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Both coronavirus disease 2019 (COVID-19) and mycobacterial immune reconstitution
inflammatory syndrome (IRIS) in patients with HIV-1 infection result from
immunopathology that is characterized by increased production of multiple pro-
inflammatory chemokines and cytokines associated with activation of myeloid cells
(monocytes, macrophages and neutrophils). We propose that both conditions arise
because innate immune responses generated in the absence of effective adaptive
immune responses lead to monocyte/macrophage activation that is amplified by the
emergence of a pathogen-specific adaptive immune response skewed towards
monocyte/macrophage activating activity by the immunomodulatory effects of cytokines
produced during the innate response, particularly interleukin-18. In mycobacterial IRIS, that
disease-enhancing immune response is dominated by a Th1 CD4+ T cell response against
mycobacterial antigens. By analogy, it is proposed that in severe COVID-19, amplification of
monocyte/macrophage activation results from the effects of a SARS-CoV-2 spike protein
antibody response with pro-inflammatory characteristics, including high proportions of IgG3
and IgA2 antibodies and afucosylation of IgG1 antibodies, that arises from B cell
differentiation in an extra-follicular pathway promoted by activation of mucosa-associated
invariant T cells. We suggest that therapy for the hyperinflammation underlying both COVID-
19 and mycobacterial IRIS might be improved by targeting the immunomodulatory as well
as the pro-inflammatory effects of the ‘cytokine storm’.
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INTRODUCTION

Infection with the novel coronavirus SARS-CoV-2 has very
variable outcomes ranging from an asymptomatic infection
through to coronavirus disease 2019 (COVID-19), which
usually presents as respiratory tract disease ranging in severity
from a flu-like illness to a severe viral pneumonia that may
progress to acute respiratory distress syndrome (ARDS) and/or
critical illness in about 20% of patients (1, 2). A coagulopathy is a
prominent feature of critical illness in COVID-19 and
contributes to morbidity and mortality (3). Deterioration of
respiratory tract disease and progression to a critical state
usually commences about 10 days after symptom onset (1).
Risk factors for deterioration include older age, male sex and
medical co-morbidities, such as obesity, diabetes mellitus and
hypertension (1, 2). Children rarely develop respiratory tract
disease caused by SARS-CoV-2 infection but may develop
pediatric multisystem inflammatory syndrome (4).

It has become clear that most disease manifestations of SARS-
CoV-2 infection are a consequence of hyperinflammation
resulting from SARS-CoV-2-induced immunopathology, which
is characterized by lymphopenia and neutrophilia (1, 2),
increased production of multiple pro-inflammatory
chemokines and cytokines detectable in plasma (5, 6) or
broncho-alveolar lavage (BAL) fluid (7), and dysfunction and/
or activation of myeloid cells (monocytes, macrophages and
neutrophils), which has been demonstrated both in blood (8–
10) and BAL fluid (11). Indeed, high plasma levels of D-dimers,
ferritin, interleukin (IL)-6 and tumor necrosis factor-alpha
(TNF-a) are strong predictors of mortality in COVID-19 (1,
6). Many of these abnormalities bear similarities to those
observed in severely immunodeficient patients with human
immunodeficiency virus type 1 (HIV-1) infection who develop
an immune reconstitution inflammatory syndrome (IRIS) after
commencing antiretroviral therapy (ART) consequent upon the
restoration of an immune response against an opportunistic
pathogen. Here, we compare the immunopathology underlying
HIV-associated IRIS with that currently reported for COVID-19
and reason that new insights into the immunopathology
underlying COVID-19 and treatment of it may arise from
doing this.
MYCOBACTERIAL IRIS IS A
MANIFESTATION OF MYELOID CELL
ACTIVATION AMPLIFIED BY AN
EMERGENT TH1 CD4+ T CELL RESPONSE
AGAINST MYCOBACTERIAL ANTIGENS

