Journal of Ginseng Research 46 (2022) 592—600

journal homepage: https://www.sciencedirect.com/journal/journal-of-ginseng-

Research Article

Contents lists available at ScienceDirect

Journal of Ginseng Research

research

Korean Red Ginseng attenuates Di-(2-ethylhexyl) phthalate-induced N
inflammatory response in endometrial cancer cells and an ot
endometriosis mouse model

Heewon Song *, Ji Eun Won ™, Jeonggeun Lee ¢, Hee Dong Han ™ ™, YoungJoo Lee

2 Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
b Department of Immunology, School of Medicine, Konkuk University, Chungju, Republic of Korea

ARTICLE INFO

Article history:

Received 22 July 2020

Received in revised form

10 March 2021

Accepted 12 November 2021
Available online 18 November 2021

Keywords:
Cyclooxygenase-2
Di(2-ethylhexyl) phthalate
Endometrial cancer
Endometriosis

Korean Red Ginseng

ABSTRACT

Background: Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical
used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through
the induction of inflammation. The major therapeutic approaches against endometrial cancer and
endometriosis involve the suppression of inflammatory response. Korean Red Ginseng (KRG) is a natural
product with anti-inflammatory and anti-carcinogenic properties. Thus, the purpose of this study is to
investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa
cells and a mouse model of endometriosis.
Methods: RNA-sequencing was performed and analyzed on DEHP-treated Ishikawa cells in the presence
and absence of KRG. The effects of KRG on DEHP-induced cyclooxygenase-2 (COX-2) mRNA levels in
Ishikawa cells were determined by RT-qPCR. Furthermore, the effects of KRG on the extracellular signal-
regulated kinases (ERKs) pathway, COX-2, and nuclear factor-kappa B (NF-kB) p65 after DEHP treatment
of Ishikawa cells were evaluated by western blotting. In the mouse model, the severity of endometriosis
induced by DEHP and changes in immunohistochemistry were used to assess the protective effect of
KRG.
Results: According to the RNA-sequencing data, DEHP-induced inflammatory response-related gene
expression was downregulated by KRG. Moreover, KRG significantly inhibited DEHP-induced ERK1/2/NF-
kB/COX-2 levels in Ishikawa cells. In the mouse model, KRG administration significantly inhibited ectopic
endometriosis growth after DEHP-induced endometriosis.
Conclusions: Overall, these results suggest that KRG may be a promising lead for the treatment of
endometrial cancer and endometriosis via suppression of the inflammatory response.
© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

and diabetes, appear to be related to the development and pro-
gression of endometrial cancer [2]. Endometrial cancer can be

Endometrial cancer is the most common gynecological malig-
nancy in developed countries and its incidence has recently been
increasing [1]. Although the pathogenesis of endometrial cancer
remains unclear, several risk factors, including late menopause
onset, post-menopausal estrogen therapy, obesity, hypertension,
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divided into type-I, estrogen-dependent endometrial cancer (80%),
and type-II, non-estrogen-dependent endometrial cancer (20%) [3].
Endometrial cancer, and epithelial ovarian cancer (endometriosis-
associated ovarian cancer), are also associated with endometriosis
[4]. Endometriosis is a common and complex disease affecting
about 6—10% of reproductive age women [5]. Endometriosis is an
estrogen-dependent inflammatory disease, the etiology of which is
not well known. However, the biological properties of endometri-
osis share similarities with cancer cell invasion and metastasis [6].

