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Abstract

G-protein-coupled receptor (GPCR) ligands function by stabilizing multiple, functionally distinct 

receptor conformations. This property underlies how “biased agonists” activate specific subsets of 

a given receptor’s signaling profile. However, stabilization of distinct active GPCR conformations 

to enable structural characterization of mechanisms underlying GPCR activation remains difficult. 
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These challenges have accentuated the need for receptor tools that allosterically stabilize and 

regulate receptor function via unique, previously unappreciated mechanisms. Here, utilizing a 

highly diverse RNA library combined with advanced selection strategies involving state-of-the-art 

next-generation sequencing and bioinformatics analyses, we identify RNA aptamers that bind a 

prototypical GPCR, β2-adrenoceptor (β2AR). Using biochemical, pharmacological, and 

biophysical approaches, we demonstrate that these aptamers bind with nanomolar affinity at 

defined surfaces of the receptor, allosterically stabilizing active, inactive, and ligand-specific 

receptor conformations. The discovery of RNA aptamers as allosteric GPCR modulators 

significantly expands the diversity of ligands available to study the structural and functional 

regulation of GPCRs.

INTRODUCTION

G protein–coupled receptors (GPCRs) are the superfamily of cell-surface, seven α-helical 

transmembrane-spanning receptors, with over 800 members identified in the human 

genome1–4. GPCRs are targets of one-third of all pharmaceutical agents currently available 

on the market for treatment of a wide range of health problems including cardiovascular 

disease, neurological disorders, asthma, and immune system dysfunction1,3. In response to 

agonist binding, GPCRs undergo conformational changes that activate intracellular signaling 

cascades and effector systems via coupling to G proteins and G protein–independent 

transducers such as β-arrestins2,5,6. Importantly, these two signaling pathways can be 

pharmacologically separated through the use of “biased” agonists that preferentially activate 

one signaling arm over the other, potentially leading to therapeutics with more targeted 

efficacy and enhanced safety profiles5–8. Indeed, work over the past decade has led to a list 

of biased agonists for several GPCRs and some of these biased agonists have even entered 

late stage clinical trials for various disease conditions6–8.

The development of such biased ligands is dependent on a detailed understanding of the 

structural basis of different signaling GPCR conformations. Numerous biophysical studies 

have demonstrated that GPCRs are dynamic allosteric machines that exhibit conformational 

heterogeneity in both ligand-occupied and ligand-free states9–11. These studies support a 

multi-state model for GPCR activation in which receptors adopt multiple active or inactive 

conformations and specific ligands have a propensity to stabilize distinct conformational 

states and elicit ligand-specific activity. Therefore, structural information is essential to 

improve our understanding of the nature of ligand-specific receptor conformations and the 

mechanism by which these allosteric conformational changes are transmitted to transducers 

to initiate downstream signaling. Although recent crystal structures of multiple GPCRs have 

provided significant atomic-level structural information12–16, major challenges still exist in 

using X-ray crystallography to study the structures of GPCRs. These challenges stem 

primarily from the inherent flexibility and biochemical instability of functionally active 

conformational states9,11,15,17. X-ray crystallography of GPCRs in the absence of stabilizing 

agents tends to capture lower energy, thermodynamically stable inactive structures even in 

the presence of high-affinity or covalently tethered agonists of orthosteric site, thus missing 

functionally active signaling conformations11,17,18.
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Expanding the chemical profile of GPCR ligands has the potential both to aid in the 

development of biased drugs for various therapeutically important GPCRs and to provide 

molecular tools for structural and biophysical applications. Given their molecular diversity, 

ability to adopt unique 3D structures, lack of immunogenicity, and ease of chemical-

modification, RNA aptamers are emerging as valuable pharmacologic agents and 

conformation-sensors for various targets19–32. While aptamers targeting a variety of 

molecules ranging from small molecules to whole cells have been identified, few studies 

have described the selection of RNA aptamers against membrane proteins such as 

GPCRs20,24–27. Additionally, most of these studies utilized traditional selection strategies, 

specifically, using complex cellular systems as targets and characterizing the most abundant 

aptamers after selection using conventional cloning methods. We hypothesized that isolating 

RNA aptamers with defined conformational specificities for GPCRs would require precise 

control of the selection conditions and more sensitive methods for analyzing clones. Here, 

we describe an integrated approach to discover conformationally specific RNA aptamer 

allosteric modulators for the β2-adrenoceptor (β2AR)2, a model GPCR system, involving 

next-generation sequencing (NGS)33,34 and comparative bioinformatics analysis of parallel 

selections against purified β2AR in different states. The resulting set of aptamers exhibit 

distinct preferences for binding to various β2AR conformational states with high affinity and 

selectivity, as determined using a combination of biochemical, functional, biophysical and 

structural methods. Thus, our study reveals the potential of RNA aptamers to serve as 

molecular tools for elucidating the structural and mechanistic details underlying GPCR 

activation as well as for developing improved therapeutics.

