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Abstract: Epigenetic changes are a necessary characteristic of all cancer types. Tumor cells usually
target genetic changes and epigenetic alterations as well. It is most beneficial to identify epigenetic
similar features among cancer various types to be able to discover the appropriate treatments. The
existence of epigenetic alteration profiles can aid in targeting this goal. In this paper, we propose a
new technique applying data mining and clustering methodologies for cancer epigenetic changes
analysis. The proposed technique aims to detect common patterns of epigenetic changes in various
cancer types. We demonstrated the validation of the new technique by detecting epigenetic patterns
across seven cancer types and by determining epigenetic similarities among various cancer types. The
experimental results demonstrate that common epigenetic patterns do exist across these cancer types.
Additionally, epigenetic gene analysis performed on the associated genes found a strong relationship
with the development of various types of cancer and proved high risk across the studied cancer types.
We utilized the frequent pattern data mining approach to represent cancer types compactly in the
promoters for some epigenetic marks. Utilizing the built frequent pattern item set, the most frequent
items are identified and yield the group of the bi-clusters of these patterns. Experimental results of
the proposed method are shown to have a success rate of 88% in detecting cancer types according to
specific epigenetic pattern.

Keywords: epigenetic pattern; genes; cancer groups; data mining; clustering

1. Introduction

We would like to introduce a complete understanding of the genomic changes in
cancer cells through data mining techniques. The idea of alterations of the cellular genome
of cancer is very crucial. Our paper will focus on developing novel and efficient techniques
to compare DNA sequences of normal cells with those of cancerous cells. We intend to
develop techniques for detecting epigenetic and genomic changes in cancer. We utilize
computational biology to create useful techniques to classify cancerous cells according
to genome alteration. Detecting epigenetic changes in cancer is not a trivial issue. Those
changes cannot be detected in a lab because of the large amount of data derived from
variations in the mutations in genes caused by cancer and also because of the many kinds
of cancer. Bioinformatics can apply tools to extract and detect such mutations and establish
association rules that associate specific epigenetic changes and specific kinds of cancer.

Cancer research is one of the major research areas in the medical field. Cancer iden-
tification has always been clinical-based. The cancer identification methods have many
limitations [1–3]. Tumor classification is heterogeneous and molecularly different [4]. Sys-
tematic approaches that are based on gene expression analysis have been introduced [5].
Microarray technology has permitted the simultaneous monitoring of genes, which stirred
recent development in cancer identification utilizing gene expression information [6]. Dif-
ferent identification methods from data mining techniques have been utilized to cancer
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classification. Gene expression information is different data that data mining had previ-
ously dispensed. The genome has high dimensionality. It contains tens of thousands of
genes. Additionally, many genes are unrelated to cancer identification. It is clear that
existing taxonomy methods are not intended to handle this kind of data efficiently [7].

Gene selection can be performed prior to cancer grouping. Gene selection aids in
reducing data size. Gene selection also eliminates a large number of unrelated genes and
increases classification accuracy. These are several issues that are related to the biological
context of this research. These issues are the statistical significance versus biological signifi-
cance of cancer classifiers. For example, asymmetrical classification problems and gene
contamination problems. It is essential to study both points and their linked issues [8–10].

In this research, we investigated a three-way clustering data mining technique; the
3WC is an exhaustive cancer types and epigenetics pair analysis. The method 3WC utilizes
a three-way clustering technique to discover the coherent epigenetic patterns within various
cancers. We utilized the 3WC technique to explore six acute epigenetic patterns in relation
to seven cancer groups and recognized a substantial relationship between cancer and
epigenetic patterns. The results expose the existence of a dependable epigenetic alteration
inclination within these cancers.

Past research on computerized cancerous cell identification focus on computerized
classification of cancerous cells using genome alteration. The authors in [11] proposed a
mass investigation scheme through the fuzzy C-means technique using genome alteration
patterns that are supervised by deep-CNN (CNN is a convolutional neural network) to
classify the cancer cells. In [12], the authors devised a block region segmentation in a
collective process to partition the tumor into the cell digital maps. Authors in [13] brought
together a watershed technique that performed a granular splitting of the cancerous cells
in the cell map with genome identification by merging epigenetic regions with the same
average values. In [14], the authors proposed an algorithm to detect cell epigenetic masses
in the cell map and devised an aggressive segmentation procedure. In [15], the authors
employed the AlexNet CNN to detect epigenetic masses in cell map images of the various
cancer types.

