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INTRODUCTION

Hardly any modern study nowadays does not claim 
that prostate cancer should be classified on the basis of 
molecular or genetic features. It could almost be said 
that progress in all areas of  prostate cancer research 
is impossible until we determine the basic principles of 
this classification. Indeed, the number of  fundamental 
research programs in prostate cancer molecular biology 
and genetics is overwhelming. It is obvious that the time 
has come for the translation of  these data to the clinic. 
However, prostate cancer is characterized by prominent 
genetic heterogeneity, which could be a very difficult 
barrier to overcome [1]. How far we are now from the 
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valuable clinical translation of  the results of  molecular 
genetic studies is the theme of this review.

GENE EXPRESSION STUDIES AND 
GENETIC SIGNATURES

Gene expression analysis (mRNA analysis) is an attrac
tive method of  tumor tissue analysis (for example, after 
biopsy or during the final pathology examination). Current 
technologies (DNA microarrays, quantitative polymerase 
chain reaction, RNAseq) provide the possibility for 
streamed analysis of thousands genes in a relatively small 
volume of extracted tissue. Key issues for gene expression 
analysis are the quality of the analyzed material (better 
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with freshfrozen tissues), the amount of tumor tissue in 
the probe (a certain amount of stromal tissue contaminates 
the material), and the necessity to use reference genes 
(as a rule, housekeeping genes, which are supposed to 
be expressed equally in all tissues) and normalization to 
account for differences in the RNA quantity in the probes. 
Recent studies have shown that formalinfixed, paraffin
embedded (FFPE) tissues can also be used for analysis 
despite f ixationrelated RNA degradation if  special 
extraction and preparation techniques are used [2]. In view 
of the large amount of generated data, certain demanding 
bioinformatics approaches are necessary for the analysis 
and to compensate for possible errors.

Gene expression studies in the area of  prostate 
cancer have been carried out for more than 10 years. 
The principle idea of  all these studies is to develop a 
gene expression signature, which could be useful for 
characterization of  the tumor (mainly the aggressive, 
metastatic, lethal, or latent nature of the tumor) and for 
prognosis of outcomes or sensitivity to certain therapeutic 
modalities [3]. Different groups of  scientists have under
taken efforts to extract these data from the analysis of 
gene expression [414]. Some signatures were developed in 
cooperation with genetic companies, some almost to the 
stage of being ready for clinical application [1521]. Some of 
the signatures also used noncoding regions in the genome 
and not only proteincoding mRNAs with clear cellular 
functions [17,18]. 

Nevertheless, all these signatures have some common 
problems that hamper their rapid integration into clinical 
practice. First, they do not account for intra and interfocal 
heterogeneity, because the sampling for investigation 
included only the highest grade tumors. Second, some 
interpretation errors are possible owing to the use of 
FFPE archive tissues (the quality of which is lower than 
that of  fresh or freshfrozen tissues, which are hard 
and expensive to handle). Third, the use of these genetic 
expression signatures with biopsy tissues is dif f icult 
owing to the undersampling issue and therefore entails 
possible bias due to characterization of  less aggressive 
tumors. Fourth, the performance of  these signatures is 
only slightly better than that of clinical variables and it 
is hard to estimate whether the prospective translation of 
these assays and their implementation for certain clinical 
cases will preserve this advantage. Fifth, the signatures 
were not compared to other important contemporary 
diagnostic modalities, e.g., multiparametric magnetic 
resonance tomography or some other biomarker [22] to see 
whether they will maintain their value. 

Moreover, the method (gene expression analysis) 
itself  is questionable for the purposes of  highresolution 
molecular characterization of  prostate tumors. In the 
modern era, more than 60 studies of  gene expression in 
prostate carcinoma have been published (e.g., in Oncomine 
Database, a publicly available database of  stream gene 
expression data for various types of cancers). In almost all 
of  these studies, thousands of  genes were analyzed in a 
streamed fashion with regard to their mRNA expression. 
Two important conclusions stem from there. It was 
often found that the genes with altered expression in 
these studies did not correspond with the genes in other 
studies [6,1012,16,17,21]. Second, the prognostic value in 
terms of  clinical risks was never overwhelmingly high 
but rather low, with the primary endpoint of  prostate
specific antigen recurrence not being a good surrogate 
of  other prostate cancer outcomes [1621]. The question 
arises of  whether the expression of  multiple genes is 
adequate for the aforementioned purposes. It seems 
that the gene expression analysis detects only virtually 
randomly mediated transcriptional reactions in the tissues, 
affecting thousands of  genes, which are compensatory 
owing to changes in the cells and microenvironment but 
not a direct consequence of  tumor growth. Behind this 
prominent transcriptional reaction lie some limited genetic 
oncogenic changes, which cannot be seen now because of 
this genetic chaos.