Di-(2-ethylhexyl)-phthalate (DEHP), an endocrine disrupting
chemicals (EDCs), is a plasticizer that gives plastics flexibility and is
used in a variety of industrial products [7]. Due to its extensive use,
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humans are exposed to DEHP through ingestion, inhalation, and
dermal exposure, and maximum daily exposure to DEHP is about
2 mg/day in USA [8]. The levels of DEHP in plasma of Indian and
Chinese women with endometriosis were significantly higher than
those without endometriosis [9,10]. In a study of Korean women,
the plasma concentration of DEHP in Korean women with advanced
endometriosis was higher than that in women without endome-
triosis [11]. Moreover, the urinary concentration of metabolites of
DEHP was higher in women with endometriosis [12]. Thus, the
concentration of DEHP and its metabolites in plasma and urine is
associated with endometriosis, suggesting that DEHP may have an
aetiological association with endometriosis [13]. Although DEHP
has no apparent estrogen activity, it may interfere with estrogen
receptor (ER) a activity [14]. DEHP induces estrogen receptor o
(ERa) protein expression in that ERa is a primary mediator of es-
trogenic action in endometrial stromal cells [15]. In silico docking
experiments, DEHP binds with higher efficiency to human ERa and
estrogen-related receptor y (ERRy) [16]. DEHP increases serum
estradiol levels in adult Wistar rats [17] and promotes proliferation
in ERa positive breast cancer cells [18]. Also, DEHP enhances pro-
liferative activity and anti-apoptotic protein expression and
cyclooxygenase-2 (COX-2) expression in human uterine leiomyoma
cells [19]. Continuous exposure to DEHP has been reported to
promote cell proliferation in hepatocytes via activated nuclear
factor-kappa B (NF-kB) signaling pathway [20]. The endometriotic
implant size was larger for with DEHP group compared with con-
trol group in the NOD/SCID mice [12]. DEHP exposure possibly
cause an enhanced survival of endometrial cell in stressful condi-
tions after retrograde menstruation, which eventually may lead to
establishment of endometriosis by enhancing invasive and prolif-
erative activities of endometrial cells [12,21]. Pathophysiological
investigations of endometriosis suggest that the onset and pro-
gression of the disease include steroid-related mechanisms,
involving hormone-related changes in the endometrium and
peritoneal cavity, and excess estrogen production [22,23]. There-
fore, it is believable that endocrine disruptors, such as DEHP, can
affect the risk of endometriosis, and other diseases associated with
the endometrium.

Endometriosis is a pelvic inflammatory disease caused by the
evasion of the immune surveillance in the local peritoneal micro-
environment [24]. Depending on the activation of macrophages
and increased cytokine secretion in the peritoneal fluid, it triggers
inflammatory reactions related to endometriosis [25]. The local
inflammatory microenvironment enhances lesion proliferation,
invasion and angiogenesis and subsequent progression to persis-
tent endometrial lesions [26]. Inflammatory response to endome-
triosis may additionally cause pelvic pain and infertility [27]. In
endometriosis, local pre-inflammatory mediators such as IL-1p and
TNF-o will activate NF-kB and HIF-1a signaling pathways and
enhance COX-2 transcription [24]. In addition, COX-2 promotes a
proliferative local hormone environment by participating in a
positive feed forward loop that enhances local estradiol (E2) pro-
duction by increasing aromatase activity in endometriotic lesions
[28]. Therefore, inhibition of COX-2 seems to be a promising
strategy for treatment in endometriosis [29].

Korean Red Ginseng (KRG) has traditionally been used as an
herbal medicine to treat various diseases in East Asia. Several
studies have provided evidence that KRG possesses a variety of
biological activities, including strengthening immunity, anti-
inflammatory, and menopausal effects [30,31]. Ginsenoside Rg3,
one of the components of KRG, has previously been demonstrated
to suppress the growth of endometriosis lesions in rats, to reduce
the volume of ectopic lesions, to inhibit expression of the vascular
endothelial growth factor (VEGF), and to inhibit angiogenesis [32].
In addition, ginsenoside Rg3 has been shown to suppress
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endometriosis by regulating apoptosis and angiogenesis through
NF-kB signaling in human ectopic endometrial stromal cells [33].
PPD can also attenuate the growth of ectopic lesions and eventually
suppress the development of endometriosis [34]. We hypothesize
that KRG may mediate its effects on DEHP-induced endometrial
cancer and endometriosis through the TLR5/NF-kB pathway.
Therefore, this study investigated the protective effects of KRG
against endometrial cancer and endometriosis caused by DEHP.

