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Abstract: This paper presents a solution for building awareness of the electromagnetic situation
in cognitive mobile ad hoc networks (MANET) using the cooperative spectrum sensing method.
Signal detection is performed using energy detectors with noise level estimation. Based on the
evidence theory, the fusion center decides on the particular channel occupancy, which can process
incomplete and unambiguous input data. Next, a reinforced machine learning algorithm estimates
the usefulness of particular channels for the MANET transmission and creates backup channels list
that could be used in case of interferences. Initial simulations were performed using the MATLAB
environment, and next an OMNET-based MAENA high fidelity simulator was used. Performed
simulations showed a significant increase in sensing efficiency compared to sensing performed using
simple data fusion rules.

Keywords: spectrum monitoring; data fusion; the decision-making process; cognitive radio network;
MANET; dynamic spectrum management; ad hoc networks; machine learning

1. Introduction

Self-organizing mobile ad hoc networks (MANETs) are modern and flexible cognitive
solutions working without controlling infrastructure. Usually, they do not use the Primary
User and Secondary User paradigm, but all radio nodes have the same rights, and all nodes
compete for the spectral resource. That is why spectrum monitoring is an essential element
of radio’s cognitive cycle used to assess the current spectral situation [1]. Furthermore,
the quality and accuracy of the achieved data are crucial for the radio network operation
parameters. This work aims to propose a solution devoted to MANETs working in the
presence of interference and intentional jamming. Such an assumption eliminates the
possibility of wideband monitoring because high-level interferences may block the wide-
band receiver. Furthermore, full-duplex sensing is also inefficient because fast-changing
conditions of signals reception disable efficient iterative adaptation of self-interference
cancelation algorithm [2–5].

On the other side, the spectrum-monitoring results’ reliability depends on the signal
detector type, detection time, assumed detection threshold, and detection periodicity [6].
Frequencies may be controlled periodically, randomly, or according to predefined priorities
to optimize the last parameter. Both spectrum detectors, detection strategy, and data fusion
methods should be appropriately selected to achieve the optimal results according to
the predefined goals and policy. The sensing strategy dilemma is related to the optimal
amount of time devoted to spectrum monitoring because, during time slots dedicated to
spectrum monitoring, data transmission is usually suspended to avoid interferences from
own transmitters, so longer and more frequent slots assigned to the spectrum monitoring,
lead to limitations of the throughput available to the user.
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The sensing results are used in MANET for agile spectrum utilization, and these
methods may be divided into two major groups: reactive and proactive. Reactive strategies
enable the adaptation of used spectral resources based on searching the newly available
resource after the used resource is jammed or interfered with. In contrast, the proactive
approach is based on the sequential wideband search of idle resources that can be used as
a backup in the case of interference. Such monitoring is performed periodically during
the network operation and enables faster network reconfiguration in case of interference
interrupting the communication. Mainly, if possible, backup channels are distributed within
the network in advance [7]. However, the major disadvantage of such an approach is the
need to introduce silence periods in transmission for the detection process. Furthermore,
additional time for sensing control and distribution is required.

In MANET, spectrum sensing may be performed in a distributed or cooperative man-
ner. In distributed methods, each node assesses the spectrum only from its point of view,
whereas in a corporative way, nodes exchange information about spectrum occupancy
between them. Because radio spectrum is a multi-dimensional space described by ge-
ographical coordinates, frequency, and time, its properties depend on the observation
point and detection method. Apart from this, propagation conditions play a crucial role in
spectrum assessment by specific nodes because terrain shape and obstacles may suppress
radio signals at specific locations and disable their detection, and this is the main reason
why cooperative spectrum sensing is widely used [8–11].

The simplest and the most popular spectrum detector is the energy detector. However,
spectrum analysis can work as a single channel detector or multi-channel one, and it doesn’t
need to know the detected signal structure [12]. According to [9,10,12–15], apart from
classical energy detector, cumulative power spectral density detector, cyclo-energy detector,
and generalized energy detector may be used. Moreover, known user’s signal pattern may
be detected by cyclo-stationary, auto-correlation, and eigenvalue-based detectors. Another
approach is pilot-based user’s signal waveform detection by the matched filter, knowing
the detected signal structure [10].

The sensing strategy dilemma is related to the optimal amount of time devoted to
spectrum monitoring because, during time slots dedicated to spectrum monitoring, data
transmission is suspended to avoid interferences from own transmitters, so longer and more
frequent slots assigned to the spectrum monitoring lead to limitation of the throughput
available to the user.

A cooperative spectrum monitoring may be used, where several radios perform
spectrum monitoring. According to predefined fusion rules, radio channel occupancy’s
decision is taken in the Fusion Center (FC). Data fusion may be performed using soft
combining, quantized, or hard combining [16]. The first approach assumes that all results
from the local sensing are available at the FC. Usually, equal gain combining (EGC),
maximal ratio combining (MRC), LRT based or modified deflection coefficient (MDC)
methods are used. Such an approach enables optimal conditions for decision making in FC.
Still, the transmission of many sensing-related data must be transmitted, so this solution
may be used mainly in wideband systems for slowly changing spectrum conditions. The
Quantized combining limits the transmission needs by locally performed strong data
selection and compression to several bits, leading to sub-optimal FC decisions.

