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Abstract

Profiling skin microbiome and metabolome has been utilised to gain further insight into

wound healing processes. The aims of this multi-part temporal study in 11 volunteers were to

analytically profile the dynamic wound tissue and headspace metabolome and sequence

microbial communities in acute wound healing at days 0, 7, 14, 21 and 28, and to investigate

their relationship to wound healing, using non-invasive quantitative devices. Metabolites

were obtained using tissue extraction, sorbent and polydimethylsiloxane patches and ana-

lysed using GCMS. PCA of wound tissue metabolome clearly separated time points with 10

metabolites of 346 being involved in separation. Analysis of variance-simultaneous compo-

nent analysis identified a statistical difference between the wound headspace metabolome,

sites (P = 0.0024) and time points (P<0.0001), with 10 out of the 129 metabolites measured

involved with this separation between sites and time points. A reciprocal relationship between

Staphylococcus spp. and Propionibacterium spp. was observed at day 21 (P<0.05) with a

statistical correlation between collagen and Propionibacterium (r = 0.417; P = 0.038) and

Staphylococcus (r = -0.434; P = 0.03). Procrustes analysis showed a statistically significant

similarity between wound headspace and tissue metabolome with non-invasive wound

devices. This exploratory study demonstrates the temporal and dynamic nature of acute

wound metabolome and microbiome presenting a novel class of biomarkers that correspond

to wound healing, with further confirmatory studies now necessary.
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Introduction

Delayed wound healing occurs as a result of deficiencies in wound healing processes [1,2],

resulting in chronic wounds. This can affect between 3–5% of patients over the age of 65

and presents an ever increasing burden on the healthcare system costing upward of $20 bil-

lion in the US alone [3,4]. In view of our limited understanding of the mechanisms that

inhibit cutaneous wound healing in humans, various “omic” technologies have emerged in

recent years, such as genomics, proteomics, transcriptomics and metagenomics. These have

been utilised and developed to provide a deeper understanding of the pathways responsible

for normal and impaired wound healing as well as help identify some of the biomarkers

involved [5].

Metabolomics is a multidisciplinary science that seeks to define the entire complement of

metabolites (low molecular weight organic and inorganic chemicals) within a biological system

of interest [6]. This opens up the possibilities of identifying novel biomarkers. As an emerging

field, it has several advantages over other “omic” technologies as it provides the final down-

stream products of transcription and translation [7]. Its highly dynamic nature allows it to pro-

vide the closest links to the system phenotype as well as it is a real time measure [8].

Our knowledge of the metabolic profile of wounds and their role in the wound healing pro-

cesses is limited. The metabolome of wound healing has been understudied. Only two animal

studies [9,10] and three human studies [11–13] have investigated the metabolic profile of cuta-

neous wounds at a single time-point using a metabolomics approach. In addition other “omic”

technologies such as genomics have been utilised to assess the progressive changes in gene

expression in wound healing over time [14,15]. However, the temporal variations in the

wound metabolome in normal wound healing are yet to be investigated.

Whilst persistent wound infection is a major contributor to delayed wound healing [16],

the dynamic nature of the cutaneous microbiome plays a key role in resolving acute, non-

resolving acute and chronic wounds [17,18]. The wound microbiome can have a detrimental

effect on wound healing but by contrast may also positively influence successful healing

[19,20]. Therefore, understanding the relationship between different microbial communities

in the wound and the eventual outcome of wound healing is of great importance, as there is

scope to manipulate the microbiome in diseased states using targeted therapy. With the advent

of DNA sequencing techniques, our ability to accurately characterise the microbiome has been

revolutionised. However, our understanding of how the cutaneous microbiome dynamically

alters during the normal wound healing phases is limited.

Therefore, the aims of this unique exploratory sequential temporal acute cutaneous wound

healing study in humans were: To characterise the dynamic wound metabolome and the

wound microbiome in normal acute wound healing; and secondly, to investigate their rela-

tionship to acute wound healing processes. In order to achieve these aims, the study was con-

ducted in two parts. Part one involved the detection of wound surface metabolites (wound

headspace metabolome) using sorbent material (Tenax/Unicarb, Markes’ International, Llan-

trisant, UK). It also involved the processing of the wound tissue for microbiome analysis

through metagenomic sequencing. Part two again involved the detection of the wound head-

space metabolome, however, using polydimethylsiloxane (PDMS (Goodfellow Cambridge

Ltd., Huntingdon, UK)), as an alternate sorbent material in an attempt to improve the detec-

tion of metabolites. The wound tissue in part 2 of the study was processed for metabolite

extraction and detection from the wound tissue (wound tissue metabolome). During both

parts of the study various parameters associated to wound healing processes were objectively

measured using non-invasive imaging modalities.

Metabolomic and microbiome profiling of wounds
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Materials and methods

Study outline

A temporal sequential design punch biopsy multi-part study was conducted to determine the

metabolomic and microbiome profiles of acute wound healing (S1 Fig). This study was con-

ducted in accordance with the ethical principles of Good Clinical Practice and the Declaration

of Helsinki Principles.

Part 1

Study participants. Healthy participants were enrolled into the study at the Manchester

University NHS Foundation Trust, England, UK between February and March 2017. The Uni-

versity of Manchester research ethics committee and Manchester University NHS Foundation

Trust research and development department approval were granted for the study (Ethics num-

ber: 16045). All participants deemed suitable for enrolment (inclusion and exclusion criteria

outlined in S1 Table), provided written informed consent. Five participants were recruited (3

Male), with an age range between 21–51 years.

Study design. On day 0, participants had two 4 mm diameter full thickness skin biopsies,

performed under local anaesthetic (1% Lidocaine), in each of their upper inner arms leading to

the creation of four iatrogenic wounds. Full thickness skin biopsy was defined as removing the

entire epidermis and dermis to expose hypodermic fat. The punch biopsies were performed 5

cm from the axillary hairline and parallel to the medial epicondyle and were 3 cm in distance

from each other. Pressure was applied to each biopsy site until haemostasis had been achieved.

The biopsies were processed for microbial profiling as detailed below. Full thickness skin/wound

biopsies were taken for microbiological analysis as superficial skin sampling may not catch the

full diversity of bacteria found in deeper layers [21]. A wound site was selected for wound head-

space (defined as the airspace overlying the wound site) metabolite sampling as detailed below

(selection of the wound site was varied between participants to equally distribute the sites sam-

pled). The biopsy wound sites were dressed with Kaltostat (ConvaTec, Middlesex, UK), gauze

and Tegaderm + pad dressing (3M, Minnesota, USA). Participants were asked to ensure the

dressings remained in situ for 48 hours only and then no further dressings were required and

wounds were left exposed to the air for the rest of the study. No sutures were required following

the biopsy procedures for any of the participants. On day 7, wound headspace metabolite sam-

pling and microbial sampling of one of the previous wound sites (the same site for both) were

undertaken as described below (selection of the wound site was varied between participants to

equally distribute the sites sampled). Additionally, objective non-invasive measures were per-

formed at each visit for all participants to monitor the progression of normal wound healing as

described below. The process was repeated at a different wound site on days 14, 21 and 28.

Wound headspace metabolome.

Sample collection and processing. The participant’s local environment was assessed for signs

of significant exogenous metabolite contamination and other clinical staff and patients were

excluded from the sampling locality to reduce exogenous sample contamination. Previous

studies have identified the composition of skin metabolites are influenced by the application of

skin hygiene products [22], therefore, participants were advised not to use such products 24

hours prior to sampling. Custom designed 3D printed polylactic acid funnels were used to cre-

ate a temporary headspace over the sampling site. These funnels allowed a tight seal at one end

into which a thermal desorption (TD) tube could be inserted and the other end was a 10 ml

volume chamber which would cover the sampling zone. TD tubes containing Tenax/Unicarb

sorbent (Markes’ International, Llantrisant, UK) were attached to the funnel insert at one end
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and the headspace chamber placed over the wound site and held in place for 5 min, following

which a 100 ml air sample was drawn through the TD tube using a piston hand pump (LP-

1200, Honeywell analytics, Poole, UK). TD tubes were then resealed and stored at room tem-

perature to await analysis. Un-opened TD tubes were also kept with the sampled tubes to act

as environmental blanks.

Gas chromatography-mass spectrometry (GC-MS) analysis. Tenax1 TA tubes were condi-

tioned at 300˚C for 60 min with a nitrogen flow of 60 mL/min using a Markes TC-20 tube con-

ditioner. Metabolites were desorbed from sorbent tubes at 280˚C for 10 min, cryo-focussed on

a cold trap maintained at -30˚C and desorbed from the cold trap onto the GC (PerkinElmer

Clarus 680) column by flash heating to 300˚C for 2 min with a flow path temperature of

225˚C. The GC column (BP1, 50 m x 0.22 mm [1 μm], SGE Analytical) was held at an initial

temperature of 50˚C for 1 min then ramped to 245˚C at 5˚C/min. The GC run time was 40

min with a total TD cycle time of 56 min. The PerkinElmer Clarus 600S mass spectrometer

was in electron ionisation mode set at 70 eV. The source temperature was set to 180˚C, and

spectra were acquired in dynamic range extension mode at 3 scans/s over a range of 25–300

m/z.