2. Materials and methods
2.1. Reagents and antibodies

DEHP, dimethyl sulfoxide (DMSO), E2 and anti-B-actin were
purchased from Sigma Aldrich (St. Louis, MO, USA). KRG was kindly
supplied by the Korea Ginseng Corporation (KGC, Daejeon, Korea)
[35]. The ginsenoside composition for KRG has been described
previously [36]. Anti—NF—kB-p65, anti-Lamin B, anti-ERK1/2, anti-
p-ERK1/2, anti-JNK1/2, anti-p-JNK1/2, anti-p38 and anti-p-p38
were purchased from Santa Cruz Biotechnology (CA, USA). Anti-
COX-2 were purchased from Cayman Chemical Co. (Ann Arbor,
MI, USA). Anti-VEGF-A were purchased from Abcam (Cambridge,
UK).

2.2. Cell culture

The human endometrial adenocarcinoma Ishikawa cells were
maintained in Dulbecco's Modified Eagle Medium (DMEM; Wel-
GENE Inc., Daegu, Korea) containing 10% fetal bovine serum (FBS;
GIBCO Invitrogen, NY, USA) and penicillin/streptomycin (GIBCO
Invitrogen, NY, USA). The cells were incubated at 37 °C in the hu-
midified 5% CO, atmosphere.

2.3. Cell viability assay

Cell viabilities were measured using 3-(4,5-Dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT; Sigma
Aldrich (St. Louis, MO, USA). Ishikawa cells were seeded at a density
of 5000 cells/well in a 96-well plate. The following day, the cells
were incubated with chemicals in the culture medium for 24 h.
MTT assays were conducted as described in the previous study [35].
Cell viabilities were calculated as a percentage of control
absorbance.

2.4. Quantitative real-time polymerase chain reaction

Total RNA extraction and cDNA synthesis were performed as
described in the previous study [37]. qRT-PCR was performed with
a StepOnePlus Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA) using AccuPower® GreenStar™ qPCR PreMix (Bio-
neer Corporation, Daejeon, Korea) according to the manufacturer's
instructions. The RT-qPCR primers were as follows: TLR-5, forward;
5'-ATTGCCAATATCCAGGATGC-3’ and reverse, 5-CACCACCATGAT-
GAGAGCAC-3’, myeloid differentiation factor 88 (MyD88), forward;
5’- TGGTTCTGGACTCGCCTTG-3’ and reverse, 5'- AGGAGGCAGGG-
CAGAAGTACAT-3'. The primers of COX-2 and f-actin have been
previously described [38]. The B-actin was used as an endogenous
control gene. The relative expression was calculated using the
comparative cycle threshold (Ct).

2.5. Immunoblot analysis
Protein extraction and sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) were performed as described in the
previous study [39]. The blots were reacted with primary
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antibodies at 4 °C overnight. After washing steps, the blots were
incubated Horseradish Peroxidase (HRP)-conjugated anti-IgG sec-
ondary antibody (Invitrogen, Grand Island, NY, USA). The band was
visualized using Enhanced chemiluminescence (Amersham Phar-
macia Biotech, Buckinghamshire, UK). Quantified protein levels
were analyzed using Quantity One analysis software (Bio-Rad,
Hercules, CA, USA).

2.6. Isolation of nuclear and cytoplasmic proteins

The proteins of cytoplasm and nuclear were isolated by the
nuclear and cytosolic protein extraction kit (Abcam, Cambridge,
UK) according to the manufacturer's instructions. Isolated proteins
were analyzed by SDS-PAGE and immunoblot analysis.

2.7. Human VEGF enzyme-linked immunosorbent assay (ELISA)

The cell culture supernatants were collected in sterile test tubes
and centrifuged at 3000 rpm. The supernatants were transferred to
a new tube and stored at —20 °C until used. The secreted VEGF
concentration was investigated to use VEGF ELISA kit (R&D Sys-
tems, Minneapolis, MN, USA) according to the manufacturer's
instructions.