RESULTS

Preparation of the β2AR target

The β2AR is a prototypic and well-characterized member of the GPCR family. It was the 

first ligand binding GPCR to be cloned and its structure was solved at high resolution in the 

active state and in complex with G-protein2,12,13,16. Purification of functionally active 

receptor and stabilization of purified GPCRs are major challenges in the field of GPCR 

biology research. We prepared β2AR from baculovirus-mediated expression in Spodoptera 
frugiperda (Sf9) insect cells via solubilization in detergent and using a three-step affinity 

purification procedure (as previously described4; see online Methods). Purification of the 

β2AR to homogeneity was achieved primarily by use of the alprenolol affinity purification 

step, which selectively isolates functional receptors from those that are non-functional and 

incapable of binding of radioligand2,4. We maintained the purified receptor in maltose–

neopentyl glycol (MNG)35, an amphiphilic detergent that enhances receptor stability. In 

order to lock the receptor into an active conformation for selection of RNA aptamers, an 

agonist of high affinity and extremely slow off-rate, BI16710712,36, was used (Fig. 1a).

Enrichment of conformationally specific RNA aptamers

To develop a strategy that would allow us to identify high affinity, conformationally specific 

RNA aptamers that recognize β2AR, we used a highly diverse, 2′-fluoropyrimidine 

modified, nuclease-resistant RNA library containing approximately 1015 unique sequences. 

Our approach combines an iterative in vitro selection process with NGS technology and 
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comparative bioinformatics analysis to efficiently identify candidate aptamer binders with 

desired functional properties (Fig. 1a and see Supplementary Results, Supplementary Fig. 1 

for a detailed selection schematics)31–34. To isolate unique RNA aptamers that bind at 

structurally relevant sites on the β2AR, we performed nine rounds of positive selection 

against unliganded-β2AR and a high-affinity agonist (BI167107)-bound β2AR. Prior to each 

round of positive selection, we performed negative selection to deplete filter and other non-

target-binding RNA molecules. In order to further enrich the population for aptamers that 

bound to our targets, at round five we performed a counter-selection against a non-target 

membrane protein, an inactive angiotensin receptor subtype 1a (AT1aR). Enrichment of 

target-specific sequences was monitored by measuring bulk equilibrium dissociation 

constants (Kd) of successive aptamer pools for binding to the two β2AR selection targets, via 

a nitrocellulose filter binding assay (Supplementary Fig. 2). We found that the initial library, 

and pools from R1 through R4 exhibited minimal binding, but we observed a noticeable 

increase in the binding affinity of the R5 pool for each selection target (β2AR and 

β2AR:BI167107). Accordingly, all selected RNA pools starting from R5 on exhibited a 

progressive increase in the binding affinity, with the most prominent enrichments occurring 

between rounds 6 and 9 (Supplementary Fig. 2). For example, aptamer pools from round 9 

displayed nanomolar binding affinities for both selection targets (Kd [R9 pool binding to 

unliganded β2AR] = 99.4 ± 15.6 nM and Kd [R9 pool binding to β2AR: BI167107] = 86.2 

± 11.2 nM).

NGS of the eluted aptamer pools improved the resolution of the data over that of traditional 

single clone Sanger sequencing method. Traditional sequencing method limits sampling to a 

potentially poorly representative portion of the clonal space (usually a few hundred clones) 

compared to NGS, which samples millions of sequences across successive rounds of 

selection. The ability to sample a large proportion of clonal space via NGS not only 

improves the power of the selection, but also reduces the risk of capturing non-specific or 

poorly representative clones. High-throughput sequencing (HTS) was accomplished by 

preparing multiple barcoded, Illumina-compatible dsDNA fragment libraries derived from 

each pool and subjecting them to multiplexed paired-end sequencing analysis on Illumina 