To improve the fusion efficiency, in [8], authors proposed to use Markov Random
Fields that approximate users’ spectrum statuses before combining the particular results.
Additionally, neighbor nodes likely have the same spectrum status, enabling detection
reliability or minimizing control traffic by eliminating neighbor nodes from the sensing
procedure. Another approach is presented in [11], where the residual neural network is
combined with feature extractor and random forest classifier. The feature extractor reduces
the signals’ complexity and speeds up the response time. Authors claim that the achieved
results are promising, but the number of extracted features must be reduced for resource
optimization. Moreover, the proposed approach assumes the existence of primary and
secondary users that is not the case for military MANET.
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To futher minimize the control traffic, compressed sensing with the hard decision is
proposed in [17]. Two decision thresholds are defined to enable three possible choices:
signal absent, signal present, and uncertain state. When the signal is absent, no sensing
results are transmitted. It limits the number and size of control messages but leads to
ambiguous situations where the FC doesn’t know if the results are unavailable or signals
are absent. Therefore, it may lead to wrong decisions about spectrum occupancy. Moreover,
proposed ‘DOR’ fusion is a modification of the well-known ‘OR’ rule and generates a
relatively high level of false alarms [9].

Spectrum occupancy of different communication systems is closely related to their
structure, used modulation and coding scheme, medium access control, link layer, transport
layer, and used applications. It means that in some cases (e.g., for broadcasting services),
frequencies are occupied or idle for relatively long periods, but in most cases, their status
is frequently changing, e.g., from message to message. In addition, because of node
mobility and multipath propagation, signal detection may be impossible from time to time.
Therefore, it means that periodically detected spectrum occupancy may change very often,
and the assessment of the usefulness of specific frequencies for radio transmission should
be additionally performed.

In this paper, the authors propose an integrated solution for spectrum awareness
containing both spectrum monitoring and radio channel utility evaluation (RCUE). The
spectrum monitoring uses energy detection with noise level estimation and FC rules based
on the Dempster–Schaffer evidence theory, designed for reasoning based on incomplete,
imprecise, and uncertain information. The authors presented its details in [18] and achieved
results showing that it provides a high probability of signal detection, maintaining a low
level of false alarms. Next, the authors propose an additional processing step—RCUE.
The solution is based on artificial intelligence, using reinforcement learning to calculate
the utility of particular radio channels and enables reliable estimation of the usefulness of
specific frequency channels for MANET use. Authors describe its details in [19].

The structure of this paper is as follows: Section 2 is devoted to the general description
of the proposed spectrum monitoring solution, Section 3 presents solution evaluation using
both MATLAB and the MAENA Simulator, whereas Section 4 contains conclusions.

2. Cooperative Spectrum Monitoring Using Data Fusion and Machine Learning
2.1. Cooperative Spectrum Monitoring

Detection of radio spectrum must cope with many drawbacks occurring in the radio
environment, such as shadowing or the hidden node problem [1,9,20], which for the
Cognitive Radio Network (CRN) user translates to limited ability to sense signal effectively.
Cooperation between Cognitive Radio (CR) nodes is one of the most effective methods to
deal with those problems. The solution is to make decisions based on reports received from
several CR nodes. Based on the information received from many radio nodes, a decision
whether a signal is present or not may be taken, even if some of the CRN nodes could
not correctly detect occurring transmission (e.g., due to the large distance from the signal
source or shadowing effect).

Considering the previous works [21,22] and the solution from [23], a cluster-based
MANET architecture is proposed. MANET is divided into groups of nearly located nodes,
called clusters. Each cluster is managed by an elected Cluster Head (CH). All CR nodes
perform their local detections during spectrum monitoring using an energy detector with
estimated noise power (ED-ENP) [14,15]. The sensing performance is strictly dependent on
the used threshold in terms of the probability of detection ( Pd) and false alarm probability
( Pf a). The threshold has to be set according to the channel condition and the noise power
at the receiver. Its estimation is critical in spectrum sensing [14,24], particularly energy
detection methods. If the noise power is known and the number of samples is not fixed, it
is theoretically possible to choose a threshold that can simultaneously meet any target Pd
and Pf a [14,25].
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The detector does not have the perfect knowledge of the noise variance in real scenarios.
It must cope with the so-called SNR wall (minimum value of SNR under which detection is
impossible even for infinitely long samples sequence). Setting the threshold too high based
on the wrong noise variance would decrease the probability of detecting the signal. If there
is an x dB noise uncertainty, then the detection is impossible below [15]:

SNRwall = 10 ∗ log10

(
10

x
10 − 1

)
[dB]. (1)

ED-ENP is proposed because of its low complexity, good results, and flexibility. The
probability of detection versus Signal to Noise Ratio of the considered detector for dif-
ferent values of false alarm probability is presented in Figure 1. Additionally, ED-ENP
is a so-called “blind detector”. It means that it works without the knowledge of any
signal parameters.

Figure 1. Probability of detection versus Signal to Noise Ratio of the considered ED – ENP detector.