2.8. RNA isolation and sequencing

Ishikawa cells were pre-treated with KRG for 1 h and treated
with DEHP for 8 h. Each group's RNA was isolated using the Fast HQ
RNA Extraction Kit (Intron technology). Serial test of RNA quality
testing, quantification, library preparation, and sequencing was
conducted as described in the previous study [36,40]. The ultimate
RNA sequencing data were uploaded in the NCBI's GEO database
(GSE154388).

2.9. Gene ontology analysis

Differentially expressed genes (DEGs) were analyzed using
excel-based differentially expressed gene analysis (Ex-DEGA) soft-
ware as shown in our previous study [36]. Genes clustered in the
Venn diagram graph was determined considering fold change and
normalized RC value (Fold change >2, Normalized RC (log2) = 1). As
a result of DAVID functional annotation, component genes in in-
flammatory response were obtained from the Quick GO website
(https://www.ebi.ac.uk/QuickGO/). Heat map graphs were
expressed using the Multiexperimantal viewer software package.

2.10. Functional annotation

DAVID software version 6.8 was used for gene ontology analysis
[41]. Genes were clustered in accordance with fold change and
normalized RC value (Fold change >2, Normalized RC (log2) = 1).
Clustered DEGs were submitted to categorize gene ontology, and
the significant enrichment was estimated as per count >10 and
EASE score of p-value < 0.05, which is a modified Fisher exact p-
value. Significantly enriched gene ontologies were visualized with
-logo transformation of the p-value.

2.11. Mice

C57BL/6 mice (female, 6 weeks old, 20 g) obtained from ORIENT
(Gapyeong, South Korea) were kept under the procedures ensured
by the Konkuk University Institutional Animal Care and Use Com-
mittee (Ref. No.: KU19231-1). All the processes were conducted in
compliance with ensured protocols and recommendations for the
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optimal use and care of animals at the specific pathogen-free
housing facility at Konkuk University.

2.12. Mouse model for endometriosis

DEHP-induced endometriosis mouse model was developed ac-
cording to schedule as shown in Fig. 5A. Ovary was resected from
donor and recipient mice, and the mice were rested for 12 days.
Sesame oil containing E2 (0.36 mg/mouse) was injected subcuta-
neously (s.c.) from 12 days to termination. To obtain uterine tissue,
we first cut off uterine horn by 2 mm in size from donor mice, and
the cut out uterine tissue was stored in PBS. For transplantation of
uterine tissue, recipient mice were anesthetized and then abdom-
inal cavity was opened. A sterile gauze was placed directly upper
the incision site, and completely wetted by addition of sterile PBS.
The small intestine was pulled up and placed on wet gauze to
confirm intestinal artery. The uterine tissue from donor mouse was
implanted by gently sutured into intestinal artery of recipient mice.
After confirming that all organs returned to their position, the skin
was closed using a wound clip [42,43]. To determine inhibition
effect of endometriosis lesion, mice were randomly allocated to 4
groups as follows (n 5/group): (1) control, (2) DEHP, (3)
DEHP + KRG (200 mg/kg), (4) DEHP + KRG (400 mg/kg). After
transplantation of uterine tissue to intestinal artery of mice, sesame
oil containing E2 (0.36 mg/mouse) was continuously injected s.c.
Daily. DEHP was injected intraperitoneally (i.p.) (1000 mg/kg). KRG
was administrated by orally. The mice were sacrificed on day 42,
and the lesions were carefully separated from intestinal mesentery.
The volume of endometriosis lesion was recorded, and the lesion
was fixed in 4% normal buffered formaldehyde for histological
analysis.