HiSeq 2000 platform (Supplementary Fig. 3). The use of multiple barcodes allowed us to 

analyze all aptamer pools in a single flow cell lane. We obtained a total of 1,180,685 raw 

sequences from all pools. During the initial bioinformatics analysis we observed a major 

decrease in sequence diversity of pools over the course of the selections, and an increase in 

copy numbers within the top, most frequent unique sequences indicating enrichment of 

target-specific binders. To identify β2AR specific aptamers, we tracked the enrichment of 

individual sequences across successive selection rounds. This was performed by calculating 

the fold-enrichment for every sequence, which we defined as the ratio of percent frequency 

of a given sequence in the later round to that of the earlier round. We ranked RNA aptamer 

sequences by comparing fold-enrichment across multiple selection rounds and selected the 

top 20 sequences primarily based on their high enrichment ratios (Supplementary Fig. 4a; 

see online Methods for details). A scatter plot of fold-enrichments from R4 to R9 for the top 

20-aptamer sequences in the selections against unliganded-β2AR and β2AR bound to 

BI167107 is shown in Figure 1b. Aptamer sequences skewed towards a particular axis are 

enriched and potentially selective towards that conformational state of the receptor.
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RNA aptamers display conformation-specific binding

The 20 putative β2AR binding aptamers were characterized for their binding to, and 

specificity, for unliganded β2AR and β2AR bound to BI167107 with 32P-labeled and 

biotinylated aptamers, using nitrocellulose filter binding and pull-down assays, respectively 

(Supplementary Fig. 4). Several aptamers displayed varying levels of binding and specificity 

for the two selection β2AR-targets (~75% of which bound to the receptor while 35% were 

conformation specific). These results are consistent with the data obtained from the deep 

sequencing analysis, which demonstrated multiple aptamer sequences displaying high fold-

enrichment for the particular conformational state of the β2AR that they are selected for 

(Fig. 1b and Supplementary Fig. 4). In the course of screening the initial 20 putative β2AR 

binding aptamers, we obtained seven top aptamer candidates, which displayed robust β2AR 

binding and/or conformational selectivity. These seven aptamers were further grouped into 

three categories as follows (Fig. 1b,c and Supplementary Fig. 4): (i) four aptamers (A1, A2, 

A12, and A13) showed conformational selectivity for the BI167107-bound or active form of 

β2AR, (ii) two aptamers (A15 and A16) demonstrated binding specificity for the inactive 

form of β2AR, and (iii) one aptamer, A11 did not show a clear selectivity, but bound to both 

unoccupied and BI167107-bound forms of the β2AR with high affinity. In contrast to these 

aptamers, the control aptamer did not display significant binding to either conformational 

form of the receptor. In silico predicted secondary structures of these seven aptamers are 

shown in Supplementary Figure 5. Based on these screening results, the four candidate 

aptamers (A1, A2, A13 and A16) that showed strong conformational selectivity were 

selected for further characterization (boxed in Fig. 1c).

To further characterize these four aptamers, we measured the affinity and kinetics of their 

binding to active (BI167107-bound) and inactive (ICI-118,551-bound) forms of the β2AR 

using a biophysical approach based on biolayer interferometry (BLI; ForteBio). BLI allows 

for quantification of the individual kinetic rate constants (kon and koff) that contribute to the 

equilibrium dissociation constants (Kd). We found that three aptamers (A1, A2 and A13) 

bound to β2AR:BI167107 tightly with nanomolar affinities (Kd [A1] = 42.0 ± 2.3 nM, Kd 

[A2] = 258.5 ± 0.5 nM, and Kd [A13] = 30.4 ± 2.4 nM, respectively), with fast association 

rates and slow dissociation rates (Fig. 2 and see Supplementary Table 1 for kinetic 

parameters). In contrast, no detectable binding affinity to the β2AR:ICI-118,551 was 

observed with these aptamers, indicating their specificity for an active conformation of the 

receptor. As expected, aptamer A16 bound to the β2AR:ICI-118,551 with a nanomolar 

affinity (Kd [A16] = 93.1 ± 4.1 nM) but without any measurable affinity for the 

β2AR:BI167107, demonstrating specificity towards an inactive conformation form of the 

β2AR.