After the detection process, the local sensing results and the decisions with corre-
sponding probabilities values (Pd and Pf a) are transmitted to the data fusion center located
in the CH in the proposed cooperative sensing solution (Figure 2). At the CH containing
the fusion center, the final decision is made by comparing cooperative detection proba-
bility (fusion result Pd,c f ) with Pdsystem ; Pd,c f

<
>

H0
H1

Pdsystem. Pdsystem detection probability
threshold is set by the adopted policy of radio network operation (system administrator
or supervisory unit), for which a decision on radio resource occupancy is made. In other
words, each CR node provides different probabilities of signal detection Pd. The CH takes
a final decision whether the signal is present on the observed band or not. Based on the
sensing information provided as an output: hard decision and soft decision algorithms
may be used [26,27]:

• Hard decision cooperative strategies: the fusion rule combines the decisions (“hard”
in each node participating in collaboration) from all the nodes. The most popular
hard fusion rules are AND, OR, and majority rules. Other techniques can be based
on weighted-combining strategies. The OR rule makes radio signal is present when
the local detection probability in at least one node exceeds the Pdsystem Otherwise, the
second specific case of the m-out-of-K rule is the use of the logical AND operator. For
this rule, no radio signal is present when the local detection probability in at least
one node does not exceed the Pdsystem. The AND method minimizes the value of false
alarm probability at the cost of detection probability, and the OR method maximizes
detection probability at the cost of false alarm. Thus, they represent two extreme
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values of probability when assessing detection quality. Therefore, it seems reasonable
to propose a rule that will have the advantages of OR and AND rules while excluding
their disadvantages.

• Soft decision cooperative strategies imply a higher computational complexity of the fu-
sion technique and increase the amount of information that must be exchanged among
the radio nodes. Therefore, its adoption must be carefully evaluated considering the
trade-off between the performance improvements and complexity increase.

• The CH must specify what kind of collaborative approach shall be used to exploit
cooperative strategies.

• Fusion result is then compared to Pdsystem—system threshold of detection probability
for channel occupation estimation. The final decision might be made according to
different decision strategies.

Figure 2. Scheme of distributed cooperative spectrum monitoring with data fusion center.

2.2. Data Fusion Based on Dempster–Shafer Theory

The cooperative monitoring strategy allows the aggregation of monitoring information
coming from several nodes. It is proved that collaborative approaches provide many bene-
fits for monitoring purposes, such as better performances and spatial diversity. Cooperative
techniques can be classified mainly into two groups, based on the monitoring information
provided as output: hard decision and soft decision algorithms [26,27].

The proposed solution is based on Dempster–Shafer’s theory (DST). A complete
description of this work presented by Glenn Shafer one can find in [28]. This theory is
based on the use of functions defined on the power set 2Θ (the set of all the subsets of Θ),
where Θ = {θ1, θ2, θ3 , . . . θn} is the set of considered elements, whereas the probabilities
are defined only on Θ. A mass function m is defined by attributing the power set 2Θ onto
the range [0, 1] by:

∑X∈2Θ m(X) = 1, m(∅) = 0. (2)

The element X of 2Θ , such as m(X) > 0, is called a focal element. A mass function
where Θ is a focal element is called a non-dogmatic mass function. The Dempster–Shafer
(D-S) combination rule [29] for H hypothesis from n sensors is the normalized conjunctive
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combination rule given for basic belief assignments m1, m2, m3, . . . , mn and for all X ∈ 2Θ,
X 6= ∅ by:

m (H) = m1
⊕

m2
⊕

. . . mn =
∑A1∩A2∩...An=H ∏n

i=1 mi(Ai)

1−∑A1∩A2∩...An=∅ ∏n
i=1 mi(Ai)

. (3)

The detection probability in the fusion center is defined as:

Pd, c f = m (H1) = m1
⊕

m2
⊕

. . . mn(H1), (4)

and the false alarm probability equals:

Pf , c f = m (H0) = m1
⊕

m2
⊕

. . . mn(H0). (5)

The hypothesis H1 means radio signal is detected, and H0 no active radio signal is
detected. The sum in Equation (3) is the so-called “conflict”. ∑A1∩A2∩...An=∅ ∏n

k=1 mk(Ak).
In the proposed solution, we do not consider hypothesis others from Θ, which means
Θ ={H1,H0}, so normalization, in this case, is proper. One can find a detailed description of
the above method in [30].

2.3. Radio Channels Utility Evaluation Algorithm Based on Machine Learning

The central concept of this algorithm is based on the reinforcement learning cycle
(Figure 3) [19]. When interacting with the environment, the learning entity makes specific
actions that cause changes in the environment state and appropriate rewards. At the
beginning of each cycle, the learning agent receives a full or partial observation of the
current state and a reward. The next step is to learn by updating the operation policy, i.e.,
which actions result in the best rewards in a particular state. Finally, at the decision stage,
the agent chooses an action in accordance with the modified policy. Reinforcement learning
is one of the three basic types of machine learning. The other two types are supervised and
unsupervised learning [31,32]. Some papers classified reinforcement learning as a subset of
unsupervised learning methods [33]. Reinforcement learning methods are most suitable for
spectrum monitoring and access tasks, especially in dynamically changing environments.

Figure 3. The reinforcement learning cycle, reprinted with permission from Ref. [19]. 2020 IEEE.

One of the most popular reinforcement learning methods is Q-learning. Q-learning
aims to learn a policy, which tells an agent what action to take under what circumstances.
It is a model-free algorithm, which does not require an environment model. Q-learning
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belongs to the Temporal Difference (TD) methods, and the core of this algorithm is a Q
value update in subsequent iterations according to the following relationship:

Q(s, a)← Q(s, a) + α

[
r + γmax

a′
Q
(
s′, a′

)
−Q(s, a)

]
, (6)

where s—current system state, a—action selected in the current state, s’—next system
state, a’—action chosen in the next state, Q(s, a)—Q value for current state and action pair,
α ∈ 〈0, 1〉—learning rate, γ ∈ 〈0, 1〉—discount factor, and r—reward.