Nevertheless, selected signatures tested in real clinical 
practice showed some promising results in a postsurgical 
setting in patients with high risk of  recurrence, which 
should be further prospectively evaluated [23]. However, 
the problem of  valuable genetic characterization of  a 
tumor at the time of biopsy (first minimally invasive con
tact with the tumor) is to date not solved.

GENETIC CHARACTERIZATION AND 
CLASSIFICATION OF PROSTATE 
TUMORS

A key f inding in prostate tumor biology was the 
identification of  the recurrent gene fusion (TMPRSS2: 
ERG, short abbreviation T2:ERG) in prostate cancer 
tumors [24]. This fusion is present in approximately 50% 
of all prostate adenocarcinomas [25] and is considered to 
be the early initial rearrangement, being also present in 
precancerous lesions (highgrade prostatic intraepithelial 
neoplasia) [26,27] and in a small percentage of  benign 
prostatic hyperplasia tissues [28]. Several types of  struc
tural rearrangements leading to the T2:ERG fusion are 
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known [29]. The principal result of the ERG and other ETS 
fusions is attachment of  the coding region of  powerful 
transcriptional factors from the ETS family (including 
ERG) to the strong promoter of the TMPRSS2 gene. This 
leads to the overexpression of  ERG or other ETS genes, 
given that the TMPRSS2 gene is an androgenregulated 
gene that is normally highly expressed in prostate tissue 
[30]. Other fusion partners from the ETS family of genes 
have also been identified, with ETV1, ETV4, ELK4, and 
ETV5 being most common [29]. Other genes with strong 
promoters may be also involved in fusion formation 
[29,31,32]. T2:ERG is the most common type of  ETS
familyrelated fusion in prostate cancer, accounting for 
approximately 85% of all fusions [25,31,33].

The role of the aforementioned fusions for oncogenesis 
is currently understudied. Importantly, some functional 
studies show that overexpression of  ERG as a single 
rearrangement is not enough for tumor formation, 
despite being obviously oncogenous, which suggests that 
additional mutations or rearrangements are necessary 
[3436]. The results of  attempts to link T2:ERG fusion to 
cancer aggressiveness and clinical outcomes have to date 
been unremarkable [3740], especially in a postdefinitive 
therapy setting (for a review of studies, see reference [29]). 
This could, on one hand, be related to the retrospective 
nature of the performed studies. On the other hand, the 
multifocality and inter and intratumoral heterogeneity of 
the tumors were not accounted for, which are issues that 
seem to be extremely important for prostate cancer. 

From a logical point of view, T2:ERG fusion is a rela
ti vely early event and gives rise to the two big molecular 
branches of prostate cancer. Correspondingly, the T2:ERG 
fusion represents two ways of  cancer evolution and 
should provide some differences in tumor phenotype at 
late stages. The resulting late genetic aberrations, which 
are important for tumor formation, in these ETS+ and 
ETS– tumors are common. It could also be that there are 
many unique sprouting pathways in both tumor groups, 
which could lead to both aggressive and unaggressive en
tities independent of  ETS status. The evidence for ERG
dependent aberrations is emerging (see below), but to date 
there are not enough data to make any final conclusions. 
However, given the high prevalence of these fusions, they 
could already be used as potent diagnostic biomarkers 
alone or together with other assays [41].

With the introduction of  nextgeneration sequencing 
technologies into prostate cancer research, it became possi
ble to gain deep insight into tumor genetics. On the one 
hand, it became possible to obtain important information 

in recurrently mutated genes and to classify the tumors by 
some of these genes. On the other hand, the mechanisms 
underlying the genetic rearrangements in prostate cancer 
were elucidated.

Some investigations show that the rate of somatic mu
ta tions in prostate tumors is very low, with many gene 
dysfunctions being a result of  gene rearrangements [42
44]. The prominent article by Baca et al. [42] indicates that 
these complex genetic rearrangements are caused by the 
phenomenon called “chromoplexy,” which entails multiple 
breaks of DNA chains with newly arising interconnections 
and copynumber variations owing to inadequate repara
tion. Importantly, the breakpoint distribution and assem
bling are not random and involve adjacent frag ments of 
the broken DNA chain. Chromoplexy is thereby res pon si
ble for the punctuated accumulation of genetic re arrange
ments. Nevertheless, the tempo of  chromoplexy is not 
known. Thus, the pace of progression and time to clinically 
significant tumor formation remain obscure.