2.13. Hematoxylin and eosin (H&E) staining and
immunohistochemistry

H&E staining was conducted to confirm histological character-
ization of endometriosis tissue. Immunohistochemical (IHC) anal-
ysis of CD10 (Thermo Scientific, Waltham, MA, USA), cell
proliferation (Ki67; Abcam, Cambridge, UK), and macrophage (F4/
80; Thermo Scientificc, Waltham, MA, USA) was performed on
endometriosis lesion from the mice. 5 random fields in each lesion
section slides were recorded. All staining was quantified by 2
blinded investigators.

2.14. Statistical analysis

The presented data were tested and validated by the
means + standard deviation as needed. We compared each group
using one-way analysis of variance and Tukey's multiple-
comparison posttest using GraphPad Prism software (GraphPad
Software Inc., La Jolla, CA, USA). Differences between groups at less
than 0.05 of P-value regarded as significant.

3. Results

3.1. Expression levels of DEHP-induced inflammatory response
genes were reduced by KRG

To determine the effects of KRG on DEHP-induced expression
changes, we conducted a transcriptome analysis (assessing
expression changes in tens of thousands of genes). The genes
showing differential expression between the DEHP group and the
control group and between the DEHP + KRG group and the control
group are summarized in a Venn diagram (Fig. 1A). Functional
annotation analysis was performed on the subsets of differentially
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expressed genes using the DAVID bioinformatics resource. Five
gene ontology (GO) terms chemical synaptic transmission, in-
flammatory response, low-density lipoprotein particle remodeling,
homophilic cell adhesion via plasma membrane adhesion mole-
cules, and immune response were significantly enriched in the
DEHP + KRG group compared to the DEHP group (Fig. 1B). In this
study, we decided to focus on the inflammatory response-related
gene sets. Among these gene sets, we identified a subset of genes
in which expression level was more than two-fold different in the
DEHP group compared to the control group. The expression levels
of genes in this subset were then compared between the DEHP
group and the DEHP + KRG group, and the results were expressed
as a heat map (Fig. 1C). In most of the genes up-regulated or
downregulated by DEHP, the expression level changes were
attenuated by KRG treatment. The RNA seq results were subse-
quently verified using two inflammatory response-related genes
(associated with the inflammatory response GO term) for which
expression was reportedly decreased in the DEHP + KRG group
compared to the DEHP group. Thus, RT-qPCR was performed on the
TLR5 and MyD88 genes to confirm the RNA seq results (Fig. 1D and
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E). While TLR5 and MyD88 mRNA expression levels increased
following DEHP treatment, the mRNA levels of both genes
decreased following KRG treatment (500 ug/mL). The RT-qPCR re-
sults were similar to the RNA-seq data obtained. Taken together,
transcriptome analysis with functional annotation analysis in-
dicates that KRG attenuated changes in gene expression involved in
DEHP-induced inflammatory response.