Quantification was by reference to the response factor for toluene obtained by analysis of

TD tubes loaded with 100 ng toluene as part of the same sequence as the sampled tubes. This

compound was used as an internal standard (IS) due to exhibiting similar chemical properties

and vapour pressure to the analytes of interest and also being not naturally found in the sam-

ples. Loading of toluene onto the TD tubes was undertaken using standard atmosphere equip-

ment. Anhydrous toluene (Sigma Aldrich 99.8%) was evaporated at a controlled rate into a

flow of clean air using a syringe driver. Mass flow controllers were used to control the dilution

air flow and the air flow over the TD tubes in order to achieve the required loading level.

Data processing and analysis. GC-MS data were acquired and analysed using Masslynx

(Waters Corp, Manchester, UK). Chromatographic peaks and mass spectra were cross-refer-

enced with National Institute of Standards and Technology (NIST) library 14 for putative

identification purposes. Chromatographic peaks were mass quantified as toluene.

Wound tissue microbiome.

Sample collection. On day 7, one 5 mm diameter wound biopsy was performed encompassing

one of the previous wound sites following headspace sampling. The above procedure was

repeated at days 14, 21 and 28 encompassing a different wound site. The samples were stored

at -80˚C without any medium immediately following collection. The biopsy wound sites were

dressed with Kaltostat (ConvaTec, Middlesex, UK), gauze and Tegaderm + pad dressing (3M,

Minnesota, USA). Participants were asked to ensure the dressings remained in situ for 48

hours only and then no further dressings were required and wounds were left exposed to the

air for the rest of the study. Additionally, all wounds were monitored at each visit. No sutures

were required following the biopsy procedures for any of the participants.

Bacterial DNA isolation. Skin tissue from day 0 and wound biopsies were disrupted and

homogenised using the Qiagen TissueRuptor (QIAGEN, Valencia, CA) according to the man-

ufacturer’s recommendations. DNA was extracted using Qiagen DNEasy Blood and Tissue kit

(QIAGEN, Valencia, CA) according to the manufacturer’s recommendations. Eluted DNA

quantity and purity was assessed using Qubit (Invitrogen, Paisley, Renfrewshire, UK).

Sample sequencing and processing. Sequencing libraries were prepared as described in Illu-

mina’s 16S Metagenomics Sequencing Library Preparation protocol Part # 15044223 Rev. B

(Illumina Inc., San Diego, California, USA), targeting the V1-V3 region, with the following

modifications. The samples were amplified to generate a 450bp product covering the V1-V3

regions of the 16S ribosomal subunit using nested primers (forward primer: 5’-AGATCGG
AAGAGCACACGTCTGAACTCCAGTCAC-3, reverse primer: 50-AGATCGGAAGAGCGTCGTG
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TAGGGAAAGAGTGTA-3). Following initial amplification, the libraries were validated using

the Agilent BioAnalyzer2100 Instrument using the DNA1000 assay (Agilent Technologies,

Wilmington, DE), and cleaned as outlined in the protocol. Illumina dual indexes and sequenc-

ing adapters were added using the following primers (Forward primer: 5’- AATGATACGG
CGACCACCGAGATCTACAC [55555555]TCGTCGGCAGCGTC-3’, Reverse Primer: 5’-
CAAGCAGAAGACGGCATACGAGAT[77777777]GTCTCGTGGGCTCGG-3’, where brack-

eted sequences are equivalent to the Illumina Index adapters N501-N508 and N701-N712).

Following PCR, DNA was cleaned as outlined in the protocol. The libraries were further vali-

dated using the Agilent BioAnalyzer2100 Instrument using the DNA1000 assay. The samples

were also quantified using the Broad Range Qubit Assay (Invitrogen, Paisley, Renfrewshire,

UK).

Sequencing was performed on the Illumina MiSeq. Sequencing of the V1-V3 region was

performed using 250 bp paired-end chemistry per sample. Data were converted to Bcl2FastQ.

FastQ is a format that provides per-base quality scores additionally to the called bases. These

scores reflect the confidence for accuracy of a given base-call. A total of 12,401,250 raw

sequencing reads were produced on the MiSeq with a range of 170,246–1,069,137 sequences

per sample. Raw fastq files were trimmed to remove Nextera i5 and i7 adapters and filtered to

only include hiqh quality (>Q30: error probability� 0.001) reads using Trimmomatic (ver-

sion 0.36). OTUs were picked using the QIIME pipeline, using a 97% sequence similarity

threshold, which is normally considered an appropriate proxy for species level identification.

A total of 60,717 OTUs were identified from 5,473,747 high-quality sequences from 25 sam-

ples. The GreenGenes (version 13_8) reference database was used for taxonomic assignment.

Objective non-invasive quantitative wound measurement devices. Objective non-inva-

sive modalities as outlined below were used at each time point to monitor the progression of

wound healing.

Spectrophotometric intracutaneous analysis. SIAscopy (MedX Health Corp, Mississauga,

Canada) is a non-invasive technique which uses light reflected from the skin and performs

quantitative measurements of haemoglobin, melanin, and collagen concentration and distri-

bution [23]. SIAscopy operates by probing the skin spectrally over an area of 12 x 12 mm and

at a depth of 2 mm.

Full-field laser perfusion imaging. Full-field Laser Perfusion Imaging (FLPI; Moor Instru-

ments Ltd., Axminster, United Kingdom) is a laser doppler imaging technique, which mea-

sures blood flow in the skin’s microcirculation. This device uses low power light from a

monochromatic stable laser and this is applied to skin/wound which becomes scattered by

moving red blood cells which broadens the frequency [24]. This is then photo detected and is

processed to provide an arbitrary blood flow measurement known as “flux”. This is propor-

tional to the speed and concentration of red blood cells in the tissue [24].

Optical coherence tomography. Optical coherence tomography (OCT; VivoSight, Michel-

son Diagnos-tics Ltd, Kent, UK) is a non-invasive real-time tomographic imaging technique

using low-intensity infrared light focused within living tissue. OCT provides depth-resolved

images of tissues up to 2 mm deep with lateral resolution of 1 μm in some devices via a hand-

held instrument placed in contact with the skin/wound [25,26]. It can accurately delineate

wound re-epithelialization, reformation of the dermo-epidermal junction, thickening of newly

formed epidermis and dermal remodelling [27]. The VivoSight OCT also enables the visualisa-

tion of blood vessel formation (micro-circulation in the skin) when the dynamic mode is

selected in the software.

Dermalab system. The DermaLab system by Cortex Technologies (Courage and Khazaka

Electronic GmbH, Koln, Germany) is a multi-probe non-invasive device allowing the

Metabolomic and microbiome profiling of wounds

PLOS ONE | https://doi.org/10.1371/journal.pone.0229545 February 27, 2020 5 / 26

https://doi.org/10.1371/journal.pone.0229545


quantitative measurement of trans-epidermal water loss (TEWL), skin/wound hydration, mel-

anin and erythema.

Statistical analysis. For wound tissue microbiome and objective non-invasive measures,

principal component analysis (PCA) was applied to the data for visualisation. PCA is a com-

monly used technique for the dimensionality reduction of multivariate data whilst preserving

most of the variance [28]. Principal component–discriminant function analysis (PC–DFA)

was then used for further multivariate exploration of wound tissue microbiome data as PCA

revealed poor separation. PC-DFA allows for the reduction of noise in the data without reduc-

ing relevant information from the original dataset [28]. Where applicable, for univariate analy-

sis of the wound tissue microbiome and objective non-invasive measures, the non-parametric

Kruskal–Wallis test and Wilcoxon signed ranks test was performed. Dunn-Bonferroni post-

hoc test was then subsequently used to investigate statistically significant entities to account

for multiple testing. The similarity between the wound tissue microbiome and objective non-

invasive measures data sets was measured by using Procruestean test [29]. Procrustes analysis

is an effective approach for assessing the similarities and differences between different ordina-

tion spaces from cluster analyses and has been used previously for the assessment of different

analytical techniques [30]. First, one particular data set was chosen as target data and another

data set was chosen as matching data. The matching data were optimally superimposed onto

the target by using Procrustes rotation. The difference between the target and rotated match-

ing data was measured by using normalized Procrustes distance. Normalized Procrustes dis-

tance varied from 0 to 1, 0 means a perfect match while 1 means nothing in common. To

assess the statistical significance of such difference, a NULL distribution of normalized Pro-

crustes distances were calculated using a series permutation tests in which the order of the tar-

get data set was randomly permuted and then calculate the normalized Procrustes distance

between the permuted target and matching data. A total number of 10,000 permutations were

performed and the Procrustes distances were calculated, recorded and formed the NULL dis-

tribution. An empirical p-value was derived by counting the number of cases when the Pro-

crustes distances in the NULL distribution were lower than that between the target and

matching data without permutation and divide it by the total number of permutations (i.e.