One remarkable success has been the identification of 
common recurrent genetic aberrations in prostate cancer. 
Many genes and altered pathways have been related to 
prostate cancer [4244; for review see also reference 1]. The 
main genes recurrently affected in prostate tumors are 
ERG and the genes of  the ETS family, TMPRSS2, Ki67, 
MYC, NKX31, PTEN, CHD1, Ras/Raf/MAPK  pathway, 
PI3K pathway, NCOA2, SPINK1, EZH2, P53, RB1, HOXC6, 
CDKN2A, BMI1, SPOP, MED12, FOXA1, MLL2, CDKN1B, 
KDM6A, and MAGI2 [1,4244]. Importantly, a single gene 
alteration in the pathway is enough to cause a pathway 
dysfunction [43]. This points at the importance of assessing 
genetic rearrangements with regard to pathways and 
their multiple interconnections and not in reference to 
selected genes [9]. 

A significant point is that localized and treatment
naïve prostate cancers carry a relatively small number of 
genetic rearrangements and mutations. Thereby, castra
tionrefractory lethal cancers are highly mutated [4244], 
indicating that hormonal therapy itself  is a significant 
promoter of  the mutational processes, which is a major 
object of contemporary research.

Information obtained from the aforementioned studies 
provides a first basis for a highly desired molecular classi
fication of prostate tumors. It seems that, being an early 
event, T2:ERG fusion and other ETS fusions are major 
classification criteria that can be used to divide all tumors 
into ETSpositive or ETSnegative. Such division could 
in turn have an almost unique set of  further associated 
mutations, which again proves that the mutational process 
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is not random [42]. The genes common for ETS+/– tumors 
are discussed in detail elsewhere [1,45].

The main question is how to use this information on 
recurrent genetic aberrations for clinical purposes. The 
only way is to assess these aberrations in all patients in 
the clinic prospectively with strict respect for multifocality 
and intra and interfocal heterogeneity. Such prospective 
evaluation will provide us with valuable information on 
the phenotypic properties of  the tumors with regard to 
their genotype. Importantly, this genetic and molecular 
information from the primary tumor should be linked 
to outcomes and to the molecular genetic features of the 
metastatic lesions to understand the patterns of evolution 
to metastatic disease. This could give insight into which 
genetic alterations are responsible for invasion, metastasis, 
and progression and provide important data for clinical 
stratification of  risks. Indeed, newly emerging prostate 
cancer–related genes and pathways should be included in 
this prospective model with time.

The first steps are already being taken in this dir
ection. For example, PTEN loss and CMYC gains are 
considered to be good tissue markers (fluorescence in situ 
hybridization analysis or immunohistochemistry) to rule 
out tumors with more aggressive phenotypes [46,47]. This is 
particularly important for Gleason stage 3 tumors, which 
could be considered more invasive and unfit for active 
surveillance in the presence of  PTEN loss. Being a later 
and decisive genetic rearrangement by many prostate 
carcinomas [1,4244,48,49], PTEN loss seems to have less 
prognostic significance in high Gleason score tumors. 

Whereas copy number variations (CNVs) are the mo
st common type of  genetic rearrangement in prostate 
carcinoma, array comparative genomic hybridization 
(aCGH) can be used to detect the loci of  CNVs and to 
cluster the cases in terms of aggressiveness and prognosis 
given that highresolution arrays are available [43,47,50]. 
Overall, rough CNV burden estimation also seems to be 
a promising tool for identification of  aggressive tumors 
[50,51]; nevertheless, the technique is still far from clinical 
application. Other successful examples of  molecular 
subclassification have also been published recently [8,52
58]. The new examples will warrant development of a new 
molecular classification model (analogous to the Gleason 
score) in the next few years with possible applications at 
the biopsy stage and in the post–radicaltherapy setting.

However, some tumors will probably always be out
standing. For example, some tumors, according to several 
studies [43,44], have no typical prostate cancer mutations, 
meaning that prostate carcinoma can be developing in 

ways other than genetic regulation and that some impor
tant genetic or epigenetic rearrangements, which could 
explain the oncogenesis in those tumors, are to date not in 
scope. 