Approximately 20% of people with HIV-1 infection who
commence ART with severe CD4+ T cell depletion (CD4+ T
cell count <100/mL) experience an IRIS during the first 3 months
of ART associated with a treated or unrecognized infection by
various opportunistic pathogens (12). While clinical features of
an IRIS may differ with different pathogens, an atypical and/or
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exaggerated inflammatory response is a characteristic finding.
An IRIS may be associated with many types of mycobacteria,
fungi, parasites and viruses that cause opportunistic infections
but infections with mycobacteria are the most common cause,
particularly Mycobacterium tuberculosis and Mycobacterium
avium complex (MAC) (12). Research studies undertaken in
patients with, or animal models of, mycobacterial IRIS have been
most informative about the immunopathogenesis of IRIS and,
therefore, mycobacterial IRIS will be focused on here. Notably,
tuberculosis-associated IRIS (TB-IRIS) presents at a median time
of 10-16 days after commencing ART (13–15).

Like COVID-19, increased production of multiple pro-
inflammatory chemokines and cytokines is a prominent feature
of mycobacterial IRIS (16–22), including increased production of
TNF-a and IL-6. The latter has been shown to be a major
mediator of immunopathology in animal models of MAC-IRIS
(20). Furthermore, the IL-6-174*C variant of the IL-6 gene, as
well as the TNFA-308*2 variant of the TNFA gene, were reported
to be significantly less frequent in patients with mycobacterial
IRIS compared with controls (23), suggesting a genetic
susceptibility to the pro-inflammatory effects of IL-6 and
TNF-a in mycobacterial IRIS. Corticosteroid therapy decreases
the frequency and severity of TB-IRIS in patients at-risk of
developing this condition (24) associated with suppressed
production of pro-inflammatory cytokines, including IL-6 and
TNF-a (18).

Patients with HIV infection who develop TB-IRIS also exhibit
evidence of monocyte activation, not only after but also before
commencing ART (19). In addition, higher blood neutrophil
counts, increased neutrophil activation and elevation in plasma
levels of neutrophil elastase and human neutrophil peptides have
been observed in patients with TB-IRIS (25). Activation of
circulating monocytes, and presumably tissue macrophages
and neutrophils, is a likely explanation for increased plasma
levels of pro-inflammatory cytokines and other biomarkers of
inflammation being associated with an increased risk of
developing TB-IRIS after ART is commenced. In a large
prospective multinational study of patients with HIV-1
infection and CD4+ T cell counts <100/mL (12), Vinhaes et al.
defined an inflammatory profile that predicted the development
of mycobacterial IRIS, which included several biomarkers of
monocyte/macrophage activation, including IL-6, TNF-a, IL-27,
sCD14 and D-dimers (26). Monocyte activation in patients with
TB-IRIS is also associated with NLRP3-inflammasome activation
both before and after ART (27), which probably explains why
high plasma IL-18 levels are also predictive of the development of
TB-IRIS (16, 21). Furthermore, monocyte/macrophage
activation is a likely explanation for observations that high
plasma levels of sCD14, IL-6 and D-dimers are predictors of
death after ART is commenced in people with HIV-1 infection
(28, 29).

Current evidence suggests that following commencement of
ART in patients with HIV-1 and mycobacterial infections,
activation of monocytes, and presumably other myeloid cells, is
amplified directly or indirectly by the restoration of CD4+ T cell
responses against antigens of live or dead mycobacteria, resulting
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in an aberrant inflammatory response. Exaggerated and/or
atypical inflammatory responses against mycobacteria,
subsequently defined as mycobacterial IRIS, were first
identified in patients with HIV-1 infection who were unable to
generate T cell responses against mycobacterial antigens,
assessed by measuring tuberculin skin test (TST) responses,
until shortly after the commencement of ART (30, 31).
Analyses of T cell responses using various laboratory methods
in patients who developed mycobacterial IRIS after commencing
combination ART have demonstrated an association with
expansion of mycobacterial-specific T cells (13, 22, 32–35) with
skewing of CD4+ T cells towards a Th1 phenotype during
immune reconstitution (33–36), commensurate with the
original observations of an association between mycobacterial
IRIS and development of TST responses (30, 31). As IL-18
strongly promotes Th1 T cell responses (37), increased IL-18
production resulting from monocyte/macrophage activation (16,
18, 21, 27) may contribute to Th1 skewing of CD4+ T cells during
immune reconstitution in patients with TB-IRIS. Furthermore,
proliferation of weakly suppressive regulatory CD4+ T cells (38)
may lead to inadequate regulation of T cell responses against
mycobacteria in MAC-IRIS, though a relationship with
decreased regulatory T cell numbers has not clearly been
shown in TB-IRIS (33).
HYPERINFLAMMATION IN COVID-19 MAY
BE A MANIFESTATION OF MYELOID CELL
ACTIVATION AMPLIFIED BY A PRO-
INFLAMMATORY ANTIBODY RESPONSE
AGAINST SARS-COV-2