In the phase of cells classification, the authors in [16] produced a Bayesian network
technique to establish some genome features that are introduced to program diagnosis
of cancer groups. In [17], the authors introduced a decision tree classifier for epigenetic
pattern extraction of cancer masses, and they compared it to an SVM (support vector
machines) classifier. The authors in [18] employed a deep-CNN to calculate the probability
of the existence of cancerous cells by training the CNN with a dataset in the gene paradigm.
In [19], they used deep learning methods to predict cancerous cell existence by training
data of 420 epigenetic maps. In [20], the authors built a feature-extraction CNN for benign
mass identification using a decision tree. The research in [21] emphasized a neural network
techniques to identify cancerous cells genome map and further classify them. In [22], the
authors offered a cell map pattern analysis using machine learning to detect a patient’s risk
of specific cancer types. In [23], the authors projected a minimum support analysis process
using the second and third moment for pattern extraction in a breast cancer cell map. The
authors in [24] introduced a CAD (computer aided design) mechanism of genetic pattern
extraction to identify common features through forest classification.

This paper is divided into the following sections: Section 2 discusses the methodology
and the utilized dataset. Section 3 describes the experimental results. Section 4 depicts the
discussion of the results, while conclusions are summarized in Section 4.

2. Materials and Methods

In the following subsections, we are describing the dataset used and the methodology
of the three-way clustering technique.
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2.1. Data Set

We studied the epigenetic similarities across various cancer types of seven cancer
types, including adenocarcinoma human alveolar basal epithelial cells (AHC), human
erythroleukemic cell line (HEC), liver hepatocellular carcinoma (LHC), human colorectal
adenocarcinoma cell line with epithelial morphology (HCC), clonal derivative tumors
(CDT), multiple myeloma cancer (MMC), and Burkitt lymphoma cancer (BLC). We excluded
the epigenetic patterns that are not found in these cancer types and utilized only the patterns
that characterize these cancer types demonstrated in Table 1. The data are included in the
NIH Epigenome Dataset [4].

Table 1. Marks that characterize the investigated cancer types.

H3K4m1 Is an epigenetic DNA alteration to the Histone protein H1

H3K4m3 Is an epigenetic DNA alteration to the Histone protein H3

H3K9m3 Is a tri-methylation at the 9th residue of the protein H3

H3K27c Is the acetylation of the residue at terminal distance 27

H3K27m3 Is the tri-methylation of H3 protein

H3K36m3 Is the tri-methylation at the 36th position of the H3 protein

2.2. Methodology

We are proposing a three-way clustering technique (3WC) to observe the epigenetic
pattern of various types of cancer. The proposed technique identifies the combinatorial
various epigenetic pattern in gene parts. The technique also observes similar epigenetic
patterns among various cancer types. The introduced 3WC technique has several phases,
as depicted in the three phases described below. The first phase is a preprocessing stage
that modifies epigenetic patterns data in various cancer types. The second phase detects
the bi-clusters of the frequent pattern growth algorithm. The third phase coherently detects
the three clusters with epigenetic alterations patterns among the various cancer types. The
method is depicted in Figure 1.

The three phases are described as follows:
Phase 1: Population initialization is the phase where executing the preprocessing

of the data of the epigenetic alterations of various cancers takes place. The epigenetic is
segmented into segments. For each alteration map, we calculate the alteration count of
every partition. Each segment is then related with the epigenetic alterations intensities
for various cancer types. To observe the resultant noise from high tag counts in the
experiments, the number of each alteration are normalized by count of the input utilizing
linear transformation [25]. At the end, the distribution of the genome data in the various
partitions is computed.

The preprocessing step observed six reads of seven groups in the promoter partitions.
Assume Genome = {n1, n2, . . . , n7 } is representing the genes, Type = {p1, p2, . . . , p7} is
representing the cancer groups, and Epig = {i1, i2, . . . , i7} represents the patterns. For all
patterns, the profiles of various cancer groups in the partitions are presented in a matrix
Dk = Type × Genome, where the rows represent the seven cancer types, and the columns
represent the genes. Additionally, each column is a one column array corresponding to the
gene profile of the promoter partition of gene j.
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Figure 1. The flowchart of the proposed three-way clustering technique (3WC) includes preprocessing
of the epigenetic marks of various cancer types and detecting the three clusters with coherent
epigenetic marks among various cancer types.