1000). If the Procruestean test showed non-significance, then Spearman’s correlation coeffi-

cient was calculated to assess the relationship between data sets. A p-value of<0.05 was con-

sidered statistically significant. Statistical analyses were performed in R, SPSS for Windows

version 22.0 (SPSS, IBM, Armonk, NY, USA) and GraphPad Prism 7 (GraphPad Software, La

Jolla, CA, USA).

Part 2

Study participants. Healthy participants were enrolled into the study at the Manchester

University NHS Foundation Trust, England, UK October and November 2017. The University

of Manchester research ethics committee and Manchester University NHS Foundation Trust

research and development department approval were granted for the study (Ethics number:

16045). All participants deemed suitable for enrolment (inclusion and exclusion criteria out-

lined in S1 Table), provided written informed consent. Six male participants were recruited,

with an age range between 21–26 years.

Study design. On day 0, participants had two 4 mm diameter full thickness skin biopsies,

performed under local anaesthetic (1% Lidocaine), in each of their upper inner arms leading

to the creation of four iatrogenic wounds. Full thickness was defined as removing the entire

epidermis and dermis to expose hypodermic fat. The punch biopsies were performed 5 cm

from the axillary hairline and parallel to the medial epicondyle and were 3 cm in distance from
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each other. Pressure was applied to each biopsy site until haemostasis had been achieved. The

biopsies were processed for metabolite profiling as detailed below. A wound site at random

was selected for headspace metabolite sampling as detailed below. The biopsy wound sites

were dressed with Kaltostat (ConvaTec, Middlesex, UK), gauze and Tegaderm + pad dressing

(3M, Minnesota, USA). Participants were asked to ensure the dressings remained in situ for 48

hours only and then no further dressings were required and wounds were left exposed to the

air for the rest of the study. No sutures were required following the biopsy procedures for any

of the participants. On day 7, headspace and tissue metabolite sampling of one of the previous

wound sites was undertaken as described below (selection of the wound site was varied

between participants to equally distribute the sites sampled). Additionally, objective non-inva-

sive measures were performed at each visit for all participants to monitor the progression of

normal wound healing. The process was repeated at a different wound site on days 14, 21 and

28.

Wound headspace metabolome.

Sample collection and processing. PDMS skin-sampling patches measuring 20 mm × 15

mm × 0.45 mm (Goodfellow Cambridge Ltd., Huntingdon, UK), were washed in a solution of

5% Decon 90, followed by clean water then methanol, and conditioned in a stream of dry

nitrogen for 1 hour at 350˚C using a Markes TC20 conditioner (Markes International, Llantri-

sant, UK) before being stored in inert coated ¼” stainless steel tubes sealed with brass caps

(Markes International). Prepared patches were stored at room temperature for a maximum

period of 24 h before being transported to the participant. Participants were advised not to use

skin hygiene products 24 hours prior to sampling and the local environment was assessed for

signs of significant exogenous metabolite contamination; other clinical staff and patients were

excluded from the sampling locality to reduce exogenous sample contamination. A PDMS

patch was placed into a non-adherent dressing enveloped within aluminium foil located 1–2 m

from the participant using sterile forceps. This was exposed for 30 min, providing a baseline

measurement of the environmental metabolites present during sampling. Concurrently, two

PDMS patches were placed within a non-adherent dressing 3 cm apart so that one covered the

wound site and the other covered normal healthy skin. The non-adherent dressing was cov-

ered with aluminium foil and kept in situ using a lightly applied tourniquet for 30 min. After

this time patches were removed from the sampling sites and resealed in stainless steel tubes.

The samples were immediately transferred for analysis within 24 h of sample collection. Dur-

ing shipping and sampling, an additional patch remained sealed in a stainless tube to act as an

analytical blank sample.

GC-MS analysis. Metabolite analysis was conducted on a thermal desorption-gas chroma-

tography time-of-flight mass spectrometer (GC-TOF-MS) platform (Unity II TD with UltrA

autosampler, Markes International, and Micromass GCT Premier, Waters Corp, Manchester,

UK). Prior to desorption, 100 μl of an internal standard (IS; 1 ppmV 4-bromofluorobenzene in

N2; Thames Restek, Bucks, UK) was loaded onto each tube. This compound was used as an IS

as it exhibits similar chemical properties and vapour pressure to the analytes of interest whilst

it is not naturally present in the samples, with previous use in clinical studies [31]. Metabolites

were desorbed from TD tubes at 280˚C for 5 min, cryo-focussed on a cold trap maintained at

0˚C and desorbed from the cold trap onto the GC (Agilent 6890N) column by flash heating to

330˚C for 3 min with a flow path temperature of 200˚C. The GC column (DB-5MS column, 30

m, 0.25 mm internal diameter, 0.25 μm film thickness, Agilent) was held at an initial tempera-

ture of 40˚C for 2 minutes, ramped to 250˚C at 5˚C min-1 and held for 16 min. The GC run-

time was 60 min with a total TD cycle time of 65 min. The TOF-MS was in electron ionisation

mode set at 70 eV with a source temperature of 200˚C and a trap current of 100 μA, and spec-

tra were acquired over a range of 40–500 m/z.
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Data processing and analysis. The GC-MS raw files were firstly converted to mzXML and

subsequently imported to R [32]. A R package “erah” was employed to de-convolve the

GC-MS files [33,34]. A total number of 129 unique peaks were detected in the wound head-

space metabolome data. Chromatographic peaks and mass spectra were cross-referenced with

NIST library 14 for putative identification purposes, and followed the metabolomics standards

initiative (MSI) guidelines for metabolite identification [35]. The peak intensities were log10-

scaled before further statistical analysis.

Wound tissue metabolome.

Sample collection and processing. On day 7, one 5 mm diameter wound biopsy was performed

encompassing one of the previous wound sites. The above procedure was repeated at days 14, 21

and 28 encompassing a different randomly selected wound site. The samples were stored at -80˚C

without any medium immediately following collection. The biopsy wound sites were dressed with

Kaltostat (ConvaTec, Middlesex, UK), gauze and Tegaderm + pad dressing (3M, Minnesota,

USA). Participants were asked to ensure the dressings remained in situ for 48 h only and then no

further dressings were required and wounds were left exposed to the air for the rest of the study.

No sutures were required following the biopsy procedures for any of the participants.

Metabolite extraction involved suspending wound samples in 1.2 ml of methanol (80%)

solution at– 20˚C and homogenising with a steel bead for 20 min at 25 Hz. Samples were then

vortex mixed for 15 s, followed by centrifugation at 8000 g for 10 min. Aliquots (900 μL) of

wound supernatant extracts were normalised according to sample biomass. Following pub-

lished protocols [36], 100 μl aliquots from each sample were combined to be used as pooled

quality control (QC) samples. Subsequently, 100 μl of IS solution (0.2 mg/ml succinic-d4 acid,

and 0.2 mg/ml glycine-d5) was added to all the samples (including QCs) and vortex mixed for

15 s. Samples were lyophilised by speed vacuum concentration at room temperature for 16 h

(HETO VR MAXI vacuum centrifuge attached to a Thermo Svart RVT 4104 refrigerated

vapour trap; Thermo Life Sciences, Basingstoke, U.K.). A two-step derivatization protocol of

methoxyamination followed by trimethylsilylation was employed [37]. The extracts were re-

dissolved in 50 μl of 20 mg.mL-1 O-methoxylamine hydrochloride in pyridine, vortex mixed,

and incubated at 60˚C for 30 min in a dri-block heater. Subsequently, 50 μl of N-methyl-N-

(trimethylsilyl) trifluoroacetamide (MSTFA) was added and the extracts incubated at 60˚C for

a further 30 min. On completion, 20 μl of retention index solution was added (0.3 mg/mL n-

docosane, n-nonadecane, n-decane, n-dodecane, and n-pentadecane in pyridine) for chro-

matographic alignment prior to centrifugation at 13000 g for 15 min. The resulting superna-

tant (120 μl) was transferred to GC-MS vials for analysis.

GC-MS analysis. GC-MS analysis was conducted on a 7890B GC coupled to a 5975 series

MSD quadrupole mass spectrometer and equipped with a 7693 autosampler (Agilent, Tech-

nologies, UK). The sample (1 μL) was injected onto a VF5-MS column (30 m x 0.25 mm x

0.25 μm; Agilent Technologies) with an inlet temperature of 280˚C and a split ratio of 20:1.

Helium was used as the carrier gas with a flow rate of 1 mL/min. The chromatography was

programmed to begin at 70˚C with a hold time of 4 min, followed by an increase to 300˚C at a

rate of 14˚C/min and a final hold time of 4 min before returning to 70˚C. The total run time

for the analysis was 24.43 min. The MS was equipped with an electron impact ion source using

70 eV ionisation and a fixed emission of 35 μA. The mass spectrum was collected for the range

50–550 m/z with a scan speed of 3,125 (N = 1). Samples were analysed in a randomised order

with the injection of a pooled biological quality control sample after every 6th sample injection.

Data processing and analysis. The GC-MS raw files were firstly converted to mzXML and

subsequently imported to R [32]. A R package “erah” was employed to de-convolve the

GC-MS files [33,34]. A total number of 346 unique peaks were detected in the wound tissue

metabolome data. Chromatographic peaks and mass spectra were cross-referenced with the
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Golm library for putative identification purposes, and followed the metabolomics standards

initiative (MSI) guidelines for metabolite identification [35]. The peak intensities were log10-

scaled before further statistical analysis.