While there is robust evidence that the hyperinflammation
complicating SARS-CoV-2 infection is a consequence of
myeloid cell dysfunction and/or activation (8–11) resulting in
the increased production of multiple pro-inflammatory
cytokines and chemokines (5, 6), sometimes referred to as a
cytokine storm (39), mechanisms remain unclear. A pro-
inflammatory innate immune response associated with
ineffective type I interferon anti-viral activity (40), which in
some patients may be caused by neutralizing autoantibodies to
type I interferons (41), may be a contributing factor. However,
uncertainty remains as to why the onset of hyperinflammation is
about 10 days after the onset of SARS-CoV-2 infection
symptoms, and why older age, male sex and medical co-
morbidities such as diabetes mellitus increase the risk of
developing severe COVID-19.

Reports that critical illness in COVID-19 is associated with
higher serum levels of IgG and IgA antibodies to SARS-CoV-2
spike protein (SP) (42–45), have raised the possibility that
antibody responses against SARS-CoV-2 might be a
determinant of the immunopathology in patients with
COVID-19. Notably, patients with severe COVID-19 usually
deteriorate about 10 days after symptom onset (1) just after IgG
antibodies to SARS-CoV-2 SP are detectable (43). Furthermore,
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Cervia et al. reported that very high serum levels of IgA
antibodies to SARS-CoV-2 SP are highly predictive of ARDS
(44). Higher serum levels of SARS-CoV-2 SP antibodies in
patients with severe COVID-19 might reflect higher SARS-
CoV-2 viral loads (46) and/or an uncoordinated adaptive
immune response that includes impaired T cell responses
against SARS-CoV-2. Thus, several studies have demonstrated
that patients with severe COVID-19, when compared to patients
with mild COVID-19, exhibit less robust CD4+ and CD8+ T cell
responses against SARS-CoV-2 membrane, nucleocapsid, and
spike proteins (47–49). However, the findings of studies
undertaken in non-human primates to elucidate the
immunopathology of SARS-CoV-1 infection have provided
evidence that binding of antibody-coated viruses to activatory
Fc gamma receptors (FcgRs) on macrophages might have a
disease-enhancing effect. Thus, induction of antibodies to
SARS-CoV-1 SP by vaccination, or passive immunization with
SARS-CoV-1 SP IgG antibodies, was associated with pulmonary
inflammation after animals were infected by SARS-CoV-1 (50).
This inflammation was characterized by “skewing’’ of pulmonary
macrophages towards a pro-inflammatory M1 phenotype.
Furthermore, incubation of M2 macrophages from healthy
humans with plasma from SARS patients and SARS-CoV-1
pseudoviruses induced production of IL-8, CCL2 and IL-6 (50).