Phase 2. Creation of the epigenetic list, where we detect the bi-clusters representing
the frequent pattern growth of the epigenetic patterns. Succeeding the preprocessing of the
epigenetic alteration matrix of the pattern, we calculate the correlation of the gene profiles
for the bi-related cancers at the corresponding partition, and this results in a correlation
matrix. The promoter partition is calculated using the Pearson correlation across the
epigenetic alteration vectors of various cancer types. If the computed coefficient is greater
than a specific threshold, the epigenetic trend in these cancer types is considered to be
highly coherent. Then, we consider this cancer to be the same item set, which includes the
various cancer types having the same epigenetic patterns. The threshold is set as 0.65 based
on extensive experimentation for the epigenetic patterns to be highly coherent. Each
epigenetic alteration is built using similar item sets for all promoters. The resultant item
set determines the most important coherent patterns using the frequent pattern growth
methodology [26]. Frequent pattern growth methodology is a mining technique that is
developed for frequent pattern mining. In this paper, we utilized the frequent pattern tree
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algorithm to model cancers with the same gene patterns in a compact way in the promoters.
The pattern tree mines the frequent patterns and excludes the unrelated data. A frequent
patterns defines a set of cancer types that have the same epigenetic patterns in the most
voted promoters. To identify the most important epigenetic patterns, we settled the support
of genes to a minimum of 10% of the studied genes. In this phase, we identify the chosen
gene set inversely and determine a gain of the bi-cluster. The bi-cluster is defined as a set
of two things, namely genome and cancer. This identifies the cancers that possess the same
epigenetic patterns (EFL) in the corresponding genes as depicted in Figure 2.

Figure 2. Epigenetic list of the patterns H3K9m3 in a usual tri-cluster with the same pattern in human
erythroleukemic cell line (HEC) cancer.

Phase 3. In this phase, we apply epi-crossover and extract the three clusters with high
coherent epigenetic patterns among various cancers. After extracting the bi-clusters for the
epigenetic pattern, we extract the three clusters and, naming the best value of the various
gene patterns, we extract the three clusters. We calculate the bi-clusters intersection of each
two epigenetic patterns, which are defined with the epigenetic patterns to get all the three
clusters. This phase filters them with support less than the required minimum support. We
iterate the procedure with the other epigenetic pattern until we analyze all the epigenetic
patterns. We experimented with all the paths and chose only the optimal three clusters.
The three clusters are defined as genes, cancer types, and the gene patterns with the same
trend of gene patterns in various cancers. The chosen three clusters determine the gene
patterns in the various partitions that are found in the various cancer types.

3. Experimental Results of the Genome Partitions

In our simulation, we utilized parallel MATLAB with CUDA tools that run Simulink
in parallel. This software has the advantage of utilizing the computing resources by setting
preferences. It has a complete processing multicore CPUs. We utilized a Parallel Computing
Toolbox in MATLAB 4.1 on MATLAB Parallel Server (MPS).

From the pre-defined clusters, we can identify the required sets coupled with some
significant gene patterns. To study the properties of these partitions, we implemented
an ontology and pathway analysis through the bioinformatics named DAVID [4]. The
important enrichment sets are determined with probability value < 0.006.

We proposed a three-way clustering approach, 3WC, to identify the same epigenetic
patterns among various cancers. 3WC was utilized on the genome epigenetic alteration
maps of the chosen cancer types, namely: AHC, HEC, LHC, HCC, CDT, MMC, and BLC. For
all epigenetic patterns, 3WC groups the promoters based on the definition of the epigenetic
profiles along various cancer types. Figure 3 depicts bi-clusters of epigenetic pattern
H3K9m1, which include excess genes with the same alteration pattern in four cancers,
including AHC, CDT, LHC, and HEC. We conclude that the gene marks are the same
in predetermined cancers. The gene patterns that are described by promoters in several
cancer types are defined as epigenetic patterns, while various cancers can share the same
patterns. This succeeded in significant results, with defining the H3K9m3/H3K9m2 and
H3K36m3/H3K36m2, which are usually identified in breast cancer and lung carcinoma.
The defined bi-clusters of these studied epigenetic patterns determine the two cancers
(LHC and HCC) clustered with each other and have a large count of epigenetic patterns.
This implies that they possess more similar epigenetic patterning.
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Figure 3. The epigenetic patterns H3K4me3 in a cancer groups CDT, LHC, HEC, and AHC.

To define the important alteration patterns, we reduce the minimal support to 10% of
the studied genes. Utilization of diverse correlation thresholds can result in gaining various
counts of bi-clusters for epigenetic patterns H3K9m1, H3K4m3, H3K9m3, H3K27m3,
H3K36m3, and H3K27c, among these cancers, as depicted in Figure 4. The comparison
clarifies that the similarity measures of these epigenetic patterns are various. Using various
thresholds, the epigenetic pattern H3K4m3 is shown to have a small count of bi-clusters.
This results in profiling with the least conserved variable patterns within these cancers
than the other epigenetic patterns. On the opposite side, there are better similarity in the
epigenetic patterns of H3K4m1 and H3K27m3 in the other various cancers. The quality of
the epigenome is highly dependent on many environmental factors. This concludes that
epigenome types can aid in the development of human cancers and diseases. The minimal
threshold affects the trend in the various epigenetic patterns, so we define the bi-clusters as
having a threshold of 0.72.