The learning rate determines the impact of new (learned) information on the current
Q value. The discount factor determines the importance of future rewards.

If a set of environmental states cannot be defined, the Q values depend only on the
actions. Such a case is referred to in the literature as reinforcement learning with single
state [34,35] or stateless [36,37], and then the Q value update equation is given below:

Q(a)← Q(a) + α[r−Q(a)]. (7)

The effect of defining an environment as stateless reduces the number of Q values
estimated by the learning agent. As a result, it can also decrease the number of attempts
needed to learn a mature strategy.

The proposed algorithm consists of four primary stages, which form a cycle repeated
during the system’s operation (Figure 4). One can find a detailed description of the above
algorithm in [38].

Figure 4. Radio channels utility evaluation algorithm—the cycle of subsequent stages.

2.4. Integrated Solution for Spectrum Monitoring

The integration of the proposed solutions is presented in Figure 5. The authors propose
to combine cooperative spectrum monitoring with data fusion based on Dempster–Shafer
theory and the radio channels utility evaluation algorithm based on the machine
learning method.

This solution uses the centralized radio channels utility evaluation algorithm, which
calculates estimated channel qualities in one node (Cluster Head node with data fusion in
Figure 5). In this case, monitoring is performed by all CR nodes on channels selected by
the Cluster Head. These monitoring results are then forwarded to the data fusion module.
Next, aggregated monitoring results are passed to the radio channels utility evaluation
algorithm. It is proposed that the dynamic spectrum management module should provide
a list of monitored channels. As a result, the spectrum monitoring module generates the
sorted list of monitored channels with their estimated utilities.
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Figure 5. Cooperative spectrum monitoring using the centralized version of the radio channels utility
evaluation algorithm.

3. Evaluation and Results

For evaluation purposes, the modules described in the previous section were imple-
mented in the MATLAB software for scenario 1, and next, scenario 2 was implemented in
the MAENA simulator.

The MAENA simulator is a high-fidelity simulator based on the OMNET++ environ-
ment. It is based on the results of the CORASMA project [39], and it enables simulation
of all layers of MANET cognitive UHF and VHF waveforms, starting from the IQ-based
physical layer up to the application layer. In addition, the waveform also contains cognitive
solutions enabling spectrum sensing, local Dynamic Spectrum Management (DSM), and
coordinated Central DSM.

The simulator also contains Radio Environment Model (REMO) responsible for propa-
gation calculations in irregular terrain, including urban and suburban environments, using
large-scale and small-scale propagation models. It also enables computations of co-site and
co-vehicle effects for multi-channel radios.

3.1. Scenario 1

For all tests, authors consider a homogeneous network containing 10 CR nodes with
1 Cluster Head (CR node1—green color) and 8 Non-cooperative Nodes (NcN), representing
interfering signals from primary users, legacy waveforms, or intentional jammers. Geoloca-
tion for the node’s area is presented in Figure 6. NcNs are stationary, and CRs are mobile
with 5 m/s speed. Therefore, the localization area is limited to 10 km × 10 km square in
the urban/suburban area. In addition, each of the CR has an ED-ENP detector with the
Neyman–Pearson criterion for constant false alarm value.

For the path loss calculation, REMO [40] module is used. It contains combined
propagation models that fit specific frequency bands, communications ranges, and terrain
conditions. Apart from that, REMO simulates the non-ideal properties of radio transmitters
and receivers. It also enables the generation of interferences coming from NcNs. An example
of calculated NcN signals power in the urban area is presented in Figure 7.
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Figure 6. Map for nodes geolocation with their’s moving paths for the prepared scenario 1.

Figure 7. Signal power level (dBm) from NcNs for the prepared scenario 1.

Scenario parameters are as follows:

• Antenna height = 2,5 (m);
• Antenna gain = 0 (dBi);
• CR sensitivity ≈ −105 (dBm);
• NcN power = 5 (W);
• Noise type = AWGN.

As an example, in Figure 8, path loss for CR node number 8 and all NcNs is presented.
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Figure 8. Path loss for Cognitive Radio node 8 and all NcNs from 20 s to 50 s simulation time for
scenario 1.

Radio channel activities (interfering signals from NcNs) are presented in Figure 9. The
following parameters of the radio channels utility evaluation algorithm are used during
the simulations:

• α = 0.5;
• ε = 0.3;
• A fixed seed value of the pseudorandom number generators (depending on the seed

value, there may be some differences in the results);
• Algorithm period = 100 ms (time between successive algorithm iterations—updates of

the Q value for the selected channel based on the monitoring results).

Figure 9. Radio channels activities for the prepared scenario 1.

3.1.1. Metrics for Evaluation

To evaluate the efficiency of the spectrum monitoring process (for all monitored
channels), the metric SOAR (Spectrum Occupancy Awareness ratio) is proposed. This is
the average value obtained from the detection rates of all monitored channels and can be
written as:

SOAR =
∑Go

i=1

(
Pd, c f (i) > Pdsystem

)
Go

, (8)
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where Go—number of occupied states from channels activities, Pd, c f —detection proba-
bility in the fusion center, Pdsystem—system threshold of detection probability for channel
occupation estimation, SOAR ∈ (0, 1).