To investigate the influence of the four aptamers on the affinity of an agonist (isoproterenol) 

for binding to the β2AR, we performed competition radioligand binding experiments with 

the radio-iodinated β-adrenergic antagonist cyanoiodopindolol ([125I]-CYP) utilizing β2AR 

reconstituted into high-density lipoprotein (HDL) particles37. As shown in Figure 3a, A13 

promoted the greatest increase in the affinity of isoproterenol (ISO) for the β2AR, 33.9-fold 

([Ki] for [ISO + CNT-Apt] = 112 nM and for [ISO + A13] = 3.3 nM), followed by aptamer 

A1, which enhanced the affinity of isoproterenol for the β2AR by 6-fold (Ki = 19.7 nM). In 

Kahsai et al. Page 5

Nat Chem Biol. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contrast, the presence of aptamers A2 and A16 did not affect the affinity of the β2AR for the 

agonist isoproterenol. Interestingly, although aptamer A2 had no effect on isoproterenol 

binding to the β2AR, it did appear to recognize a receptor conformation stabilized by the 

agonist BI167107, suggesting it has the ability to distinguish between active conformations 

induced by two-full agonists, isoproterenol and BI167107. Similarly, aptamer A16 has no 

effect on agonist binding and appears to recognize only an inactive conformation of the 

β2AR.

Next we explored the ability of these aptamers to modulate transitions between active and 

inactive conformations as well as whether they have the ability to stabilize unique ligand-

specific conformations. To do this, we measured the ability of each aptamer to bind β2AR 

occupied with a panel of pharmacologically and structurally distinct β2AR ligands via a 

receptor pull-down assay using biotinylated-aptamers (chemical structures of the different β-

adrenoceptor ligands used in this study are shown in Supplementary Fig. 6). We used three 

full agonists (BI167107, isoproterenol, and fenoterol), two partial agonists (salbutamol and 

clenbuterol), and four antagonists and inverse agonists (propranolol, carazolol, carvedilol, 

and ICI-118,551). Among these, carvedilol and BI167107 are modestly biased agonists 

towards β-arrestin-dependent signaling pathways38,39. Relative to the control aptamer, 

aptamers A1 and A13 robustly bound to agonist-occupied β2AR, but this binding was 

significantly reduced in the presence of antagonists (Fig. 3b–e). Additionally, the binding 

specificity of these aptamers correlated directly with rank-order of agonist efficacy (Fig. 

3b,d). Interestingly, we observed one aptamer, A2, whose effect on receptor binding did not 

correlate with ligand efficacy. With aptamer A2, we observed the largest receptor pull-down 

with BI167107-occupied β2AR, and a slightly general selectivity trend towards agonist-

occupied β2AR conformations (Fig. 3c). Surprisingly aptamer A2 also displayed a unique 

selectivity towards a β2AR conformation stabilized by carvedilol, among the antagonists. 

Aptamer A2’s specificity for BI167107- and carvedilol-occupied β2AR suggests that it 

stabilizes a unique active conformation of the β2AR that is distinct from that stabilized by 

aptamers A1 and A13. In contrast to the other aptamers, A16 showed an opposite trend 

whereby it selectively stabilized antagonist-bound β2AR complexes (Fig. 3e).

To obtain further insight into the ability of aptamers to stabilize active β2AR conformations, 

we performed fluorescent spectroscopic studies on a β2AR labeled with a bimane probe at 

the cytoplasmic end of TM6 at C265. The bimane probe enables direct monitoring of 

agonist-induced receptor conformational changes via TM6 movement from a hydrophobic 

environment to a more polar, solvent-exposed position as a decrease in fluorescence 

intensity (Supplementary Fig. 7). Both binding of agonist and G-protein (or its mimetic 

nanobody)12,16 have previously been shown to alter the environment around the label, 

resulting in a decrease in fluorescence intensity and a rightward shift (red-shift) in emission 

λmax. Both the catecholamine agonist isoproterenol and high affinity agonist BI167107 

induced conformational changes in the receptor thus changing the environment around the 

bimane label, as evidenced by the decrease in fluorescence intensity and a rightward shift in 

λmax (Fig. 4a–d). However, such changes were not observed in β2AR occupied by an 

inverse agonist ICI-118,551. Interestingly, the effects of A1, A2 and A13 were enhanced 

(i.e., a further decrease in fluorescence intensity and a rightward shift in emission λmax) 

when combined with full agonists, signifying further stabilization of active conformations 
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(Fig. 4a–c). No significant change in bimane fluorescence was observed with aptamer A16, 

consistent with its ability to recognize an inactive conformation of the receptor (Fig. 4d).