3.2. KRG suppresses DEHP-induced COX-2 and nuclear NF-«kB p65
expression in ishikawa cells

The effects of KRG on TLR5 and MyD88 were confirmed by RNA
seq and RT-qPCR. Based on this result, the effect of KRG on the
expression of NF-kB p65 downstream of TLR5 was analyzed. NF-kB
p65 is an crucial regulatory transcription factor involved in the
major inflammatory pathway [44]. First, we assessed the effect of
DEHP and KRG on cell viability in Ishikawa cells using the MTT assay
(Fig. 2A). At treatment concentrations, no cytotoxicity was
observed for either DEHP or KRG. Although NF-kB is present in the
cytoplasm in an inactive form, the NF-kB p65 subunit separates
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Fig. 1. Differentially expressed genes and functional annotation from RNA-Seq in Ishikawa cells. The levels of mRNA transcripts in Ishikawa cells were determined by the library
preparation and sequencing method. In every analysis, genes were clustered as per fold change and normalized RC value. (A) Venn diagrams show the set of differentially expressed
genes in the DEHP and DEHP + KRG. (B) Gene ontology analysis of regulated DEGs in DEHP + KRG compared with those regulated by DEHP alone show the five most significant
results, and heat map plots show the amount of expression of genes associated with each category. (C) Analysis was performed using the factors specified in the Quick GO database.
Genes that expression levels were regulated more than 2 times by DEHP compared with negative control were clustered and presented as a heat map and which shows alleviated in
DEHP + KRG group (former). Among these genes, genes that significantly regulated in the DEHP + KRG group against DEHP alone were selected and presented as a heat map (latter).
(D and E) TLR5 and MyD88 mRNA levels were confirmed using qRT-PCR as the same RNA sample in which RNA-seq was performed. *p < 0.05, DEHP vs. DEHP + KRG.
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Fig. 2. Effects of KRG on DEHP-induced NF-kB nuclear translocation and COX-2 expression in Ishikawa cells. (A) Ishikawa cells were pre-treated with KRG (100, 500 pug/mL) for 1 h
and DEHP (10 uM) was treated 24 h. After incubation, cell viability was measured using MTT assay. (B) Ishikawa cells were pre-treated with KRG (100, 500 pg/mL) for 1 h and treated
with DEHP (10 uM) for 24 h. The proteins indicated above were evaluated by Western blot analysis. (C) Ishikawa cells were pre-treated with KRG (100, 500 pg/mL) for 1 h and
treated with DEHP (10 uM) for 8 h. COX-2 mRNA levels were confirmed by qRT-PCR. (D) Ishikawa cells were pre-treated with KRG (100, 500 pug/mL) for 1 h and treated with DEHP
(10 uM) for 24 h. COX-2 and B-actin were evaluated by Western blot analysis. *p < 0.05, DEHP vs. DEHP + KRG.

from IkBa and migrates to the nucleus upon various stimuli,
inducing the transcription of multiple inflammatory genes [45].
When Ishikawa cells were treated with a range of DEHP concen-
trations, NF-kB p65 was observed to migrate into the nucleus at
concentrations of DEHP of 10 pM (data not shown). We subse-
quently demonstrated that DEHP-induced NF-kB translocation to
the nucleus was inhibited by KRG treatment (Fig. 2B). In addition,
DEHP-induced NF-kB p65 expression was significantly inhibited by
KRG (500 pg/mL). Moreover, DEHP-induced COX-2 (a subfactor of
NF-kB) mRNA and protein expression levels were inhibited by KRG
(500 pg/mL) (Fig. 2C and D). Thus, since KRG significantly attenu-
ated COX-2 and NF-«B activation by DEHP, it may possess anti-
inflammatory properties.

3.3. KRG mitigates DEHP-induced ERK1/2 signaling pathways in
ishikawa cells

Activation of TLR can stimulate mitogen-activated protein ki-
nases (MAPK) signaling pathways in addition to intracellular NF-«B,
inducing the expression of a variety of inflammatory factors [46].
Before verifying that the KRG is involved in the MAPK pathway, we
confirmed that MAPK is activated by DEHP (Fig. 3A). As a result of
confirming phosphorylation of MAPK by treating DEHP (10 pM) at
various times, it was confirmed that phosphorylated ERK1/2 was
significantly increased. Next, the effect of KRG on DEHP-induced
ERK1/2 signaling was analyzed by western blotting (Fig. 3B).
Phosphorylated ERK1/2 by DEHP was significantly reduced by KRG
(500 pg/mL). These data suggest that KRG significantly attenuates
DEHP-induced ERK1/2 activation in Ishikawa endometrial cancer
cells.
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3.4. KRG inhibits DEHP-induced VEGF expression in ishikawa cells

Activation of COX-2 regulate the expression of VEGF [47]. In
addition, KRG was previously shown to inhibit DEHP-induced COX-
2 in Ishikawa cells. Therefore, we investigated whether VEGF
expression changed following treatment with DEHP and KRG.
Although an increase in VEGF-A protein expression was induced by
DEHP, the observed increase was reduced in cells treated with KRG
(100, 500 pg/mL) (Fig. 4A). The levels of secreted VEGF protein in
the supernatant following treatment with DEHP and KRG were also
evaluated using VEGF ELISA (Fig. 4B). DEHP increased the levels of
secreted VEGF protein compared to the control. DEHP-induced
secretion of VEGF protein was significantly inhibited by KRG (100,
500 pg/mL).