Figure 4. Experimental results of the bi-clusters thresholds versus various gene patterns. The comparison specifies that
the correspondences of the epigenetic patterns are quite different. H3K4me3 has a small number of bi-clusters, while
H3K4me1 and H3K27me3 have similar patterns across various cancer types.
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We can conclude that clear variations in the examined gene alterations are found. To
determine the defined states and test the same patterns of the gene alterations, we utilized
the grouping of these patterns using the defined clusters. For the calculation of the clusters’
intersections from various patterns, we used the three partitions with support greater than
the predefined minimum support. The determined three clusters are grouped as triplets
namely: genome partitions, cancers, and epigenetic patterns. The three clusters define
that the promoters of these genomes show the same epigenetic alteration patterns in the
cancers.

In Table 2, we are comparing our results from the three-way clustering mining tech-
nique with the ground truth found in the labeled data set in [4]. We concluded our results
in the following confusion matrices for the epigenetic sets: H3K9m1, H3K4m3, H3K9m3,
H3K27c, and H3K27m3 in the cancer groups CDT, LHC, MMC, and BLC.

Table 2. Experimental results as related to ground truth.

Case Age Cancer Type Diagnosis by
3WC

Diagnosis by
Physician

Genome Detected
by the Proposed

3WC

Genome Detected
by Physician

(Ground Truth)
Status

1 35 CDT
Epigenetic DNA
alteration to the

Histone protein H1

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1 Match

2 61 LHC
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H3
H3K4m3 H3K4m3 Match

3 45 BLC

Epigenetic DNA
alteration to the
Histone protein

H27

Epigenetic DNA
alteration to the

Histone protein H27
H3K27c H3K27c Match

4 32 BLC
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m3 Miss Match

5 25 CDT
Epigenetic DNA
alteration to the

Histone protein H1

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1 Match

6 15 MMC
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H3
H3K27m3 H3K27m3 Match

7 67 CDT
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1

Match in
epigenetic,

mismatch in
diagnosis

8 75 LHC

Epigenetic DNA
alteration to the
Histone protein

H27

Epigenetic DNA
alteration to the

Histone protein H3
H3K4m3 H3K4m3

Match in
epigenetic,

mismatch in
diagnosis

9 32 MMC

Epigenetic DNA
alteration to the
Histone protein

H27

Epigenetic DNA
alteration to the

Histone protein H27
H3K27c H3K27c Match

10 25 CDT

Epigenetic DNA
alteration to the
Histone protein

H27

Epigenetic DNA
alteration to the

Histone protein H27
H3K27c H3K27c Match

11 52 LHC
Epigenetic DNA
alteration to the

Histone protein H1

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1 Match

12 25 LHC
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H3
H3K4m3 H3K4m3 Match

13 5 MMC
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H3
H3K4m3 H3K4m3 Match
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Table 2. Cont.

Case Age Cancer Type Diagnosis by
3WC

Diagnosis by
Physician

Genome Detected
by the Proposed

3WC

Genome Detected
by Physician

(Ground Truth)
Status

14 4 LHC
Epigenetic DNA
alteration to the

Histone protein m3

Epigenetic DNA
alteration to the

Histone protein m3
H3K27m3 H3K27m3 Match

15 6 MMC
Epigenetic DNA
alteration to the

Histone protein m3

Epigenetic DNA
alteration to the

Histone protein m3
H3K27m3 H3K27m3 Match

16 4.5 CDT
Epigenetic DNA
alteration to the

Histone protein m3

Epigenetic DNA
alteration to the

Histone protein m3
H3K27m3 H3K27m3 Match

17 3 LHC
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H3
H3K9m1 H3K9m3 Match

18 2.5 MMC
Epigenetic DNA
alteration to the

Histone protein H1

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1 Match

19 5 CDT
Epigenetic DNA
alteration to the

Histone protein H3

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m3 Miss Match

20 25 LHC
Epigenetic DNA
alteration to the

Histone protein H1

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1 Match

21 50 MMC

Epigenetic DNA
alteration to the
Histone protein

H27

Epigenetic DNA
alteration to the

Histone protein H3
H3K4m3 H3Kc27 Miss Match

22 61 CDT
Epigenetic DNA
alteration to the

Histone protein H1

Epigenetic DNA
alteration to the

Histone protein H1
H3K9m1 H3K9m1 Match

4. Discussion

Utilization of epigenetic biomarkers at the bedside is a major breakthrough in cancer
diagnosis and immersion of new drugs. Our proposed technique can be an aid for clinical
practice as it introduces a cost-effective accurate relationship between epigenetic patterns
and specific cancer types.