Evidence that IgG antibodies to the SP of SARS-CoV-2 might
also exert a pro-inflammatory effect on monocytes/macrophages
in patients with severe COVID-19 has been provided from
several sources. In a very comprehensive analysis of antibody
responses against SARS-CoV-2 undertaken by Zohar et al. (51),
it was observed that patients with severe COVID-19 (requiring
admission to an intensive care unit), when compared to patients
with moderate COVID-19, possessed IgG antibodies at 2 weeks
after presentation that exhibited functional characteristics likely
to induce monocyte/macrophage act ivat ion. Those
characteristics included higher serum levels of antibodies to the
SARS-CoV-2 SP, including the receptor binding domain (RBD),
belonging to the IgG3 subclass, the most pro-inflammatory IgG
subclass (52), greater antibody binding to FcgRIIa, FcgRIIb,
FcgRIIIa and FcgRIIIb, and greater antibody-dependent
phagocytosis and NK cell activating activity. However, most of
these differences were not observed in patients with severe
COVID-19 who subsequently died suggesting that additional
factors are determinants of mortality. Chakraborty et al. (53),
also demonstrated that functional characteristics of IgG
antibodies to the RBD domain of SARS-CoV-2 SP may be
more important than serum antibody levels. Specifically, severe
COVID-19 was associated with a SARS-CoV-2 RBD IgG
antibody response that exhibited a higher proportion of IgG3
antibodies and decreased fucosylation of the Fc region glycans of
IgG1 antibodies, both of which are antibody characteristics
associated with increased binding of immune complexes to
activatory FcgRs. These findings were confirmed in an
independent study that demonstrated decreased fucosylation of
SARS-CoV-2 SP IgG antibodies in COVID-19 patients with
ARDS when compared to patients without ARDS (54).
Chakraborty et al. (53) also demonstrated that decreased
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antibody fucosylation was associated with higher binding of
immune complexes to FcgRIIIa and increased production of
the pro-inflammatory cytokines IL-6, TNF-a and IL-1b from
monocytes incubated with immune complexes of antibodies and
SARS-CoV-2 pseudoviruses. Notably, decreased antibody
fucosylation did not appear to be directly related to the
severity of SARS-CoV-2 infection but was more common in
males with severe COVID-19. However, factors other than sex
probably contributed to production of afucosylated antibodies
because the association with male sex was not observed in
patients with mild COVID-19.

Aberrant glycosylation of IgG1 Fc glycans is a consequence of
B cell activation and/or metabolic activity driven by various
extracellular stimuli, which include pro-inflammatory cytokines
(55, 56). Such pro-inflammatory cytokines produced during an
innate immune response against SARS-CoV-2 might include
IL-6 because it promotes B cell differentiation (57). However,
other cytokines are likely to contribute, including IL-18 because
it plays a critical role in IgG antibody responses produced from B
cells co-stimulated by subcapsular medullary macrophages in
mice (58) and human B cells constitutively express IL-18R (59)
but not IL-6R (60). Emerging evidence suggests that a pro-
inflammatory antibody response in patients with severe COVID-
19 may be derived from B cells that have differentiated into
antibody secreting cells through an extrafollicular pathway
(extrafollicular B cells). These cells are more abundant than
normal in the blood of patients with severe COVID-19 (61, 62),
as well as in lymphoid tissue, where they are increased in the
context of marked germinal center depletion and impaired
differentiation of germinal center T follicular helper cells (62).
B cells that have differentiated through this pathway form a
subpopulation of ‘double negative’ (DN; IgD- CD27-) B cells,
which are characterized by the immunophenotype CD11c+,
CXCR5-, CXCR3+, T-bethi (type 2 DN [DN2] B cells) and
programmed to differentiate through this pathway by IFN-g in
a TLR7-dependent manner (63). Immunoglobulin isotype
switching of DN2 B cells in other infectious diseases is skewed
towards pro-inflammatory isotypes of IgG, particularly IgG3 (64,
65). In the context of an early immune response against SARS-
CoV-2, a major source of IFN-g is likely to be mucosa-associated
invariant T (MAIT) cells as these cells are activated and
substantially depleted from blood in patients with severe
COVID-19 (66, 67) and, furthermore, a fatal outcome of
COVID-19 was associated with higher production of IFN-g,
compared with other cytokines, by MAIT cells (67). MAIT
cells contribute to immune responses against viruses in an IL-
18 dependent manner (68) and, importantly, MAIT cell
activation was particularly associated with high plasma IL-18
levels in patients with severe COVID-19 (67). Th1 CD4+ T cells,
which are increased in frequency in lymphoid tissue of patients
with severe COVID-19 (62), might also be a source of IFN-g.