The utility ratio is a metric used to evaluate the usefulness of selected channels. It can
be calculated for every radio channel using the following formula:

Utl =
N f

T
, (9)

where N f —the number of free (idle) channel samples, T—the number of all channel samples
(scenario duration).

3.1.2. Results

Results for the proposed data fusion with comparison to OR fusion method are
presented in Figure 10. As one can see, the proposed solution outperforms the classical OR
method, commonly used in many applications.

Figure 10. Spectrum Occupancy Awareness Ratio for different system probability thresholds and
combination rules for scenario 1.

Results (soft-decision/detection probability) from the monitoring block for each chan-
nel from all CR nodes delivered to the fusion center are presented in Figure 11.

Figure 11. Aggregated monitoring results for all channels.
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The sensing procedures indicate a small radio activity on channel no. 2 due to geolo-
cation conditions. For such a situation, channel no. 2 is almost always available. In this
case, our solution would always indicate channel no. 2 as the best channel—characterized
by the least occupancy. Therefore, to enforce spectrum sharing in all available channels, a
modification of the scenario is proposed to exclude channel no. 2 from assigned resources.

In the fusion center, an aggregation of monitoring information coming from all nodes
using data fusion based on Dempster–Shafer’s theory (Section 2.2) is carried out. Then,
depending on the system probability detection threshold, the decision of spectrum resource
(channel) occupation is performed, like, for example, in Figure 12. Those sensing results
are input data for the machine learning algorithm. It is assumed that if the sensing result
indicates that a particular channel is free (idle), its occupation will not cause a collision
with other spectrum users. Therefore, even if there are any radio activities on this channel,
it could not affect the network’s operation, e.g., channel no. 2 in Figure 11.

Figure 12. Aggregated sensing results for Pdsystem = 0.65.

Figure 13 presents the utility ratio (Utl) values for physical and logical radio channels
selected by the proposed algorithm. Physical radio channels are associated with assigned
radio frequency bands. In contrast, logical channels are sequences composed of these
physical channels (Figure 14) and are associated with the Q matrix prepared by the radio
channels utility evaluation algorithm. This matrix contains Q values (quality metric) for
all physical channels. After each sensing execution and results reception, the Q value for
a given physical channel is recalculated, and the list is updated (as shown in Figure 4).
Then the list is sorted to get the best physical channels. The logical channels are related
to the indexes in this matrix, i.e., logical channel 1 indicates the physical channels in the
best position (index no. 1) on the Q list in successive moments. An example of such a
logical channel is presented in Figure 14. As can be seen, the logical channel with index
one is characterized by much better Utl values than physical channels, which provides
gain compared to the operation on the static physical radio channels. The changes in this
logical channel over time are shown in Figure 14. Right decisions (free channel selections)
are marked in green, whereas bad decisions (occupied channel selections)—in red.

3.2. Scenario 2

To verify and evaluate the proper operation of the proposed solution in the Cognitive
Radio Network (MAENA Simulator), scenario 2 was prepared (Figure 15). This is the
situation for three platoons. Each platoon contains three radio nodes—two Communica-
tion Nodes and one Cluster Head. Platoon 1 and Platoon 2 are static, while Platoon 3 is
mobile. The path for the Platoon 3 movement is presented in Figure 15. All radio nodes
use the basic UHF waveform based on CORASMA waveform [41], enabling the creation of
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self-organizing radio networks, grouping nodes into clusters, the election of cluster heads
(managing the nodes belonging to the cluster), and gateways responsible for inter-cluster
communications. Next, cluster graph coloring is performed to use the assigned spectral
resources efficiently. Compared to the CORASMA waveform, the reference waveform has
several additional features: frequency hopping, management of retransmissions, and opti-
mized routing procedures. This reference waveform is extended with additional functions
by solutions proposed in this article. Scenario 2 is run with different policies/strategies for
Sensing, Data Fusion, and the radio channels utility evaluation algorithm to obtain different
network behavior, according to the mission goals and existing restrictions. The defined
policies should enable, e.g., maximization of waveform data rate available for the users,
or battery life extension, minimization of transmission detection probability, or increased
immunity to interference in a variable spectral situation.

Figure 13. Utility ratio (Utl) values for physical radio channels (on the left) and logical radio channels
selected by the proposed algorithm (on the right).

Figure 14. Radio channels activities with logical channel one.
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Figure 15. Map for scenario 2.

Two NcNs are also defined. NcN1 operates on frequency 227.625 MHz, from 5 to 7 s
scenario time—it is introduced for intentional jamming or primary user emulation; please
refer to Figure 15.

3.2.1. Metric for Evaluation

The metric ANSE (Average Network Spectrum Efficiency) was proposed to evaluate
the elaborated solution efficiency compared to the non-cognitive network and consider
bitrate throughput and consumed spectrum resources [41]. However, before defining the
ANSE, let us specify the NSE (Network Spectrum Efficiency) metric for a single network:

NSEi =
Ri

bi·di
, (10)

where Ri—available transmission speed in each network i, bi·di—bandwidth-duration
product.