MULTIFOCALITY AND INTERFOCAL 
AND INTRAFOCAL HETEROGENEITY

Multifocality is a wellknown feature of prostate can
cer and is found in from 60% to 90% of prostate tumors 
[59]. Therefore, at the time of biopsy, tissue sampling may 
be inconclusive with regard to the index (dominant, most 
aggressive) lesion. Moreover, multifocal tumors within one 
prostate arise independently (interfocal heterogeneity), 
therefore having different sets of genetic rearrangements 
and representing separate issues with diverse behaviors 
[60,61]. In simple words, two tumors in one patient could be 
as different as two tumors in two different patients. This 
should always be accounted for in research and in the 
clinical setting. 

The other emerging issue is intrafocal heterogeneity. 
This term represents two different conditions: intrafocal 
heterogeneity due to the merger of  two independent 
tumor loci in the process of  their growth and intrafocal 
heterogeneity due to clonality of  the cell populations 
within one focus. The latter seems to be an understudied 
issue and could be a major obstacle for clinical translation 
of genetic information.

Emerging evidence [6164] shows that substantial 
interfocal heterogeneity is present in the individual tumor 
foci with regard to TMRSS2:ERG fusion formation and 
its structural type, to PTEN loss, CNVs, and epigenetic 
alterations across the whole genome. In most cases, these 
genetically different tumors seem to be identical in terms 
of Gleason grade and visual appearance. 

By contrast, certain intratumoral heterogeneity with 
regard to Gleason grade (presence of Gleason grade 3 and 
4 tumors in one focus) often mirrors the clonality issue 
(with Gleason 3 being a predecessor of Gleason 4 tumors) 
with shared genetic rearrangements between these tumors 
[49,65]. This is an interesting yet understudied component 
of contemporary research outlining the evolution of low
grade cancers. When we compare mutations present in 
Gleason 3 and Gleason 4 tumors, which could be partly 
common and partly different, we can gain insight into 
which mutations the tumor progresses through to the next 
stage.

The main questions that arise with the reports of 
intrafocal heterogeneity and which may significantly 
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influence the clinical application of genetic analyses are 
as follows: how many clones can reside within one tumor 
focus? Which spatial relations are typical for the clones 
(are the cells from different clones lying in layers, zones, 
or mixed)? Is the dominant clone advantage in terms 
of  growth the biggest advantage (volume) in the tumor 
focus? How can we detect the most aggressive or the most 
important clones in terms of progression? These questions 
should be answered in the next few years. 

EPIGENETICS AND FIELD EFFECT

Epigenetic alterations are typical for many cancers 
[66]. Three of  the most important epigenetic regulators 
are DNA methylation, histone modifications, and micro
RNAs [67]. Methylation of  DNA in the promoter region, 
which blocks the expression of the affected genes, is the 
most studied epigenetic alteration. The epigenetics of 
prostate cancer is a newly developing area of  research 
with a limited amount information on the significance 
of  epigenetic events for oncogenesis, progression, and 
important clinical issues (diagnosis, prognosis, treatment 
selection). Information is also lacking on the manifestation 
of  these events in the natural course of  prostate cancer. 
Nevertheless, the importance of some of these alterations 
for prostate tumors is confirmed by many relevant studies 
(for review, see reference [67]). A detailed review of  the 
epigenetic events in prostate cancer was not the aim 
of  this review; nevertheless, one issue with significant 
impact on everyday practice is worth discussing here. 
One of  the most controversial issues in the genetics 
and epigenetics of  prostate cancer is a field effect: the 
possibility of  the cancer focus being associated with 
changes in the surrounding normal tissues, which appear 
visually as nonimpacted. The field effect is a cumulative 
concept consisting of  several issues that must be clearly 
distinguished:

(1) Germline genetic or molecular changes in the 
tissues, which predispose to prostate cancer development 
owing to the altered functioning of intracellular pathways 
(for example, as the consequence of germline mutations or 
singlenucleotide polymorphisms in key genes).

(2) The field effect as a consequence of systemic actions 
of the prostate (viral/mycotic or bacterial infection, urine 
reflux, aging, etc.) that could lead to changes in the tissues 
that predispose to the development of prostate cancer.

(3) A real field effect associated with the presence 
of  the tumor (as a hypothesis, the affected cells could 
be the primary precursor clones of  tumor cells with a 

visual appearance indistinguishable from normal cells 
but already with certain genetic/epigenetic traits of  the 
tumor or as a result of extracellular transport of genetic 
or epigenetic material to the normal cells with subsequent 
changes).