A notable finding from a study of sex differences in immune
responses in patients with COVID-19 was that while all patients
exhibited increased production of multiple pro-inflammatory
cytokines, male patients exhibited higher production of IL-18, as
well as IL-8, associated with greater activation of non-classical
Frontiers in Immunology | www.frontiersin.org 4
monocytes, when compared with female COVID-19 patients
(69). Furthermore, in a study of a small number of children with
pediatric multisystem inflammatory syndrome or COVID-19,
plasma IL-18 levels were increased in addition to IL-6 levels (70).
Moreover, Rodrigues et al. demonstrated that severe COVID-19
was associated with NLRP3-inflammasome activation in blood
mononuclear cells and monocytes from post-mortem tissues,
and that serum IL-18 levels correlated with disease severity (71).
Increased IL-18 production and MAIT cell activation during an
innate immune response against SARS-CoV-2 may therefore
contribute to B cell activation through an extra-follicular
pathway and production of a SARS-CoV-2 antibody response
with pro-inflammatory characteristics, which include skewing
towards IgG3 antibodies and decreased fucosylation of IgG1
antibodies to SARS-CoV-2 SP.

Higher serum levels of SARS-CoV-2 IgA antibodies,
particularly those of the pro-inflammatory IgA2 subclass (72),
and the greater binding of IgA antibodies to FcaR, reported in
severe COVID-19 patients compared with moderate COVID-19
patients at 2 weeks after presentation (51), might also contribute to
activation of alveolar macrophages via Fc alpha receptors (73).
Finally, skewing of SARS-CoV-2 SP IgG antibody responses
towards IgG3 antibody production in patients with severe
COVID-19 (51, 53) might also adversely affect immune
responses against SARS-CoV-2 by mechanisms other than
myeloid cell activation. Combes et al. demonstrated that patients
with severe COVID-19 produced SARS-CoV-2 antibodies that
block the production of interferon-stimulated genes in several cell-
types by activating conserved signaling circuits that dampen
cellular responses to interferons (74). In other situations, this
effect is associated with an anti-viral IgG antibody response that
consists of IgG3 as well as IgG1 antibodies (75).
IMPLICATIONS FOR THERAPY OF
COVID-19

Suppression of inflammatory responses by the use of corticosteroid
therapy is at least partially effective in the prevention and treatment
of TB-IRIS (18, 24) and treatment of severe COVID-19 (76).
However, corticosteroid therapy may be complicated by
opportunistic infections, such as Kaposi’s sarcoma, in TB-IRIS
(77) and potentially may further impair T cell responses against
SARS-CoV-2. Anti-inflammatory therapies that target particular
pro-inflammatory cytokines, such as TNF-a and IL-6, have been
shown to be effective treatment for mycobacterial IRIS in studies of
small numbers of patients (78) but observational studies and
randomized controlled trials have not provided clear evidence of
a benefit of IL-6 inhibitors, such as the IL-6R blocker tocilizumab,
in the treatment of severe COVID-19 (79–81). An alternative or
additional approach to controlling inflammation in severe COVID-
19, as well as mycobacterial IRIS, is to modulate the effects of the
cytokine milieu arising from the initial innate immune response
that, as suggested here, might be a determinant of the functional
characteristics of emerging adaptive immune responses. For
example, investigating the effects of inhibiting IL-18 activity with
March 2021 | Volume 12 | Article 649567
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humanized monoclonal antibodies to IL-18 (82), or suppression of
NLRP3-inflammasome activation, is supported by preliminary data
from uncontrolled, but more than one, clinical studies in patients
with COVID-19 reporting a beneficial effect of inhibiting NLRP3-
inflammasome activity with colchicine (83, 84).
SUMMARY AND CONCLUSIONS