Average Network Spectrum Efficiency for n number of networks can be defined
as follows:

ANSE =
∑n

i=1 NSEi

n

[
bit
s

MHz h

]
. (11)

The implementation of the components of the above formula in the OMNET++
environment covers:

• The available transmission speed Ri is replaced by the total number of transferred bits;
• bi is calculated as the number of used channels times the bandwidth for each channel;
• di is calculated as the difference in time between the first and the last transferred bit in

each network.

As a consequence of the change from transmission speed to the total number of bits,
the unit of ANSE is a bit/(MHz h) instead of bit/s/(MHz h).
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3.2.2. Results

ANSE results for scenario 2 are presented in Figure 16. Tests were performed for
different parameters values: learning rate α (0.2 and 0.5) and sensing period (time between
successive detection scaled in frames). As a reference, results for the basic UHF waveform
are also shown.

Figure 16. Average Network Spectrum Efficiency vs. different sensing periods for scenario 2.

Based on the result from spectrum monitoring realized using centralized cooperative
spectrum sensing and radio channel utility evaluation, Cluster Head has information about
the channel occupation ranking list for the whole cluster. This approach allows defining
required policies/strategies, using a set of parameters like sensing periodicity, type of the
sensing decision (soft/hard), sensing reporting periodicity, learning rate (determines the
impact of learned information on the current Q value), etc. Depending on the strategy of
the network operation an example ones are:

• Goal 1: keep the network alive in the very jammed/interfered radio environment
(pros.—the network has the most current situation awareness; cons.—consuming a
significant number of network resources for spectrum monitoring).

• Goal 2: minimize data consumption for the situation awareness building (pros.—consuming
a small number of network resources for spectrum monitoring; cons.—the network
does not have the most current situation awareness).

• Goal 3: a compromise between having a current situation awareness and data con-
sumption for the spectrum monitoring.

The percentage of the consumed network resources for the spectrum monitoring
process (channel occupation estimation) for the above strategies is presented in Table 1.
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Table 1. Percentage of the consumed resources for different strategies.

Strategy Name Sensing Period [Frames] Percentage of the Consumed Resources for Spectrum Monitoring (%)

Goal 1 5 20
Goal 2 100 1
Goal 3 20 5

The proposed basic strategies do not exhaust the possible solutions. Depending on the
desired operation of the network, the parameters of the algorithms should be appropriately
selected. For example, if the network is supposed to operate at all costs in a highly disturbed
radio environment, the proposed solution is Goal 1.

4. Conclusions

This paper presents an efficient cooperative spectrum monitoring methodology based
on a group of radios’ with energy detection. The results, devoted to specific radio channels,
are then transmitted to the fusion center, which uses evidence theory to increase the signal
detection efficiency and provide a low false alarms ratio. The fusion results are the input
for the machine learning algorithm, evaluating specific radio channels’ utility factors.

The achieved results are promising. The authors proposed a sensing solution based
on distributed cooperative spectrum monitoring with a central node (fusion center/Cluster
Head) with the D-S combination rule for the decision process and reinforced Machine
Learning. Simulation results show that the proposed solution increases Average Network
Spectrum Efficiency. However, the gain depends on the learning curve related to the
variability of frequency channel occupancy and network resources consumed for sensing.

During future works, authors plan to develop and test algorithms with a distributed
version of the radio channels utility evaluation algorithm, selecting the best radio channels
performed in each CR node, to enable limitation of the signaling overhead.

Author Contributions: All authors discussed and designed the layout of this paper, discussed
the obtained results. P.S. developed the cooperative spectrum monitoring using data fusion, K.M.
developed the radio channels utility evaluation algorithm based on machine learning. P.S. and
K.M. developed the integrated solution for spectrum monitoring, wrote the simulation algorithm,
conducted the simulations in the MATLAB and the OMNET++ environments, made all figures, and
formatted it according to the final template. J.Ł. was responsible for supervision on the undertaken
work. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was carried out in the framework of the MAENA EDA Project
No B-1476-IAP4-GP and co-financed by the Military University of Technology under Research Project
no. UGB/22-854/2021/WAT on “Applications of selected computer science, communication, and
reconnaissance techniques in civil and military areas”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arslan, H. Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems; Springer: Dordrecht, The Netherlands, 2007.
2. Marin, J.; Turunen, M.; Bernhardt, M.; Riihonen, T. Self-interference Cancelation Performance in Full-Duplex Jamming and

Spectrum Monitoring. In Proceedings of the 2021 International Conference on Military Communication and Information Systems
(ICMCIS), The Hague, The Netherlands, 4–5 May 2021; pp. 1–8. [CrossRef]

3. Liu, P.; Qi, W.; Yuan, E.; Wei, L.; Zhao, Y. Full-Duplex Cooperative Sensing for Spectrum-Heterogeneous Cognitive Radio
Networks. Sensors 2017, 17, 1773. [CrossRef] [PubMed]

4. Mehdawi, M.; Riley, N.; Fanan, A.; Bentaher, O. Proposed System Model for Wideband Cooperative Spectrum Sensing with
Multi-Bit Hard Decision using Two-Stage Adaptive Sensing. In Proceedings of the 2019 27th Telecommunications Forum
(TELFOR), Belgrade, Serbia, 26–27 November 2019; pp. 1–4. [CrossRef]

http://doi.org/10.1109/ICMCIS52405.2021.9486389
http://doi.org/10.3390/s17081773
http://www.ncbi.nlm.nih.gov/pubmed/28767083
http://doi.org/10.1109/TELFOR48224.2019.8971349


Sensors 2022, 22, 716 17 of 18

5. Kartlak, H.; Odabasioglu, N.; Akan, A. Optimum relay selection for cooperative spectrum sensing and transmission in cognitive
networks. In Proceedings of the 2014 22nd European Signal Processing Conference (EUSIPCO), Lisbon, Portugal, 1–5 September 2014;
pp. 161–165.