Functional effect of β2AR aptamers

Stimulation of the β2AR system promotes activation of the membrane-associated effector 

enzyme adenylyl cyclase (AC) via the stimulatory G protein subunit, Gαs
40,41. AC catalyzes 

the conversion of ATP to cyclic AMP (cAMP), one of the main second messengers of the 

GPCR signal transduction system. To determine the functional effects of the aptamers’ 

binding to the β2AR, we measured the ability of aptamers to modulate isoproterenol-

stimulated Gαs and adenylyl cyclase activity by measuring the accumulation of cAMP (Fig. 

5). Aptamers A13, A2, and A1 significantly inhibited isoproterenol-stimulated adenylyl 

cyclase activity by 46.1%, 34.7% and 28.3%, respectively (p < 0.01, p < 0.01, and p < 0.05, 

respectively vs. ISO-stimulated β2AR; one way ANOVA). Aptamer A16 on the other hand 

was weaker and did not significantly alter the β2AR-mediated adenylyl cyclase activity. The 

specificity of these inhibitory effects was further confirmed by the observation that the 

control aptamer had no effect on β2AR-mediated adenylyl cyclase activity.

Molecular architecture of β2AR-aptamer complexes

In addition to distinct properties, these functionally active aptamers appear to possess unique 

structural features. Specifically we characterized four aptamers that do not overlap with 

regard to sequence homology (Supplementary Fig. 4a) or predicted secondary structural 

motifs (Supplementary Fig. 5). In order to assess whether the aptamers bind at extracellular 

or intracellular regions of the β2AR, we conducted a competition pull-down binding assay 

utilizing β2AR-specific single domain nanobodies (Nbs) as competitive allosteric 

modulators. Both Nb80 (a G-protein mimetic nanobody) and Nb60 bind at the intracellular 

region around the G-protein binding cavity of the β2AR, recognizing active and inactive 

conformations of the receptor, respectively12,42. The nanobodies were used in excess as 

competitors and the magnitude of competition (or cooperativity) was evaluated with 

corresponding aptamers based on the level of captured β2AR (pre-bound with either 

BI167107 or ICI-118,551). As illustrated in Supplementary Figure 8a, Nb80 strongly 

inhibits the interaction of A1 and A2 with the activated β2AR, consistent with substantial 

overlap between the binding sites of Nb80 and those of aptamers A1 and A2. In contrast, 

Nb80 increases the interaction of activated β2AR with aptamer A13, suggesting a positively 

cooperative effect and minimal overlap between the binding sites of Nb80 and aptamer A13. 

Likewise, Nb60 enhanced the binding of inactive β2AR to aptamer A16, indicating the 

possibility of cooperativity and lack of competition between the two, consistent with the 

presumption that aptamer A16 may be binding at the extracellular region of β2AR 

(Supplementary Fig. 8b).

To gain further insight into the binding epitopes and structural basis of the interactions 

between the aptamers and different β2AR conformations, we next used negative stain 

transmission electron microscopy (EM) and single-particle reconstruction analysis43,44. 

After successfully visualizing the aptamers in complex with the receptor via EM, we further 

improved the visualization and post-imaging analysis alignment, through increasing the size 

of the complex to help us identify whether the aptamers were interacting with the 
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extracellular or intracellular surface of the receptor. Improved EM imaging was achieved by 

affinity purifying samples of β2AR-ligand-aptamer complexes labeled with anti-Flag 

antigen-binding fragment (Fab), derived from a monoclonal antibody that recognizes the 

FLAG epitope located at the extracellular N-terminus of the receptor39 (Supplementary Fig. 

9a,b and online Methods). From the EM two-dimensional class averages, we identified a 

central oval density, as the receptor embedded in the MNG detergent micelles (for receptor 

alone see Supplementary Fig. 9c). Furthermore, in the EM particle averages, the Fab is 

shown to bind exclusively to the extracellular N terminus of the β2AR and serves as a 

landmark to help locate the aptamer binding domains on the receptor (see Supplementary 

Fig. 9d for Fab-β2AR complex and Supplementary Fig. 9e for a representative aptamer-

β2AR complex). By comparing the Fab-β2AR complex class averages with those of 

complexes bound to aptamers, we were able to identify densities corresponding to aptamers 

in complex with receptor (Supplementary Fig. 9f and Fig. 6). As illustrated in the 2D-class 

averages of the β2AR complexes bound to aptamers A1, A2 and A13, the binding locations 

(densities) corresponding to each of the aptamers appear localized on the side opposite to (or 

distant) from the Fab, suggesting that aptamers A1, A2 and A13 bind at the intracellular 

region of the β2AR (Fig. 6a–c). On the other hand, by virtue of its binding on the same side 

as the Fab, A16 appears to interact with the extracellular region of the receptor (Fig. 6d).