While COVID-19 is a complication of acute SARS-CoV-2
infection and HIV-associated IRIS occurs in the context of
chronic HIV-1 infection, similarities between the two
conditions are apparent (Table 1) and have been considered
here in order to enlighten the immunopathology of severe
COVID-19. Approximately 20% of HIV patients with severe
CD4+ T cell deficiency develop an IRIS after commencing ART,
which presents at a median time of 10-16 days for TB-IRIS, while
approximately 20% of people with symptomatic SARS-CoV-2
infection develop severe COVID-19 at about 10 days after
symptom onset. We suggest that, in the absence of adaptive
immune responses resulting from severe CD4+ T cell depletion
caused by HIV-1 infection, or infection with a novel pathogen in
people with SARS-CoV-2 infection, innate immune responses
against mycobacteria or SARS-CoV-2, respectively, are induced
leading to activation of monocytes/macrophages, including
NLRP3-inflammasome activation and IL-18 production. When
adaptive immune responses emerge, through ART-induced
immune reconstitution in people with HIV-1 infection or
production of a primary antibody response in patients with
SARS-CoV-2 infection, they directly or indirectly amplify the
activation of monocytes/macrophages and neutrophils resulting
in an exaggerated inflammatory response and immunopathology
in infected tissues (Figure 1). In addition, we suggest that the
initial innate immune response not only primes the immune
Frontiers in Immunology | www.frontiersin.org
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system for hyperinflammation induced by emergent adaptive
immune responses but also exerts an immunomodulatory effect
on those adaptive immune responses resulting in a Th1-skewed
CD4+ T cell response against mycobacteria in mycobacterial IRIS
and a SARS-CoV-2 IgG antibody response with pro-
inflammatory characteristics, arising from extra-follicular B cell
differentiation promoted by MAIT cell activation, in COVID-19.
Based on our comparison of the immunopathology underlying
mycobacterial IRIS and COVID-19, we suggest that IL-18 may
play a central role in this process and should be investigated
further as a possible therapeutic target.
TABLE 1 | Similarities between HIV-associated mycobacterial IRIS and severe
COVID-19.

HIV-associated
mycobacterial IRIS

Severe
COVID-19

Time of disease onset Median time of 10-16 days after
commencing ART (TB-IRIS)

Approximately
10 days after
symptom onset

Markers of monocyte/
macrophage activation
associated with an
increased risk of disease
and death

sCD14, D-dimers sCD14, D-
dimers, ferritin

Increased plasma levels
of pro-inflammatory
cytokines and
chemokines associated
with disease

IL-6, IL-8, IL-12, IL-18, TNF-a,
IFN-g, CXCL10

IL-1b, IL-6, IL-8,
IL-12, IL-17, IL-
18, IFN-g, TNF-
a, CCL2, CCL3,
CXCL10, GM-
CSF

Emergent adaptive
immune response that
may amplify monocyte/
macrophage activation
associated with disease
onset

Mycobacteria-specific Th1 CD4+ T
cell response

SARS-CoV-2 SP
antibody
response with
pro-inflammatory
characteristics
A B

FIGURE 1 | Proposed mechanisms by which innate immune responses not
only induce inflammation but also skew emerging adaptive immune
responses towards a response that amplifies myeloid cell activation in
mycobacterial IRIS or COVID-19. In the absence of effective adaptive immune
responses against (A) mycobacteria in HIV patients with severe CD4+ T cell
deficiency and a mycobacterial co-infection, or (B) acute infection with the
novel pathogen SARS-CoV-2, innate immune responses are generated that
result in activation of monocytes/macrophages, including NLRP3-
inflammasome activation. While this does not control the mycobacterial or
SARS-CoV-2 infection, it generates a pro-inflammatory cytokine environment
that includes IL-18, which skews CD4+ T cell recovery towards a Th1
response after ART is commenced in HIV patients, or induces MAIT cell
activation that promotes B cell differentiation through an extra-follicular
pathway and the production of a SARS-CoV-2 SP antibody response with
pro-inflammatory characteristics, including decreased fucosylation of IgG1 Fc
glycans and higher proportions of IgG3 and IgA2 antibodies, which enhances
binding of SARS-CoV-2/antibody complexes to activatory FcgRs on
macrophages, in COVID-19 patients. In either situation, dysregulated
production and activity of multiple pro-inflammatory cytokines and
chemokines occurs and has multiple effects, including further recruitment and
activation of neutrophils and monocytes, as well as macrophage activation in
a positive feedback loop. Inn, innate immune response; Mon/mac,
monocytes/macrophages; Neu, neutrophils; MAIT, mucosa-associated
invariant T cells; EFB, extra-follicular B cells.
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