3.5. KRG inhibits DEHP-induced endometriosis in a mouse model

In the endometriosis mouse model, growth of endometriosis
lesions was significantly inhibited in the DEHP + KRG (200,
400 mg/kg) groups compared to the DEHP treatment only group
(Fig. 5B). Endometriosis lesions containing endometrial glands (g)
and stroma (s) were confirmed in mice through morphological
validation using H&E staining (Fig. 5C). Cell proliferation (Ki67) of
KRG (400 mg/kg) administrated groups was significantly decreased
compared to DEHP alone. CD10 expression to confirm endometrial
stroma cells was significantly reduced in KRG (200, 400 mg/kg)
groups compared to DEHP alone. Likewise, inflammation-induced
by macrophage (F4/80) was decreased in KRG groups compared
to DEHP alone (Fig. 5C).



H. Song, J.E. Won, ]. Lee et al.

A
aSasessasasasamsas | Total-ERK1/2
== = e | p-ERK1/2
— ——— —— e | Total-p38
== | p-p38
N Total-JNK1/2
L e s o= em e | pINKIZ2
R ———— B-actin
DEHP (10pyM) 0 5 10 15 30 60 120 min
B
G5 S5 &w» e | Total-ERK1/2
. e - e | PERK12
- ey e=» *=» | (-actin
DEHP (10 pM) - % =
KRG (ug/mL) - - 100 500

Journal of Ginseng Research 46 (2022) 592—600

EA p-ERK/ERK
B3 p-p38/p38
B p-JNK1/2/JNK1/2

Relative protein levels
(Fold Induction)

0-
R g Q> Q> Q> Q> Q> &>
FHFHHFH &S
Q 5 N B S 0“
2.0+
@ #
S —
>~ —
2 = 1.5+ %
:.S .
Bz
ggl.o-
2=
= 9
N[-EO.S-
=
~
0.0+

Fig. 3. Effects of KRG on DEHP-induced phosphorylation of ERK1/2 in Ishikawa cells. (A) Ishikawa cells were treated with DEHP (10 uM) for indicated time. MAPK and phos-
phorylation of MAPK were evaluated by Western blot analysis. (B) Ishikawa cells were pre-treated with KRG (100, 500 pg/mL) for 1 h and treated with DEHP (10 uM) for 60 min.
ERK1/2, p-ERK1/2 and B-actin were evaluated by Western blot analysis. #p < 0.05, CON vs. DEHP; *p < 0.05, DEHP vs. DEHP + KRG.
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Fig. 4. Effects of KRG on DEHP-induced VEGF expression in Ishikawa cells. (A) Ishikawa cells were pre-treated with KRG (100, 500 pg/mL) for 1 h and treated with DEHP (10 uM) for
24 h. VEGF-A and B-actin were evaluated by Western blot analysis. (B) Ishikawa cells were pre-treated with KRG (100, 500 pg/mL) for 1 h and treated with DEHP (10 pM) for 24 h.
The concentration of secreted VEGF was determined in the cell supernatant using a VEGF ELISA. #p < 0.05, CON vs. DEHP; *p < 0.05, DEHP vs. DEHP + KRG.