DISCUSSION

In recent years within the field of GPCR signaling a large body of work has emerged 

exploring the underlying structural determinants of ligand-receptor interactions associated 

with pathway-specific functionally relevant receptor conformations. Characterizing such 

ligand-selective signaling conformations could serve as the basis for the design of GPCR 

ligands with better efficacy, improved safety profile, and an enhanced therapeutic window. 

Elucidating the structural and mechanistic features of these conformations using currently 

available tools has been challenging, in part due to the inherent flexibility of GPCRs and the 

fact that X-ray crystallography tends to capture thermodynamically stable inactive 

conformations9,15,17,18,45. These challenges have underscored the need for the development 

of conformationally selective allosteric agents that can stabilize distinct active and inactive 

receptor conformations. Although antibody-mediated stabilization of GPCRs or other 

proteins is a formidable advance12,13,46–48, its widespread utility remains limited by 

problems associated with immunogenicity, economic feasibility, and the time-consuming 

nature of immunization and library construction. Due to vast library diversity attainable for 

selections, the nature of chemical compositions of nucleotides, and the unique 3D–

conformations they can attain, RNA aptamers have great potential as valuable conformation-

sensors and pharmacologic agents for GPCRs19–32.

Herein, we describe the development of state-selective RNA aptamers that allosterically 

stabilize different conformations of the β2AR. Our results reveal that the aptamers have 

distinct preferences for binding specific receptor conformations with nanomolar range 

affinities (Fig. 2 and Supplementary Table 1). We utilized a targeted selection method that 

allowed for enrichment of RNA aptamers that selectively bind distinct active and inactive 

receptor conformations. In addition, our approach here also employed NGS and comparative 

bioinformatics analyses to monitor the complexities of selected pools and the dynamics of 

Kahsai et al. Page 8

Nat Chem Biol. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enrichments of unique sequences (via evaluation of fold-enrichment) to derive state-selective 

aptamers (see online Methods). Our analysis, primarily based on fold-enrichment of 

individual RNA clones, is capable of discerning which aptamers were strongly enriched by 

each specific β2AR target. Notably, these aptamer modulators would not have been 

identified by traditional clonal selection strategies that pick the most abundant clones since 

non-specifically binding aptamers could dominate the selected population. Together, the 

aptamers that we isolated demonstrate the effectiveness of the selection strategies and NGS 

analysis applied here in identifying aptamer modulators for the β2AR, which may have been 

obscured using traditional clonal selection strategies.

Selectivity of the aptamers for specific β2AR conformations also correlated with receptor 

ligand efficacy as demonstrated using biochemical, pharmacological and biophysical 

approaches. Of the aptamers, A1, A2, and A13 showed strong conformational selectivity for 

the high-affinity agonist (BI167107)-bound active β2AR conformation, while aptamer A16 

displayed conformational selectivity for the inverse-agonist (ICI-118,551) inactive β2AR 

conformation. Interestingly, while both aptamers A1 and A13 allosterically enhanced 

agonist (isoproterenol) binding affinity and bound the receptor in an agonist dependent 

manner, aptamer A2 appeared to have a unique ligand specificity with preferential binding to 

BI167107, and to a lesser extent, to carvedilol-bound β2AR states. Both BI167107 and 

carvedilol have been shown to act as modest β-arrestin-biased ligands at the β2AR38,39. This 

result may therefore, suggest there is possible overlap between the conformational states 

stabilized by BI167107 and carvedilol, and that aptamer A2 may recognize a unique ligand-

induced, potentially β-arrestin-biased conformation of the β2AR. The influence of aptamers 

on agonist-induced receptor conformational changes was also assessed in a fluorescence 

spectroscopic study using bimane probe on TM612,16. Indeed, three of the aptamers (A1, A2 

and A13) enhanced agonist induced conformational rearrangement of TM6, consistent with 

their ability to stabilize active receptor conformations via a positive cooperative interaction 

between β2AR and the aptamers. Conversely, aptamer A16 had little to no influence on the 

movement of TM6, in particular for the BI167107-bound state of β2AR, consistent with its 

ability to stabilize an inactive conformation of the β2AR.