Objective non-invasive quantitative wound measurement devices. Objective non-inva-

sive imaging modalities as outlined above were used at each time point to monitor the progres-

sion of wound healing.

Statistical analysis. For wound headspace metabolome, wound tissue metabolome and

non-invasive measures, PCA was applied to the data for visualization. For wound headspace

metabolome, ANOVA-simultaneous component analysis (ASCA) was then employed to reveal

the effect of each factor under study separately, i.e. time and sampling site [38]. Although, PCA is

a popular tool for exploratory analysis, it is not as effective when the study comprises multiple

influential factors. Therefore, as the wound headspace metabolome contained multiple factors

(site and time points), ASCA was utilised to analyse these data. For univariate analysis of the

wound headspace metabolome, Friedman test was applied to each of the peaks to detect features

which changed significantly between different time points and sampling site individually. For

each p-value, a false discovery rate (FDR) was also calculated using Benjamini and Hochberg pro-

cedure. For univariate analysis of the wound tissue metabolome and objective non-invasive mea-

sures, the non-parametric Kruskal–Wallis test was performed. Dunn-Bonferroni post-hoc test

was then subsequently used to investigate statistically significant entities. The similarity between

the wound tissue microbiome or the wound headspace metabolome and objective non-invasive

measures data sets was measured by using Procruestean test. A p-value of<0.05 was considered

statistically significant. Statistical analyses were performed in R, SPSS for Windows version 22.0

(SPSS, IBM, Armonk, NY, USA) and GraphPad Prism 7 (GraphPad Software, La Jolla, CA, USA).

Results

Wound tissue metabolome significantly varied between time points

Many metabolite features (n = 346) were detected using the wound tissue sampling method.

The compounds were tentatively identified using the mass spectral library and have not been

confirmed using analytical standards [35]; we therefore consider these to be identified to level 2

of Metabolomics Standards Initiative (MSI) as they are from gas chromatography-mass spec-

trometry (GC-MS) database matches to the Golm and National Institute of Standards and

Technology (NIST) 14 library. Principal component analysis (PCA) was used to visualise the

changes in metabolites that can be used to differentiate wound healing time points (Fig 1A).

There was clear differentiation between day 0 and the other time points on the principal compo-

nent (PC) 1 axis with a total explained variance (TEV) of 36.62%. Day 7 and 14 wound samples

were closely clustered as were day 21 and 28. There was clear differentiation between these two

clusters on the PC2 axis with a TEV of 18.23%. PCA loadings plot identified the specific metab-

olites responsible for the separation (Fig 1B). From the loadings plot: l-glutamine, 1,3-dihy-

droxyacetone dimer, linolenic acid, linolenic acid, glycerol, glycerol, adenosine and three

unknowns were found to be contributing metabolites to separation of the time points. All the

metabolites suggested by the PCA above were found to significantly vary across the time points

(P�0.001, Kruskal–Wallis test with accompanying Dunn-Bonferroni post hoc analyses; Fig 2).

Wound headspace metabolome significantly varied between sampling sites

and time points

As detection of the wound tissue metabolome requires invasive punch-biopsy sampling of

wound tissue, a non-invasive polydimethylsiloxane (PDMS) patch method was implemented.
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This method required minimal sample preparation and therefore had superior clinical usabil-

ity. Less metabolite features (n = 129) were detected using PDMS in comparison to the wound

tissue metabolome method. PCA was used to visualise the changes in metabolites that could be

used to differentiate wound healing time points (S2 Fig). There was clear separation between

day 0 and the other time points on the PC1 axis with a TEV of 41.62%. However, there was no

Fig 1. Principal component analysis (PCA) and PCA loadings on wound tissue metabolome. (A) PCA scores plot

of principal component (PC) 1 vs. PC2. The total explained variance of PC1 is 36.62% and for PC2 is 18.23%. (B) PCA-

loadings plot: 99—unknown; 220—l-glutamine; 277–1,3-dihydroxyacetone dimer; 295 and 296—linolenic acid; 303

and 304—unknown; 325 and 339—glycerol; 335—adenosine.

https://doi.org/10.1371/journal.pone.0229545.g001
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Fig 2. Boxplots showing significantly varied metabolites as identified from multivariate analysis across time points. Kruskal–Wallis

test with accompanying Dunn-Bonferroni post hoc analyses were performed (n = 6). � P< 0.05, �� P< 0.01, ��� P< 0.001.

https://doi.org/10.1371/journal.pone.0229545.g002
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clear separation between the other time points and no clear differentiation between the sam-

pling sites (i.e. between background, skin and wound). Although, PCA is a popular tool for

exploratory analysis, it is not as effective when the study comprises multiple influential factors.

Therefore, as the wound headspace metabolome contained multiple factors (site and time

points), analysis of variance–simultaneous component analysis (ASCA) was utilised to analyse

these data. There was a statistically significant difference in the wound headspace metabolome

between sites but with considerable overlap between them (P = 0.0024; Fig 3A). There was also

a statistically significant difference in the wound headspace metabolome between time points

with the most obvious differences between day 0 and other time points (P<0.0001; Fig 3B).

Day 7 also appeared to be rather different to the other time points with appreciable overlap

between the remaining days (days 14–28). ASCA loadings plot identified the specific metabo-

lites responsible for the separation between sites (Fig 4A) and time points (Fig 4B). According

to the loadings plot (Fig 4A): 1,3-bis(1,1-dimethylethyl)benzene and nine unknowns were

found to be contributing metabolites to separation of the sites. The greatest separation between

skin and wounds was seen along PC3 (Fig 3A) with the unidentified metabolites contributing

to this separation. From the loadings plot (Fig 4B): 1,5-dimethyl-2-oxabicyclo[3.2.1]nonan-

7-one, 1,3-bis(1,1-dimethylethyl)benzene, isobutyl-2,2,4-trimethyl-3-hydroxypentanoate and

seven unknowns were found to be contributing metabolites to separation of the time points.

Of the 10 metabolites detected from ASCA above, 1,3-bis(1,1-dimethylethyl)benzene signif-

icantly varied between sampling sites (P<0.05, Friedman test with a false discovery rate (FDR)

calculated using Benjamini and Hochberg procedure). Moreover, all 3 identified metabolites

were also found to significantly vary across the time points (P<0.05, Friedman test with a FDR

calculated using Benjamini and Hochberg procedure).

PDMS metabolite detection was superior to Tenax/Unicarb sorbent method

Only three metabolites (ethanol, acetone and propan-2-ol) were identified using the Tenax/

Unicarb sorbent method. Therefore, no further statistical analyses was undertaken.

Microbiome analysis identified the reciprocal relationship between

Staphylococcus and Propionibacterium
Fig 5A outlines the mean relative abundances of bacterial genera between time points. Of note was

the reciprocal relationship between Staphylococcus and Propionibacterium at day 21 (P<0.05,

Wilcoxon signed ranks test; Fig 5B and 5C). The relative abundances of Brevibacterium, Microbac-
terium, Mycobacterium and Paracoccus species significantly varied across the time points (S3 Fig).

Principal component analysis (PCA) was utilised to visualise the dynamic changes in the

microbiome across the wound healing time points and attempt to identify the most discrimi-

nant bacterial genera that can be used to differentiate these time points (S4A Fig). There was

no clear separation between the time points based on differences in the bacterial genera.

Therefore, to maximise the variance between groups and minimise the variance within groups,

principal component–discriminant function analysis (PC-DFA) was employed. Ten PCs,

which accounted 97.4% variance of the dataset were included for discriminant function analy-

sis (DFA) (S4B Fig). This however, showed no clear separation.

Trans-epidermal water loss, haemoglobin, blood flow, melanin and

attenuation compensation allowed differentiation of wound time points

Part 1. PCA was used to visualise the changes in non-invasive measures that can be used

to differentiate wound healing time points (S5A Fig). There was clear differentiation between
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time points on the PC1 axis with a TEV of 27.84%. The greatest separation was seen between

day 0 and 7 and there was a gradual return towards day 0 parameters from day 7 to day 28.