The experimental results conclude that each genomic group partition has the same
combinatorial patterns across specific cancers. For instance, the epigenetic alterations
(H3K4m3, H3K9m3, H3K27m3, and H3K36m3) are the same in large count of genes in the
cancer groups AHC, LHC, and HEC. On the opposite side, few epigenetic patterns are
significant in specific cancer groups. Among these investigated clusters, we find that the
same patterns of H3kK27m3, H3K36m3, and H3K27c are found in small cancer groups,
namely LHC and BLC. We have to clarify that these detected three clusters obviously reveal
greater knowledge of the genes within these cancer groups.

Applying the 3WC algorithm to the genome in the dataset, we initially found 180 im-
portant three clusters. Figure 5 depicts the information of 16 coherent clusters with their
epigenetic patterns, the cancers, and the achieved supports.

The simulation results specify that exact genomic sections share combinatorial patterns
among various cancer types. For instance, the varying epigenetic pattern (H3kK27m3,
H3K36m3, and H3K27c) is common in enormous genes in cancer types AHC, LHC, and
HEC. Additionally, some epigenetic patterns are coherent in some cancer types across few
clusters, namely LHC and BLC.

It was found that the specific gene sets exhibit coherent patterns in the specific cancer
groups. Past research has found that the difference properties are far more distinct among
high-function promoters than low-expression promoters, which implies that the color
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properties have a far more important effect on gene pattern regulation [27]. To study
the specific properties of those specific genes in the various pathways, we executed an
appropriate experiment using the DAVID technique [4]. We concluded that the related
gene sets are mostly clear in the studied three clusters. We summarized the important
living processes that they participate in.

Figure 5. Patterns of the three clusters (epigenetic tri-clusters). (A) The marks are represented by
columns, where rows represent clusters. (B) Columns represent cancer types, while rows represent
clusters. Fold ratio is computed as the ratio of the genes count to the clusters in the genes.

As a conclusion, we detect that those gene groups were abundant in the three clusters
and are enriched in the cancer-related properties. Table 1 enumerates the important GO
properties of the three clusters with (probability-value <0.006). In the specified three
cluster, the genes possess coherent patterns on the epigenetic: H3K9m1, H3K4m3, H3K9m3,
H3K27c, and H3K27m3 in the cancer groups CDT, LHC, MMC, and BLC. In Table 1, we
established the terms positive and negative regulations of cell proliferation of the apoptotic
properties to indicate enriched gene groups. The experimental results depict that the
detected genes in the three clusters are apparent for the cell apoptotic process. Additionally,
we found that the positive regulation is also apparent in the gene group, which implies
that these gene groups have a significant role in the regulation of these cancers.

The limitation of the proposed technique, the three clusters mining 3WC, is the high
cost of the operation because we search the whole search space. Our future work will
focus on developing statistical techniques to prune an efficient search space, to enhance the
efficiency of discovering the three clusters.

5. Conclusions

In this paper, we introduced a three-way clustering technique 3WC for cancer gene
study. We utilized the frequent pattern data mining approach to represent cancer types
compactly in the promoters for some epigenetic marks. Utilizing the built frequent pattern
item set, the most frequent items are identified and yield the group of the bi-clusters of
these patterns. This proves that the same gene pattern in these cancers is within these
genomic partitions. 3WC also uses the data mining technique to mine the specified three
clusters using the bi-clusters of the studied epigenetic marks, detecting the combinatorial
states in the genomic states and the corresponding epigenetic changes. We utilized the
3WC technique to discover the similar epigenetic patterns within the various cancer types.

The proposed method detects common patterns of epigenetic marks in various cancer
types (epigenetic patterns across seven cancer types) and by finding epigenetic resem-
blances among cancer types. The experimental results found that mutual epigenetic
patterns exist in these cancer types, with a strong relationship with various types of cancer,
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and found high risk across the studied cancer types. We built a frequent pattern item set
and identified the group of the bi-clusters of these patterns. Experiments results of the
proposed method achieved an accuracy of 88% in detecting cancer types according to a
specific input epigenetic pattern.

We compared our results from the three way clustering mining technique with a
labelled data set, and we validated our results for the epigenetic sets H3K9m1, H3K4m3,
H3K9m3, H3K27c, and H3K27m3 in the cancer groups CDT, LHC, MMC, and BLC.
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