝑆 of 80.5 M−1 s−1, which is in the range value usually found for the rate constant 

of reactions of H2O2 and O2− with various molecules [45]. The results suggest that E-141ii induced 

aPDI by producing ROS for the electron transfer from its first singlet excited state to oxygen 

molecules (Type I mechanism). 

Figure 6. (a) Fluorescence spectra of DHE in the presence of E-141ii and (b) fluorescence intensity at 

610 nm over the illumination time. The gray line represents the fitting curve obtained by using 

Equation (1) (R2 = 0.9937). 

The present findings suggest that E-141ii can be effectively applied as a PS due to its capability 

of killing MRSA under red illumination by photodynamic inactivation through the Type I reaction 

Figure 6. (a) Fluorescence spectra of DHE in the presence of E-141ii and (b) fluorescence intensity
at 610 nm over the illumination time. The gray line represents the fitting curve obtained by using
Equation (1) (R2 = 0.9937).

The present findings suggest that E-141ii can be effectively applied as a PS due to its capability
of killing MRSA under red illumination by photodynamic inactivation through the Type I reaction
mechanism from the first singlet excited state. As schematically shown in Figure 7, E-141ii does not
present an excited triplet state (T1) due to the paramagnetic Cu2+ in its chemical structure so that
the photoinactivation mechanisms Type I and Type II from the T1 can be ruled out. Nevertheless,
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the E-141ii photoinactivation mechanism can be induced by promoting the E-141ii electron from
the ground singlet state (S0) to the first excited singlet state (S1) through the red-light illumination,
followed by its transfer to O2 and production of radical species.
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3. Materials and Methods

3.1. Photoinactivation Assay

The food colorant E-141ii was purchased from Sigma-Aldrich (São Paulo, Brazil). Its efficacy in
aPDI was tested against an MSSA strain (ATCC 25923, Bioscan, Itu, Brazil)) and a clinically isolated
MRSA strain (GenBank accession number Mh087437, HU, Campo Grande, Brazil) under red-light
illumination. The strains were maintained at −70 ◦C in Müller-Hinton broth containing glycerol (20%
v/v, QEEL, São Paulo, Brazil). The bacterial suspensions were prepared with 40 µL of the bacterial
strain added to 4 mL of Müller-Hinton broth and incubated for 24 h at 37 ◦C. After that, E-141ii
was diluted in 2 mL of a physiological saline (0.9% NaCl, Sorimax, Campo Grande, Brazil) solution
containing the bacterial inoculum at 1.5 × 108 CFU/mL. The E-141ii concentrations were 0.0 (negative
control), 1.0, 2.5, 5.0, 10.0, and 20.0 µM. Following, the samples were shaken at 120 rpm for 30 min.
After E-141ii incubation, the samples were divided into two groups: illuminated and non-illuminated.
The samples of the illuminated group were placed in a 96-well plate (200 µL/well) and submitted to
625 nm light for 1 h at the dose of 30 J cm−2 using light-emitting diodes (LEDs, Homemade, Dourados,
Brazil). Finally, for both illuminated and non-illuminated samples, a serial dilution was performed
until 1:32. The total bacteria number was determined by the spread plate method using the plate count
agar (PCA; Neogen Corp., Michigan, USA) medium and the colony-forming units (CFU) were counted
18 h after incubation at 37 ◦C. All experiments were performed in triplicate. Quantitative and statistical
analyses were carried out using the Origin 8.5 software, considering the repetitions, PS concentrations,
and light exposure conditions (illuminated and non-illuminated). The CFU/mL values were submitted
to analysis of variance and the comparisons of the means using Student’s t-test with a confidence level
of 95% (p < 0.05) for paired samples.

O2 and ROS Generation Assays

DPBF and DHE were purchased from Sigma-Aldrich (São Paulo, Brazil) and used as optical markers
to investigate the photoinactivating potential of E-141ii via Type I and Type II photochemical pathways.

DPBF (2.2 mL) at 90 µM in DMSO was mixed with 0.4 mL of E-141ii at 30 µM. This solution was
placed under 625 nm illumination at 3.5 mW. UV-vis absorption spectrum was recorded every 30 s in a
LAMBDA 265 UV-vis spectrophotometer (Perkin Elmer, Boston, MA, USA). The 1O2 production was
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evaluated using the protocol adapted by Pivetta and collaborators [42] by monitoring the degradation
of DPBF promoted by its interaction with 1O2. In turn, 2.0 mL of E-141ii at 30 µM in DMSO was mixed
with 4 µL of DHE at 1 mM to determine the ROS production via the Type II mechanism. This solution
was exposed to 625 nm illumination (12 mW), and the fluorescence spectrum was collected every 5 min
using 500 nm excitation (FluoroMate FS-2, Scinco, Seoul, Korea). ROS generation was determined by
following the increase of the fluorescence intensity in the 525–750 nm range. The rate constant of ROS
production was estimated by kinetic analysis of the fluorescent products generated by the interaction
between DHE and ROS. DHE was used at a saturating concentration (2 µM) for the fluorescence
measurements, and it was assumed the formation rate of new fluorescent products [F] equal to the one

of ROS generation by E-141ii under illumination: DHE + ROS k
→ F [46]. Consequently, the rate of

ROS production is written as − d[ROS]
dt = kROS [DHE][ROS] where kROS is the apparent rate constant

of ROS production (i.e., the apparent rate constant for the reaction of DHE with ROS), with [ROS]
∝ F. Therefore, the ROS production equation can be rewritten as − dF

dt = k f F, with k f = kROS[DHE],
which leads to Equation (1).

F = a
(
1− e−k f t

)
(1)

4. Conclusions

The present study showed that the food colorant E-141ii can be applied to photoinactivate MRSA
under red-light illumination. Nevertheless, MRSA was less susceptible than MSSA to the aPDI process,
requiring a higher E-141ii concentration to inhibit bacterial growth. Additionally, the findings point
out that E-141ii can be effectively applied as a PS for being able to inactivate bacteria through Type I
photodynamic reaction mechanism by producing ROS due to the electron transfer from the first singlet
excited state of E-141ii to oxygen molecules.

Supplementary Materials: The following are available online. Figure S1: (a) UV-vis absorption spectra and (b)
absorbance at 415 nm of DPBF in the presence of methylene blue as a function of the red-light illumination time.
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