Fig 3. Analysis of variance–simultaneous component analysis (ASCA) on wound headspace metabolome. (A)

ASCA scores plot for site. (B) ASCA scores plot for time.

https://doi.org/10.1371/journal.pone.0229545.g003
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There was also a clear differentiation between time points on the PC2 axis with a TEV of

18.75%. The greatest separation was seen between day 0 and day 21–28. PCA loadings plot

identified the specific non-invasive measures responsible for the separation (S5B Fig). Trans-

epidermal water loss (TEWL), haemoglobin and attenuation compensation were observed to

contribute to the separation between day 0 and 7. Blood flow, melanin and attenuation

Fig 4. Analysis of variance–simultaneous component analysis (ASCA) loadings plot for wound headspace

metabolome. (A) ASCA loadings plot for site: 10, 11, 12, 25, 53, 59, 90, 94, 108 –unknown; 111–1,3-bis

(1,1-dimethylethyl)benzene. (B) ASCA loadings plot for time: 21, 35, 56, 92, 94—unknown; 105–1,5-dimethyl-

2-oxabicyclo[3.2.1] nonan-7-one; 108—unknown; 112–1,3-bis(1,1-dimethylethyl) benzene; 124 –unknown; 129—

isobutyl-2,2,4-trimethyl-3-hydroxypentanoate.

https://doi.org/10.1371/journal.pone.0229545.g004
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Fig 5. Wound microbiome. (A) Mean relative abundances of bacterial taxa between time points. Relative abundance is

shown on the Y-axis. Taxa are filtered to those with a mean abundance greater than 1%. (B and C) Boxplots showing the

relative abundances of Staphylococcus and Propionibacterium across time points. � denotes P< 0.05, as determined by

Wilcoxon’s signed ranks test.

https://doi.org/10.1371/journal.pone.0229545.g005
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compensation were observed to contribute to the separation of day 0 and day 21–28. All

wounds had healed with 100% reepithelialisation by day 28. TEWL, erythema, haemoglobin,

blood flow and attenuation compensation significantly varied across the time points (P<0.05,

Kruskal–Wallis test with accompanying Dunn-Bonferroni post hoc analyses; S6 Fig).

Part 2. PCA was used to visualise the changes in non-invasive measures that can be used

to differentiate wound healing time points (S7A Fig). There was clear differentiation between

time points on the PC1 axis with a TEV of 39.84%. The greatest separation was seen between

day 0 and 7 and there was a gradual return towards day 0 parameters from day 7 to day 28.

PCA loadings plot identified the specific non-invasive measures responsible for the separation

(S7B Fig). TEWL, blood flow, melanin, haemoglobin and attenuation compensation were

observed to contribute to the separation between day 0 and 7. TEWL, erythema, haemoglobin,

blood flow and attenuation compensation significantly varied across the time points (P<0.05,

Kruskal–Wallis test with accompanying Dunn-Bonferroni post hoc analyses; S8 Fig). All

wounds had healed with 100% reepithelialisation by day 28.

Collagen correlated significantly with Propionibacterium and

Staphylococcus
Procrustes analysis was performed using the non-invasive measures as a reference when

assessing the similarities between the multivariate datasets of wound tissue microbiome and

non-invasive measures (metadata). The Procrustes distance was 0.9161 (P>0.05) indicating

poor similarity as a whole. Therefore, Spearman’s correlation coefficient was used to assess the

relationship between objective non-invasive measures in univariate level and the wound tissue

microbiome with significant correlations outlined in S2 Table. Of note, were the significant

correlation between collagen and Propionibacterium and Staphylococcus; between blood flow

and Mycobacterium and Propionibacterium; and between attenuation compensation and Bre-
vibacterium and Mycobacterium (S9 Fig). Further species level analyses identified Propionibac-
terium genus consisted of P. acnes and Staphylococcus genus consisted of S. aureus and S.

epidermidis along with other species (<1% relative abundance). S. aureus significantly corre-

lated with collagen (r = -0.397; P<0.05), whereas, no such relationship was identified between

S. epidermidis and collagen (r = -0.072; P>0.05).

Non-invasive measures of wound healing clustered with wound headspace

metabolites

Procrustean test was performed to measure the similarity between these two data sets and the

non-invasive measures data was used as a reference. The Procrustes distance was 0.7803 with a

P value of 0.0016 (Fig 6A). The Procrustes rotated loadings plot identified the metabolites with

significantly high loadings contributing most to the matched patterns (Fig 6B). Of the identi-

fied compounds: 1,5-dimethyl-2-oxabicyclo[3.2.1] nonan-7-one and isobutyl-2,2,4-trimethyl-

3-hydroxypentanoate clustered with blood flow; and 1,3-bis(1,1-dimethylethyl)benzene clus-

tered with attenuation compensation.

Non-invasive measures of wound healing clustered with wound tissue

metabolites

Procrustean test was performed using the non-invasive measures as a reference. The Procrus-

tes distance was 0.6817 with a P value of 0.001; Fig 7A). The Procrustes rotated loadings plot

identified the metabolites with significantly high loadings contributing most to the matched

patterns (Fig 7B). 1-methyladenosine, myo-Inositol and xanthine clustered with hydration;
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linolenic acid, glycerol and glycerol clustered with blood flow; D-(+)-galactose and two

unknown metabolites clustered with attenuation compensation; and linolenic acid, shikimic

acid and D-(+)-maltose clustered with melanin.

Fig 6. Procrustes analysis of non-invasive measures and wound headspace metabolome. (A) Procrustes rotated plot

with a Procrustes distance of 0.7803; P = 0.0016. (B) Procrustes rotated loadings plot highlighting metabolites mostly

correlated to the non-invasive measures. 8, 25, 30, 69, 75, 92—unknown; 105–1,5-dimethyl-2-oxabicyclo[3.2.1] nonan-

7-one; 112–1,3-bis(1,1-dimethylethyl) benzene; 121, 126 –unknown; 129—isobutyl-2,2,4-trimethyl-3-hydroxypentanoate.

https://doi.org/10.1371/journal.pone.0229545.g006
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Discussion

In this novel two part human exploratory study, we have demonstrated the complex temporal

metabolome and microbiome profiles of the early phases of acute wound healing. To our

knowledge this was the first multi-time point study investigating the dynamic metabolome

and microbiome in acute wounds, with only three previous studies to date having explored the

metabolic profile of chronic wounds at a single time point [11–13]. Here, we were able to sta-

tistically demonstrate the relationship between the metabolome and microbiome to acute

wound healing processes. Using three methods of metabolite sampling, we have established

the dynamic nature of the acute wound metabolome, as well as exploring the sensitivity of

each technique. With the use of established next generation sequencing methods, we have out-

lined the changing nature of the acute wound microbiome. Finally, by utilising validated

objective non-invasive measures of wound healing, we have successfully shown the relation-

ships between the wound metabolome and microbiome to acute wound healing processes.

Using four non-invasive objective skin measurement devices, we quantified 12 parameters

as objective measures of wound healing processes [39]. These are sub-characterised into blood

flow (DermaLab erythema, Full-field Laser Perfusion Imaging, SIAoscopy Hb and optical

coherence tomography (OCT) blood flow), skin barrier function (DermaLab TEWL and

hydration), tissue morphology (SIAoscopy collagen, OCT attenuation compensation) and pig-

mentation (Dermalab melanin and SIAoscopy melanin). The attenuation compensation mea-

sured by OCT is the amount by which the optical signal reduces with the distance travelled

into the wound and is related to collagen density and organisation. It is deemed to be a mea-

sure of extracellular matrix remodelling and fibrosis [40]. These parameters allowed for the

quantitative measurements of acute healing phases, namely, inflammation, proliferation and

remodelling. This allowed for the exploration of how these processes are related to the wound

metabolome and microbiome.

The method of wound tissue sampling for metabolome analysis allowed for the detection of

over three-hundred metabolite features across the five sampling time points. Multivariate PCA

allowed visualisation of how the wound tissue metabolome changed across time with clear sep-

aration of the time points based on the metabolic profile with clustering of day 0, day 7–14 and

day 21–28. From the PCA loadings plot, ten metabolites were identified as significant to this

separation. Linolenic acid and glycerol were significant metabolites allowing differentiation

between normal skin and early wounds with a significant increase in abundances at day 7 and

14. L-glutamine, 1,3-dihydroxyacetone dimer, adenosine and one unknown metabolite were

significant metabolites allowing differentiation between early and later time points, suggesting

their presence and abundance may represent a measure of varying wound maturity. Procrustes

analysis identified relationships between wound tissue metabolites and wound healing pro-

cesses. Linolenic acid was found to be related to blood flow. Linolenic acid is an essential fatty

acid that is not produced within the body. However, along with its derivatives, studies have

shown their beneficial effect on skin and healing [41]. Linolenic acid and its derivatives have

been shown to modify the immune response, inhibiting the inflammatory response through

inhibition of pro-inflammatory cytokines such as tumour necrosis-α and interleukin-12; and

also promoting wound healing [42]. Linolenic acid has also been shown to improves cell

migration [43], enhance cerebral vasodilatation [44] and induce angiogenesis [45]. Xanthine

was related to wound hydration and this corroborates with Méchin et al. who proposed xan-

thine derivatives are able to correct the hydration of the epidermis [46]. Endogenous glycerol

is a trihydroxy alcohol that has been shown to facilitate wound healing with specific roles in

skin hydration, cutaneous elasticity and epidermal barrier repair [47]. D-(+)-galactose was

associated with attenuation compensation, a marker of extracellular matrix formation and
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collagen deposition. This is supported by a previous rat based model that showed galactose

based metabolites caused significant increases in the accumulation of granulation tissue [48].