6. Mahapatra, S.D.; Sharan, S.N. Effect of Sensing Duration Optimization in Cooperative Spectrum Sensing Game. In Proceedings
of the 2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)
(ICRITO), Noida, India, 29–31 August 2018; pp. 889–892. [CrossRef]

7. Szmit, G.; Dołowski, J.; Łopatka, J. Distributed channel selection for hierarchical cognitive radio networks. In Proceedings of the
MILCOM 2015—2015 IEEE Military Communications Conference, Tampa, FL, USA, 26–28 October 2015; pp. 426–431. [CrossRef]

8. Wu, K.; Jiang, H.; Tellambura, C. Cooperative Sensing with Heterogeneous Spectrum Availability in Cognitive Radio. In IEEE
Transactions on Cognitive Communications and Networking; IEEE: New York, NY, USA, 2021. [CrossRef]

9. Baek, M.K.; Kim, J.Y. Effective signal detection using cooperative spectrum sensing in cognitive radio systems. In Proceedings
of the 2009 11th International Conference on Advanced Communication Technology, Gangwon, Korea, 15–18 February 2009;
pp. 1746–1750.

10. Nasser, A.; Al Haj Hassan, H.; Abou Chaaya, J.; Mansour, A.; Yao, K.-C. Spectrum Sensing for Cognitive Radio: Recent Advances
and Future Challenge. Sensors 2021, 21, 2408. [CrossRef] [PubMed]

11. Valadão, M.D.M.; Amoedo, D.; Costa, A.; Carvalho, C.; Sabino, W. Deep Cooperative Spectrum Sensing Based on Residual Neural
Network Using Feature Extraction and Random Forest Classifier. Sensors 2021, 21, 7146. [CrossRef]

12. Yücek, T.; Arslan, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 2009,
11, 116–130. [CrossRef]

13. Qu, H.; Xu, X.; Zhao Yan, F.; Wang, W. A Robust Hyperbolic Tangent-Based Energy Detector with Gaussian and Non-Gaussian
Noise Environments in Cognitive Radio System. IEEE Syst. J. 2020, 14, 3161–3172. [CrossRef]

14. Mariani, A.; Giorgetti, A.; Chiani, A. Effects of noise power estimation on energy detection for cognitive radio applications.
IEEE Trans. Commun. 2011, 59, 3410–3420. [CrossRef]

15. Mariani, A.; Giorgetti, A.; Chiani, A. SNR wall for energy detection with noise power estimation. In Proceedings of the IEEE
International Conference on Communications, Kyoto, Japan, 5–9 June 2011; pp. 1–6.

16. Akyildiz, I.F.; Lo, B.F.; Balakrishnan, R. Cooperative spectrum sensing in cognitive radio networks: A survey. Phys. Commun.
2011, 4, 40–62. [CrossRef]

17. Ma, Y.; Liu, J.; Gao, Y. Cooperative spectrum sensing based on the compressed sensing. In Proceedings of the 2015 IEEE 14th
International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Beijing, China, 6–8 July 2015; pp. 110–114.
[CrossRef]

18. Skokowski, P.; Łopatka, J.; Malon, K. Evidence Theory Based Data Fusion for Centralized Cooperative Spectrum Sensing in Mobile
Ad-hoc Networks. In Proceedings of the 2020 Baltic URSI Symposium (URSI), Warsaw, Poland, 5–8 October 2020; pp. 24–27.
[CrossRef]

19. Malon, K.; Łopatka, J.; Skokowski, P. Q-learning Based Radio Channels Utility Evaluation Algorithm for the Local Dynamic
Spectrum Management in Mobile Ad-hoc Networks. In Proceedings of the 2020 Baltic URSI Symposium (URSI), Warsaw, Poland,
5–8 October 2020; pp. 28–32. [CrossRef]

20. Du, R.; Liu, F.; Zhao, Q. Adaptive cooperative spectrum sensing based on multiple measurement vectors. In Proceedings of the
2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 5703–5706. [CrossRef]

21. Malon, K.; Skokowski, P.; Lopatka, J. Optimization of wireless sensor network deployment for electromagnetic situation
monitoring. Int. J. Microw. Wirel. Technol. 2018, 10, 746–753. [CrossRef]

22. Malon, K.; Skokowski, P.; Lopatka, J. Optimization of the MANET topology in urban area using redundant relay points.
In Proceedings of the International Conference on Military Communications and Information Systems (ICMCIS), Warsaw, Poland,
22–23 May 2018; pp. 1–4.

23. Digham, F.; Alouini, M.S.; Simon, M.K. On the Energy Detection of Unknown Signals over Fading Channels. IEEE Trans. Commun.
2007, 55, 21–24. [CrossRef]

24. Sonnenschein, A.; Fishman, P.M. Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE Trans.
Aerosp. Electron. Svst. 1992, 28, 654–660. [CrossRef]

25. Neyman, J.; Pearson, E.S. On the Problem of the Most Efficient Tests of Statistical Hypotheses. Philos. Trans. R. Soc. 1933, 231,
289–337.