(4) A microenvironment response to the tumor, which 
is likely most important in the clinical setting, which is a 
real field effect with the only difference being that the 
changes in the cells may not predispose to the development 
of new tumors as they would with the real field effect.

The evidence of a field effect in prostate tumors stems 
from studies that investigated morphologically, genetically, 
proteomically, and epigenetically the tissues adjacent 
to the prostate cancer (for review of  these studies, see 
reference [68]). The most promising data emerged from the 
assessment of the following epigenetic DNA methylation 
markers: GSTP1, APC, RASSF1A, and RARB [6972]. Also, 
some studies showed that gene expression in benign tissues 
near the tumors could be altered [73]. These latter findings 
are hard to interpret, because modified genetic expression 
could be the result of the microenvironment response (the 
function of the affected genes is mainly understudied).

The main clinical application of the field effect concept 
is the prediction of  prostate cancer in patients with an 
initial negative biopsy result via analysis of  normally 
appearing prostate tissues in the obtained samples. Promi
nent results were achieved by Partin et al. [74] with the 
use of DNA methylation assessment for the GSTP1, APC, 
and RASSF1 genes. That study showed that the epigenetic 
assay could be readily implemented in clinical practice 
with a potentially high impact. The application of  the 
epigenetic assay resulted in a negative predictive value 
of 88%. In simple words, when the assay does not detect 
methylation of  three genes in the normal tissue from 
biopsy cores after an initial negative biopsy result, the 
probability that this patient has prostate cancer is as low 
as 12%. This is a prominent result and a ready solution for 
the clinical dilemma of whether to perform a repeat biopsy 
in a patient with an initial negative biopsy result. The 
disadvantage of the assay, although the study presented 
the clinical implications of the field effect concept, is that 
it is not clear which dimensions have this field effect. 
Important information, such as whether a tumor was 
detected in a repeat biopsy in the area of the previously 
identified epigenetic changes and whether any correlation 
between these issues persisted, was also lacking. 

Another similar study by Truong et al. [75] investigated 
the methylation of the other gene set: EVX1, CAV1, and 
FGF1. Those authors reported that the combination of 
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EVX1 and FGF1 had a negative predictive value of appro
ximately 91%, which is a little bit more than in the study 
of  Partin et al. [74]. These assays will obviously have a 
significant place in clinical practice in the next several 
years.

CONCLUSIONS AND FUTURE 
DIRECTIONS

It is obvious that genetic characterization of prostate 
cancer is a mainstream component of  contemporary 
translational prostate cancer research (Fig. 1). Nevertheless, 
the extremely heterogeneous nature of  prostate tumors 
sets up substantial obstacles on the path to the clinical 
integration of the numerous findings. 

Gene expression analysis is an interesting and simple 
implementation tool, but the contemporary evidence shows 
that the current state of this method does not reach the 
desired aim. Some obvious limitations are inevitably 
present.

The genetic characterization of  prostate cancer with 
the use of  contemporary molecular genetic methods is 
progressing unbelievably. There is nevertheless a sub
stantial gap between the fundamental studies and the 
clinic. However, the emerging evidence shows that step by 
step, gene by gene, we are moving towards the clinically 
relevant genetic characterization of  prostate cancer. 
The obvious limitations are the necessity of  prospective 
evaluation of all findings and the outstanding interpatient 
and inter and intrafocal heterogeneity of  the prostate 
carcinoma. Given that the genetic characterization of the 
tumors by use of nextgeneration sequencing technologies 

is a laborintensive task coupled with the analysis of huge 
amounts of data, international initiatives with division of 
tasks should play an important role in future progress (e.g., 
the International Cancer Genome Consortium, The Cancer 
Genome Atlas, projects similar to AURORA initiative for 
metastatic breast cancer [76]). One extremely important 
breakthrough has emerged from the epigenetic studies, 
which intended to solve the problem of repeat biopsies for 
most patients.  

Importantly, a signif icant breach is now evident 
between the huge amount of  studies of  the genetic 
characterization of  prostate cancer, which have limited 
translation to clinical practice or simply were not 
conceived to be so translated, and clinical practice. From 
a clinical point of  view, this balance should be urgently 
shifted towards translation. Nevertheless, strict control of 
the significance of the new markers is necessary against 
the common clinical and pathological variables (e.g., 
Gleason score). This will guarantee protection from the 
enormous volume of  insignificant data generated in the 
fundamental studies.
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