Fig 7. Procrustes analysis of non-invasive measures and wound tissue metabolome. (A) Procrustes rotated plot with

a Procrustes distance of 0.6817; P<0.001. (B) Procrustes rotated loadings plot highlighting metabolites mostly

correlated to the non-invasive measures. 139–1-methyladenosine; 225—linolenic acid; 242—D-(+)-galactose; 253—

myo-inositol; 264 –xanthine; 295—linolenic acid; 303 and 304—unknown; 325 and 339—glycerol; 340—shikimic acid;

341—D-(+)-maltose.

https://doi.org/10.1371/journal.pone.0229545.g007
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We also reported, to our knowledge, the first instance of metabolites found to relate to wound

healing processes, such as, glycerol with blood flow; 1-methyladenosine and myo-inositol with

hydration; an unknown metabolite with attenuation compensation; and linolenic acid, shiki-

mic acid and D-(+)-maltose with melanin. However, caution must be applied when interpret-

ing these findings due to limited size of samples and the metabolites were only tentatively

identified. Further confirmatory studies are required before firm conclusions can be drawn.

The Tenax/Unicarb sorbent method was used to sample the wound headspace metabolome

in part one of the study, whereas in part two, this was switched to the PDMS sampling method.

Wound headspace sampling of the metabolome has the advantageous benefit over wound tis-

sue sampling as it is non-invasive and requires minimal sample preparation [49]. However,

the sampling method used had a great impact on the data output. The Tenax/Unicarb sorbent

method identified only three metabolites and therefore further sampling and analysis was

abandoned. Therefore, the PDMS sampling method, which has been validated in skin and

wound sampling [13,50], was employed for part two of the study. This technique identified a

significant increase in the number of metabolite features detected compared to the Tenax/Uni-

carb sorbent method. This number however, was still only just over a third of metabolites iden-

tified through the wound tissue sampling method. Detection identification of 129 metabolite

features and multivariate ASCA showed statistically significant differences of the metabolome

sampling sites and also across time points. PDMS wound headspace sampling had the benefit

over wound tissue sampling, as multiple site sampling (wound, skin and background) were

able to be conducted, allowing greater comparative analyses. However, tentative identification

was more difficult in matching wound headspace metabolite features to named compounds.

The headspace metabolome varied significantly between the sampling sites. However, due

to limitations in metabolite identification, only 1,3-bis(1,1-dimethylethyl)benzene, a phenyl-

propane, was identified as a significant metabolite contributing to the separation. Human

exposure to benzene mainly occurs through inhalation, oral and dermal routes and is predom-

inantly deposited in fatty tissues [51]. 1,3-bis(1,1-dimethylethyl) benzene has been detected in

multiple bio-fluids, such as faeces [52] and saliva [53], however, this was the first instance that

it was detected in human skin and wounds. A possible explanation for the variation in the

hydroxypentanoate and benzene derivatives between time points and sampling sites could be

their relationship to changes in the wound microbiome. Both have previously been shown to

be derived from or have an effect on the microbiota [54,55]. However, as the identification of

metabolites is only tentative, these results must be taken with caution and further confirmatory

studies are necessary. Procrustes analysis of wound headspace metabolites identified a rela-

tionship between 1,3-bis(1,1-dimethylethyl)benzene and attenuation compensation, a measure

of tissue remodelling. A strong positive correlation has previously been identified between per-

centages of apoptotic cells and quantities of 1,3-bis(1,1-dimethylethyl)benzene [56]. Our iden-

tification of the association of this compound to the wound remodelling phase, therefore,

could be due to its relationship to apoptosis, which is a key process in wound healing [57]. We

also reported, to our knowledge, the first instance of metabolites found to relate to wound

healing processes, such as, Isobutyl-2,2,4-trimethyl-3-hydroxypentanoate and 1,5-dimethyl-

2-oxabicyclo[3.2.1]nonan-7-one to blood flow. Again, these results must be interpreted with

caution until further confirmatory studies are conducted. Procrustes analysis of wound head-

space metabolites identified a different set of metabolites compared to wound tissue metabo-

lites when categorised by the same wound healing processes. This may be as a result of a

different set of metabolites that are within the tissue and those that are in closer proximity to

the surface, highlighting the need for both techniques to obtain a more complete representa-

tion of the wound metabolic profile.
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Consistent with previous microbiome analysis, we found bacteria from Staphylococcus,
Corynebacterium and Propionibacterium were the dominant bacterial genera contributing to

the skin [58,59]. Although, the microbiome of healthy skin has been well established [60], this

work highlights the predominant genera in acute wounds up to 28 days are the same as healthy

skin, which may provide insight as to why acute wounds follow an expected normal healing

process. Multivariate data analysis of the microbiome data showed no clear separation between

the wounds at different time points in this study. This is in keeping with Oh J et al. who

showed human skin microbial stability persists regardless of sampling time interval [61].

Therefore, acute wound microbiome stability as identified in this study may help explain why

acute wounds follow an expected normal healing process. In contrast, there is no consensus

regarding the predominant genera contributing to bacterial bioburden within a chronic

wound [11]. There is however, evidence to suggest that the chronic wound microbiome is

dynamic and faster healing is experienced in those with greater transition frequencies of the

microbiome [18]. This supports the understanding that alteration of the chronic wound

microbiome to that of an acute wound may be crucial in modifying the wound healing

outcome.

Acute wounds at day 21 showed a statistically significant reciprocal change with the relative

abundance of Staphylococcus decreasing and that of Propionibacterium increasing. This coin-

cided with Propionibacterium showing a positive correlation with collagen levels in the wound.

A possible hypothesis to explain this observation could be as a result of the immune system

[62]. A decrease in the relative abundance of Staphylococcus at day 21 could be a consequence

of the wound, with the initiation of an immune response in order to reduce infection risk. The

coinciding rise in Propionibacterium could be as a result of the previously shown positive effect

Propionibacterium acnes, through the release of coproporphyrin III, has on Staphylococcus
aureus [63]. This hypothesis is further supported by the increase in the relative abundance of

Staphylococcus at day 28. In contrast, Staphylococcus negatively correlated with collagen in the

wound. The inverse relationship between Staphylococcus abundance and collagen synthesis is

corroborated in an animal model in which a bactericidal toxin against Staphylococcus
enhanced collagen synthesis in wounds [64]. Propionibacterium also negatively correlated with

blood flow, which supports a previous study in a mouse breast cancer model in which Propio-
nibacterium reduced angiogenesis when given in combination with melatonin [65]. We identi-

fied significant variations in the relative abundances of Brevibacterium, Mycobacterium,

Microbacterium and Paracoccus across the acute wound healing time points, along with their

significant relationship to wound healing processes. However, these exploratory findings war-

rant further study before firm conclusions can be drawn. This is because these genera have not

previously been reported to play a role in acute wound healing.

This exploratory study has a number of limitations. A relatively small number of subjects

were used for each part of the study, primarily due to cost implications. Therefore, the signifi-

cant attribute to the variables may be limiting. However, the findings certainly justify the need

for a larger scale study. The microbiome and metabolomic analyses were conducted in a differ-

ent set of subjects. This was in order to have enough tissue samples to assure reliable results.

This limitation was mitigated by recruiting similar subjects into each study part. The tentative

identification of the compounds using the mass spectral library must be interpreted with cau-

tion as they have not been confirmed using analytical standards. In addition, part 2 of the

study only recruited male participants in order to negate the effect of gender on metabolomic

analyses. Future work will therefore require female participant analyses to assess for the impact

of gender on skin and wound metabolomics. Further future direction could also focus on pro-

filing the mycobiome and virome. Also, study of the wound lipid profiles and cytokines in
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conjunction with the biomarkers identified through this study may better help understand

wound physiology.

In conclusion, this unique exploratory study successfully demonstrates the temporal and

dynamic acute wound metabolome and microbiome whilst also help identifying a class of bio-

markers that correspond to wound healing processes. This is encouraging and highlights the

needs for further research into wound healing metabolomics. Future research is necessary to

help corroborate these findings along with the need to compare the findings to the chronic

wound microbiome and metabolome.

Supporting information

S1 Fig. Study design.

(TIF)

S2 Fig. PCA on wound headspace metabolome. PCA scores plot of PC1 vs. PC2 for wound

headspace metabolome. The TEV of PC1 is 41.62% and for PC2 is 10.5%.

(TIF)

S3 Fig. Boxplots showing the relative abundances of significantly varied genera across the

examined time points. Kruskal–Wallis test with accompanying Dunn-Bonferroni post hoc

analyses were performed (n = 5).

(TIF)

S4 Fig. PCA and PC-DFA on bacterial genera. (A) PCA scores plot of PC1 vs. PC2. (B)

PC-DFA scores plot using the first 10 PCs provided a total explained variance (TEV) of 97.4%.

The numbers correspond to the subject.

(TIF)

S5 Fig. PCA of part 1 non-invasive measures. (A) PCA scores plot of PC1 vs. PC2. The TEV

of PC1 is 27.84% and for PC2 is 18.75%. (B) The corresponding PCA-loadings plot.

(TIF)

S6 Fig. Boxplots showing significantly varied part 1 objective non-invasive measures across

time points. Kruskal–Wallis test with accompanying Dunn-Bonferroni post hoc analyses were

performed (n = 5).

(TIF)

S7 Fig. PCA scores and PCA loadings on part 2 non-invasive measures. (A) PCA scores plot

of PC1 vs. PC2. The TEV of PC1 is 39.87% and for PC2 is 24.39%. (B) PCA-loadings plot.