4. Discussion

In the present study, we investigated the protective effect of KRG
against endometrial cancer and endometriosis exacerbated by
DEHP. Previous experimental and epidemiological studies have
shown that DEHP exposure may be associated with the develop-
ment of endocrine-related diseases such as endometriosis [48]. A
connection between endometriosis and endometrial cancer has
long been assumed because of the many risk factors shared by both

diseases [49]. Moreover, women previously diagnosed with endo-
metriosis have an increased risk of developing endometrial cancer,
consistent with a link between endometriosis and endometrial
cancer [50]. DEHP increases the viability of endometrial cancer
cells, and of endometrial stromal cells (ESCs), and the levels of in-
flammatory mediators such as TNF (tumor necrosis factor)-o in
those cells [21,51]. The volume of ectopic endometrial lesions in the
endometriosis animal model was significantly increased by DEHP
(500, 1000 mg/kg) compared to control [ 12]. KRG possesses a range
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Fig. 5. Effects of KRG on DEHP-induced endometriosis. (A) Experimental design of endometriosis-bearing mouse model. (B) KRG was administered at 200 or 400 mg/kg/day by
orally. The volume of endometriosis lesion was determined by callipers. (C) Histological analysis of morphology using formalin-fixed, paraffin-embedded lesion sections stained
with H&E (g: gland, s: stroma). Immunohistochemical analyses of ectopic lesions using antibodies against Ki67, CD10, and F4/80 (scale bar: 100 um). #p < 0.05, CON vs. DEHP;

*p < 0.05, DEHP vs. DEHP + KRG.

of biological activities, including anti-oxidant and anti -inflamma-
tory effects [30,31]. Moreover, PPD, PPT, Ginsenoside Rg3, and
Ginsenoside Rh2 could inhibit viability and growth in both ESCs
and an endometriosis mouse model [34]. KRG was shown to
decrease inflammation in endometrial cancer cells and to decrease
ectopic endometriosis volume in a DEHP-induced model of endo-
metriosis in mice. We also showed that KRG inhibited DEHP-
induced expression of COX-2 and VEGF in endometrial cancer
cells. Together, these results suggest that KRG may be a promising
natural product for the treatment and prevention of endometriosis
and endometrial cancer.

Our RNA seq data analysis confirmed that genes upregulated by
DEHP were inhibited by KRG. Toll-like receptor5 (TLR5) and MyD88
were selected from the differentially regulated genes for validation
and additional analysis. TLR5 plays a major role in the innate im-
mune system and is expressed in lung and intestinal epithelial cells,
human endometrium, and some cancer cells [52]. Downstream
signaling of TLR5 involves activation of the MAPK and NF-kB
pathways [53]. This signaling depends on the association of TLR5
with MyD88 through their homologous TLR domains [54]. DEHP-
induced expression of TLR5 and MyD88 was inhibited by KRG,
suggesting that KRG may inhibit activation of ERK1/2 and NF-«B.
According to the present study, DEHP increased COX-2 levels in
endometrial cancer cells following NF-kB activation. Increased
expression of inflammatory proteins can trigger a variety of effects,
including promoting tumor progression by increasing cell prolif-
eration and apoptosis resistance [55]. COX-2 is overexpressed in
endometrial cancers and COX-2 inhibitors are regarded as potential
therapeutics [56]. Thus, these results suggest that COX-2 inhibition
by KRG may inhibit cell proliferation in endometrial cancer cells.
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We also investigated the effects of KRG on the DEHP-induced
endometriosis mouse model. In the mouse endometriosis model,
oral administration of KRG alleviated an increase in the size of the
endometrial lesions, inflammation of the lesions, and increased cell
proliferation by DEHP. In particular, CD10 were significantly
reduced in the DEHP + KRG groups compared to the DEHP groups.
CD10 is a sensitive immunohistochemical marker of endometrial
stromal cells at ectopic sites and is used in confirming a diagnosis of
endometriosis [57]. In addition, we found that the number of F4/
80-positive macrophages was reduced following KRG treatment.
Macrophages are involved in the development of endometriosis,
and its depletion is known to significantly reduce the size of the
lesion [58,59]. Therefore, a decrease of F4/80-positive macrophages
may have contributed to the reduction of the size of the ectopic
endometrium. These results suggest that KRG treatment can alle-
viate or prevent endometriosis caused by exposure to ubiquitous
environmental endocrine disruptors. Our findings may prove useful
for the development of a new therapeutic strategy for endometrial
cancer and endometriosis.
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