26. Bedworth, M.D. The Fusion of Decisions for Distributed Recognition: Hard Decision Fusion and Soft Decision Fusion.
In Multisensor Fusion; NATO Science Series II: Mathematics, Physics and Chemistry NAII; Springer: Dordrecht, The Netherlands,
2002; Volume 70, pp. 99–124.

27. Hall, D.L. The Implementation of Data Fusion Systems. In Multisensor Fusion; NATO Science Series II: Mathematics, Physics and
Chemistry NAII; Springer: Dordrecht, The Netherlands, 2002; Volume 70, pp. 419–433.

28. Shafer, G.A. Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976.
29. Smarandache, F.; Dezert, J. Advances and Applications of DSmT for Information Fusion; American Research Press: Rehoboth, DE, USA,

2004.
30. Skokowski, P. Electromagnetic Situation Awareness Building in Ad-Hoc Networks with Cognitive Nodes; Military University of

Technology: Warsaw, Poland, 2021; ISBN 978-83-7938-323-8.

http://doi.org/10.1109/ICRITO.2018.8748866
http://doi.org/10.1109/MILCOM.2015.7357480
http://doi.org/10.1109/TCCN.2021.3085769
http://doi.org/10.3390/s21072408
http://www.ncbi.nlm.nih.gov/pubmed/33807359
http://doi.org/10.3390/s21217146
http://doi.org/10.1109/SURV.2009.090109
http://doi.org/10.1109/JSYST.2019.2959045
http://doi.org/10.1109/TCOMM.2011.102011.100708
http://doi.org/10.1016/j.phycom.2010.12.003
http://doi.org/10.1109/ICCI-CC.2015.7259373
http://doi.org/10.23919/URSI48707.2020.9254038
http://doi.org/10.23919/URSI48707.2020.9254037
http://doi.org/10.1109/CCDC.2017.7978183
http://doi.org/10.1017/S1759078718000211
http://doi.org/10.1109/TCOMM.2006.887483
http://doi.org/10.1109/7.256287


Sensors 2022, 22, 716 18 of 18

31. Biglieri, E.; Goldsmith, A.J.; Greenstein, L.J.; Mandayam, N.B.; Poor, H.V. Principles of Cognitive Radio; Cambridge University
Press: Cambridge, UK, 2013.

32. Doyle, L. Essentials of Cognitive Radio; Cambridge University Press: Cambridge, UK, 2009.
33. Bkassiny, M.; Li, Y.; Jayaweera, S.K. A survey on machine-learning techniques in cognitive radios. IEEE Commun. Surv. Tutor.

2013, 15, 1136–1159. [CrossRef]
34. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, UK, 2018.
35. Yau, K.L.A.; Komisarczuk, P.; Teal, P.D. Applications of reinforcement learning to cognitive radio networks. In Proceedings of the

IEEE International Conference on Communications Workshops, Cape Town, South Africa, 23–27 May 2010; pp. 1–6.
36. Claus, C.; Boutilier, C. The dynamics of reinforcement learning in cooperative multiagent systems. In Proceedings of the Fifteenth

National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, Madison, WI, USA,
1 July 1998; pp. 746–752.

37. Morozs, N.; Clarke, T.; Grace, D. Distributed heuristically accelerated Q-learning for robust cognitive spectrum management in
LTE cellular systems. IEEE Trans. Mob. Comput. 2016, 15, 817–825. [CrossRef]

38. Malon, K. Dynamic Spectrum Access in Ad-Hoc Radio Networks with Cognitive Nodes; Military University of Technology:
Warsaw, Poland, 2021; ISBN 978-83-7938-327-6.

39. Rose, L.; Massin, R.; Vijayandran, L.; Debbah, M.; Le Martret, C.J. CORASMA Program on Cognitive Radio for Tactical Networks:
High Fidelity Simulator and First Results on Dynamic Frequency Allocation. In Proceedings of the MILCOM 2013—2013 IEEE
Military Communications Conference, San Diego, CA, USA, 18–20 November 2013; pp. 360–368. [CrossRef]

40. Malon, K.; Skokowski, P.; Marszalek, P.; Kelner, J.M.; Lopatka, J. Cognitive Manager for Hierarchical Cluster Networks Based on
Multi-Stage Machine Method. In Proceedings of the IEEE Military Communications Conference MILCOM, Baltimore, MD, USA,
6–8 October 2014; pp. 428–433.

41. Frequency Management Group Range Commanders Council. Document 707-14 Spectrum Management Metrics Standards; RCC US
Army: White Sands Missile Range, NM, USA, 2014.

http://doi.org/10.1109/SURV.2012.100412.00017
http://doi.org/10.1109/TMC.2015.2442529
http://doi.org/10.1109/MILCOM.2013.69

	Introduction 
	Cooperative Spectrum Monitoring Using Data Fusion and Machine Learning 
	Cooperative Spectrum Monitoring 
	Data Fusion Based on Dempster–Shafer Theory 
	Radio Channels Utility Evaluation Algorithm Based on Machine Learning 
	Integrated Solution for Spectrum Monitoring 

	Evaluation and Results 
	Scenario 1 
	Metrics for Evaluation 
	Results 

	Scenario 2 
	Metric for Evaluation 
	Results 


	Conclusions 
	References