(TIF)

S8 Fig. Boxplots showing significantly varied part 2 objective non-invasive measures across

time points. Kruskal–Wallis test with accompanying Dunn-Bonferroni post hoc analyses were

performed (n = 6).

(TIF)

S9 Fig. Selected significant correlations between part 1 objective non-invasive measures

and genera, as determined by Spearman’s rank-order correlation.

(TIF)

S1 Table. Study inclusion and exclusion criteria.

(DOCX)

S2 Table. Correlations between part 1 objective non-invasive measures and genera.

(DOCX)

Metabolomic and microbiome profiling of wounds

PLOS ONE | https://doi.org/10.1371/journal.pone.0229545 February 27, 2020 22 / 26

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229545.s011
https://doi.org/10.1371/journal.pone.0229545


Acknowledgments

AB and MA acknowledge the support of the NIHR Manchester Biomedical Research Centre.

Author Contributions

Conceptualization: Mohammed Ashrafi, Ardeshir Bayat.

Data curation: Mohammed Ashrafi, Howbeer Muhamadali.

Formal analysis: Mohammed Ashrafi, Yun Xu.

Investigation: Mohammed Ashrafi, Iain White, Maxim Wilkinson, Katherine Hollywood.

Methodology: Mohammed Ashrafi, Iain White, Royston Goodacre, Ardeshir Bayat.

Supervision: Mohamed Baguneid, Royston Goodacre, Ardeshir Bayat.

Writing – original draft: Mohammed Ashrafi.

Writing – review & editing: Mohammed Ashrafi, Yun Xu, Howbeer Muhamadali, Iain

White, Mohamed Baguneid, Royston Goodacre, Ardeshir Bayat.

References

1. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89: 219–229. https://doi.org/10.

1177/0022034509359125 PMID: 20139336

2. Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, et al. (2008) Treating the chronic

wound: A practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad

Dermatol 58: 185–206. https://doi.org/10.1016/j.jaad.2007.08.048 PMID: 18222318

3. Richmond NA, Lamel SA, Davidson JM, Martins-Green M, Sen CK, et al. (2013) US-National Institutes

of Health-funded research for cutaneous wounds in 2012. Wound Repair Regen 21: 789–792. https://

doi.org/10.1111/wrr.12099 PMID: 24134696

4. Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, et al. (2018) An Economic Evaluation of the

Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health 21: 27–

32. https://doi.org/10.1016/j.jval.2017.07.007 PMID: 29304937

5. Pastar I, Wong LL, Egger AN, Tomic-Canic M (2018) Descriptive versus mechanistic scientific

approach to study wound healing and its inhibition: is there a value of translational research involving

human subjects? Exp Dermatol.

6. Trivedi DK, Hollywood KA, Goodacre R (2017) Metabolomics for the masses: The future of metabolo-

mics in a personalized world. New Horiz Transl Med 3: 294–305. https://doi.org/10.1016/j.nhtm.2017.

06.001 PMID: 29094062

7. Mamas M, Dunn WB, Neyses L, Goodacre R (2011) The role of metabolites and metabolomics in clini-

cally applicable biomarkers of disease. Arch Toxicol 85: 5–17. https://doi.org/10.1007/s00204-010-

0609-6 PMID: 20953584

8. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2011) Systems level studies of mamma-

lian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy.

Chem Soc Rev 40: 387–426. https://doi.org/10.1039/b906712b PMID: 20717559

9. Sood RF, Gu H, Djukovic D, Deng L, Ga M, et al. (2015) Targeted metabolic profiling of wounds in dia-

betic and nondiabetic mice. Wound Repair Regen 23: 423–434. https://doi.org/10.1111/wrr.12299

PMID: 25845676

10. Kalkhof S, Förster Y, Schmidt J, Schulz MC, Baumann S, et al. (2014) Proteomics and metabolomics

for in situ monitoring of wound healing. Biomed Res Int 2014: 934848. https://doi.org/10.1155/2014/

934848 PMID: 25162036

11. Ammons MC, Morrissey K, Tripet BP, Van Leuven JT, Han A, et al. (2015) Biochemical association of

metabolic profile and microbiome in chronic pressure ulcer wounds. PLoS One 10: e0126735. https://

doi.org/10.1371/journal.pone.0126735 PMID: 25978400

12. Junka A, Wojtowicz W, Ząbek A, Krasowski G, Smutnicka D, et al. (2017) Metabolic profiles of exudates

from chronic leg ulcerations. J Pharm Biomed Anal 137: 13–22. https://doi.org/10.1016/j.jpba.2017.01.

018 PMID: 28088662

Metabolomic and microbiome profiling of wounds

PLOS ONE | https://doi.org/10.1371/journal.pone.0229545 February 27, 2020 23 / 26

https://doi.org/10.1177/0022034509359125
https://doi.org/10.1177/0022034509359125
http://www.ncbi.nlm.nih.gov/pubmed/20139336
https://doi.org/10.1016/j.jaad.2007.08.048
http://www.ncbi.nlm.nih.gov/pubmed/18222318
https://doi.org/10.1111/wrr.12099
https://doi.org/10.1111/wrr.12099
http://www.ncbi.nlm.nih.gov/pubmed/24134696
https://doi.org/10.1016/j.jval.2017.07.007
http://www.ncbi.nlm.nih.gov/pubmed/29304937
https://doi.org/10.1016/j.nhtm.2017.06.001
https://doi.org/10.1016/j.nhtm.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/29094062
https://doi.org/10.1007/s00204-010-0609-6
https://doi.org/10.1007/s00204-010-0609-6
http://www.ncbi.nlm.nih.gov/pubmed/20953584
https://doi.org/10.1039/b906712b
http://www.ncbi.nlm.nih.gov/pubmed/20717559
https://doi.org/10.1111/wrr.12299
http://www.ncbi.nlm.nih.gov/pubmed/25845676
https://doi.org/10.1155/2014/934848
https://doi.org/10.1155/2014/934848
http://www.ncbi.nlm.nih.gov/pubmed/25162036
https://doi.org/10.1371/journal.pone.0126735
https://doi.org/10.1371/journal.pone.0126735
http://www.ncbi.nlm.nih.gov/pubmed/25978400
https://doi.org/10.1016/j.jpba.2017.01.018
https://doi.org/10.1016/j.jpba.2017.01.018
http://www.ncbi.nlm.nih.gov/pubmed/28088662
https://doi.org/10.1371/journal.pone.0229545


13. Thomas AN, Riazanskaia S, Cheung W, Xu Y, Goodacre R, et al. (2010) Novel noninvasive identifica-

tion of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound

Repair Regen 18: 391–400. https://doi.org/10.1111/j.1524-475X.2010.00592.x PMID: 20492633

14. Deonarine K, Panelli MC, Stashower ME, Jin P, Smith K, et al. (2007) Gene expression profiling of cuta-

neous wound healing. J Transl Med 5: 11. https://doi.org/10.1186/1479-5876-5-11 PMID: 17313672

15. Feezor RJ, Paddock HN, Baker HV, Varela JC, Barreda J, et al. (2004) Temporal patterns of gene

expression in murine cutaneous burn wound healing. Physiol Genomics 16: 341–348. https://doi.org/

10.1152/physiolgenomics.00101.2003 PMID: 14966252

16. Penhallow K (2005) A review of studies that examine the impact of infection on the normal wound-heal-

ing process. J Wound Care 14: 123–126. https://doi.org/10.12968/jowc.2005.14.3.26747 PMID:

15779643

17. Scales BS, Huffnagle GB (2013) The microbiome in wound repair and tissue fibrosis. J Pathol 229:

323–331. https://doi.org/10.1002/path.4118 PMID: 23042513

18. Loesche M, Gardner SE, Kalan L, Horwinski J, Zheng Q, et al. (2017) Temporal Stability in Chronic

Wound Microbiota Is Associated With Poor Healing. J Invest Dermatol 137: 237–244. https://doi.org/

10.1016/j.jid.2016.08.009 PMID: 27566400

19. Okada M (1994) The influence of intestinal flora on wound healing in mice. Surg Today 24: 347–355.

https://doi.org/10.1007/bf02348566 PMID: 8038512

20. Meisel JS, Sfyroera G, Bartow-McKenney C, Gimblet C, Bugayev J, et al. (2018) Commensal micro-

biota modulate gene expression in the skin. Microbiome 6: 20. https://doi.org/10.1186/s40168-018-

0404-9 PMID: 29378633

21. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, et al. (2008) A diversity profile of the human

skin microbiota. Genome Res 18: 1043–1050. https://doi.org/10.1101/gr.075549.107 PMID: 18502944

22. Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, et al. (2015) Molecular cartography of the human

skin surface in 3D. Proc Natl Acad Sci U S A 112: E2120–2129. https://doi.org/10.1073/pnas.

1424409112 PMID: 25825778

23. Moncrieff M, Cotton S, Claridge E, Hall P (2002) Spectrophotometric intracutaneous analysis: a new

technique for imaging pigmented skin lesions. Br J Dermatol 146: 448–457. https://doi.org/10.1046/j.

1365-2133.2002.04569.x PMID: 11952545

24. Bircher A, de Boer EM, Agner T, Wahlberg JE, Serup J (1994) Guidelines for measurement of cutane-

ous blood flow by laser Doppler flowmetry. A report from the Standardization Group of the European

Society of Contact Dermatitis. Contact Dermatitis 30: 65–72. https://doi.org/10.1111/j.1600-0536.1994.

tb00565.x PMID: 8187504

25. Welzel J, Reinhardt C, Lankenau E, Winter C, Wolff HH (2004) Changes in function and morphology of

normal human skin: evaluation using optical coherence tomography. Br J Dermatol 150: 220–225.

https://doi.org/10.1111/j.1365-2133.2004.05810.x PMID: 14996091

26. Gambichler T, Moussa G, Sand M, Sand D, Altmeyer P, et al. (2005) Applications of optical coherence

tomography in dermatology. J Dermatol Sci 40: 85–94. https://doi.org/10.1016/j.jdermsci.2005.07.006

PMID: 16139481

27. Cobb MJ, Hwang JH, Upton MP, Chen Y, Oelschlager BK, et al. (2010) Imaging of subsquamous Bar-

rett’s epithelium with ultrahigh-resolution optical coherence tomography: a histologic correlation study.

Gastrointest Endosc 71: 223–230. https://doi.org/10.1016/j.gie.2009.07.005 PMID: 19846077

28. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, et al. (2015) A tutorial review: Metabolomics and

partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding. Anal

Chim Acta 879: 10–23. https://doi.org/10.1016/j.aca.2015.02.012 PMID: 26002472

29. Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a

Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178. https://doi.org/

10.1007/s004420100720 PMID: 28547594

30. AlRabiah H, Xu Y, Rattray NJ, Vaughan AA, Gibreel T, et al. (2014) Multiple metabolomics of uropatho-

genic E. coli reveal different information content in terms of metabolic potential compared to virulence

factors. Analyst 139: 4193–4199. https://doi.org/10.1039/c4an00176a PMID: 24841677

31. van Oort PM, Nijsen T, Weda H, Knobel H, Dark P, et al. (2017) BreathDx—molecular analysis of

exhaled breath as a diagnostic test for ventilator-associated pneumonia: protocol for a European multi-

centre observational study. BMC Pulm Med 17: 1. https://doi.org/10.1186/s12890-016-0353-7 PMID:

28049457

32. R Development Core Team (2018) R: A language and environment for statistical computing. R Founda-

tion for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Metabolomic and microbiome profiling of wounds

PLOS ONE | https://doi.org/10.1371/journal.pone.0229545 February 27, 2020 24 / 26

https://doi.org/10.1111/j.1524-475X.2010.00592.x
http://www.ncbi.nlm.nih.gov/pubmed/20492633
https://doi.org/10.1186/1479-5876-5-11
http://www.ncbi.nlm.nih.gov/pubmed/17313672
https://doi.org/10.1152/physiolgenomics.00101.2003
https://doi.org/10.1152/physiolgenomics.00101.2003
http://www.ncbi.nlm.nih.gov/pubmed/14966252
https://doi.org/10.12968/jowc.2005.14.3.26747
http://www.ncbi.nlm.nih.gov/pubmed/15779643
https://doi.org/10.1002/path.4118
http://www.ncbi.nlm.nih.gov/pubmed/23042513
https://doi.org/10.1016/j.jid.2016.08.009
https://doi.org/10.1016/j.jid.2016.08.009
http://www.ncbi.nlm.nih.gov/pubmed/27566400
https://doi.org/10.1007/bf02348566
http://www.ncbi.nlm.nih.gov/pubmed/8038512
https://doi.org/10.1186/s40168-018-0404-9
https://doi.org/10.1186/s40168-018-0404-9
http://www.ncbi.nlm.nih.gov/pubmed/29378633
https://doi.org/10.1101/gr.075549.107
http://www.ncbi.nlm.nih.gov/pubmed/18502944
https://doi.org/10.1073/pnas.1424409112
https://doi.org/10.1073/pnas.1424409112
http://www.ncbi.nlm.nih.gov/pubmed/25825778
https://doi.org/10.1046/j.1365-2133.2002.04569.x
https://doi.org/10.1046/j.1365-2133.2002.04569.x
http://www.ncbi.nlm.nih.gov/pubmed/11952545
https://doi.org/10.1111/j.1600-0536.1994.tb00565.x
https://doi.org/10.1111/j.1600-0536.1994.tb00565.x
http://www.ncbi.nlm.nih.gov/pubmed/8187504
https://doi.org/10.1111/j.1365-2133.2004.05810.x
http://www.ncbi.nlm.nih.gov/pubmed/14996091
https://doi.org/10.1016/j.jdermsci.2005.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16139481
https://doi.org/10.1016/j.gie.2009.07.005
http://www.ncbi.nlm.nih.gov/pubmed/19846077
https://doi.org/10.1016/j.aca.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/26002472
https://doi.org/10.1007/s004420100720
https://doi.org/10.1007/s004420100720
http://www.ncbi.nlm.nih.gov/pubmed/28547594
https://doi.org/10.1039/c4an00176a
http://www.ncbi.nlm.nih.gov/pubmed/24841677
https://doi.org/10.1186/s12890-016-0353-7
http://www.ncbi.nlm.nih.gov/pubmed/28049457
https://doi.org/10.1371/journal.pone.0229545


33. Domingo-Almenara X, Perera A, Ramı́rez N, Cañellas N, Correig X, et al. (2015) Compound identifica-

tion in gas chromatography/mass spectrometry-based metabolomics by blind source separation. J

Chromatogr A 1409: 226–233. https://doi.org/10.1016/j.chroma.2015.07.044 PMID: 26210114

34. Domingo-Almenara X, Brezmes J, Vinaixa M, Samino S, Ramirez N, et al. (2016) eRah: A Computa-

tional Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of

Metabolites in GC/MS-Based Metabolomics. Anal Chem 88: 9821–9829. https://doi.org/10.1021/acs.

analchem.6b02927 PMID: 27584001

35. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, et al. (2007) Proposed minimum reporting stan-

dards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initia-

tive (MSI). Metabolomics 3: 211–221. https://doi.org/10.1007/s11306-007-0082-2 PMID: 24039616

36. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, et al. (2011) Procedures for large-

scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography

coupled to mass spectrometry. Nat Protoc 6: 1060–1083. https://doi.org/10.1038/nprot.2011.335

PMID: 21720319

37. Wedge DC, Allwood JW, Dunn W, Vaughan AA, Simpson K, et al. (2011) Is serum or plasma more

appropriate for intersubject comparisons in metabolomic studies? An assessment in patients with

small-cell lung cancer. Anal Chem 83: 6689–6697. https://doi.org/10.1021/ac2012224 PMID:

21766834

38. Smilde AK, Jansen JJ, Hoefsloot HC, Lamers RJ, van der Greef J, et al. (2005) ANOVA-simultaneous

component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21:

3043–3048. https://doi.org/10.1093/bioinformatics/bti476 PMID: 15890747

39. Ud-Din S, Bayat A (2016) Non-invasive objective devices for monitoring the inflammatory, proliferative

and remodelling phases of cutaneous wound healing and skin scarring. Exp Dermatol 25: 579–585.

https://doi.org/10.1111/exd.13027 PMID: 27060469

40. Greaves NS, Benatar B, Whiteside S, Alonso-Rasgado T, Baguneid M, et al. (2014) Optical coherence

tomography: a reliable alternative to invasive histological assessment of acute wound healing in human

skin? Br J Dermatol 170: 840–850. https://doi.org/10.1111/bjd.12786 PMID: 24329481

41. Huang TH, Wang PW, Yang SC, Chou WL, Fang JY (2018) Cosmetic and Therapeutic Applications of

Fish Oil’s Fatty Acids on the Skin. Mar Drugs 16.

42. McCusker MM, Grant-Kels JM (2010) Healing fats of the skin: the structural and immunologic roles of

the omega-6 and omega-3 fatty acids. Clin Dermatol 28: 440–451. https://doi.org/10.1016/j.

clindermatol.2010.03.020 PMID: 20620762

43. Steinritz D, Schmidt A, Simons T, Ibrahim M, Morguet C, et al. (2014) Chlorambucil (nitrogen mustard)

induced impairment of early vascular endothelial cell migration—effects of α-linolenic acid and N-acetyl-

cysteine. Chem Biol Interact 219: 143–150. https://doi.org/10.1016/j.cbi.2014.05.015 PMID: 24892517

44. Lin HW, Perez-Pinzon M (2013) The role of fatty acids in the regulation of cerebral vascular function

and neuroprotection in ischemia. CNS Neurol Disord Drug Targets 12: 316–324. https://doi.org/10.

2174/1871527311312030005 PMID: 23469852

45. Rodrigues HG, Vinolo MA, Sato FT, Magdalon J, Kuhl CM, et al. (2016) Oral Administration of Linoleic

Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. PLoS One

11: e0165115. https://doi.org/10.1371/journal.pone.0165115 PMID: 27764229
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