Stimulation of the β2AR activates heterotrimeric G-proteins and increases the rate of 

guanosine diphosphate/guanosine triphosphate (GDP/GTP) exchange on the Gα subunit to 

mediate the activation of adenylyl cyclase (AC) with subsequent accumulation of 

cAMP40,41. Interestingly, aptamers A1, A2, and A13 significantly inhibit agonist-induced 

cAMP accumulation. It has previously been shown that binding of intracellular-expressed 

antibodies to β2AR inhibits receptor-mediated downstream signaling at the G-protein 

binding site42. We hypothesize that the potential mechanism of inhibition of β2AR-mediated 

AC activity by aptamers (A1, A2 and A13) is likely secondary to their binding at the 

intracellular region of the receptor with resultant steric blockade of G protein binding. The 

lack of significant inhibition of AC activity by aptamer A16 may be attributed to its 

relatively weak binding affinity for the receptor. The recognition of functional activity of 

these aptamers is intriguing with regard to their potential use as pharmacological agents 

targeting GPCRs. Indeed, aptamers have been developed to bind many drug targets and 

constitute potential therapeutic agents as exemplified by the first aptamer-based drug for 
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macular degeneration (pegaptanib sodium) as well as others that have undergone clinical 

trials19–23. Although we only identified ligands that inhibit agonist activity, the diversity of 

RNA libraries suggests it may be possible to identify receptor aptamers with diverse 

functionalities ranging from agonists to positive and negative allosteric modulators.

GPCRs are versatile allosteric machines and their signaling activities can be affected by the 

binding of modulators at distinct sites. Indeed, several allosteric sites have been described 

recently, encompassing regions of the extracellular and intracellular surfaces for GPCRs, 

including the β2AR49,50. Interestingly, none of the antibody-based allosteric modulators 

reported for the β2AR bind at the extracellular region12,42. Our EM analysis43,44 and 

competition studies using β2AR specific nanobodies12,42 revealed the architecture of the 

β2AR-aptamer complexes and the location of the interaction epitopes of the aptamers on the 

surface of the receptor. Notably, using EM the BI167107-bound Fab-β2AR-aptamer 

complexes (A1, A2 or A13) show densities for the aptamers located opposite to the 

reference anti-FLAG Fab, suggesting their binding at the intracellular region of the receptor. 

EM images obtained for ICI-118,551-bound Fab-β2AR-A16 on the other hand suggest that it 

interacts with the extracellular region of the receptor. The EM data is consistent with the 

hypothesis that the aptamers potentially act through engagement via allosteric mechanisms 

involving key structural elements of the allosteric sites located at either the intracellular or 

extracellular regions of the receptor.

In summary, the present study illustrates that aptamers can act as allosteric modulators by 

distinguishing between receptor conformations stabilized by pharmacologically different 

ligands. Our results therefore establish the potential of RNA aptamers to serve as allosteric 

modulators for elucidating the structural and mechanistic aspects underlying GPCR 

activation and signaling. In addition, by virtue of the ability of aptamers to lock receptors in 

biologically relevant conformations of interest, aptamers may also play a role in small-

molecule drug discovery efforts for identifying allosteric modulators against said 

conformations. Furthermore, given their favorable pharmacologic characteristics, relative 

tolerability for progression to the market19–23, and broad library diversity, RNA aptamers 

could represent an attractive class of GPCR ligands. Finally, the general approach used here 

establishes a framework for developing aptamers aimed at a wide range of soluble and 

membrane proteins that undergo function-dependent conformational changes.

ONLINE METHODS

Reagents

Sf9 cell culture media and transfection kits to generate virus stocks were purchased from 

Expression Systems. BI-16710736, synthesized as described previously36, was a generous 

gift from Dr. Xin Chen (Changzhou University, Changzhou, Jiangsu, China). All other 

ligands were purchased from Sigma-Aldrich. Other reagents were of analytical grade 

obtained from various suppliers and used without further purification unless indicated 

otherwise.
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Expression and purification of recombinant proteins

Human β2AR containing an N-terminal FLAG epitope tag, C-terminal 6xHis-tag, and a 

N187E glycosylation mutation was expressed in Sf9 insect cells using the BestBac 

Baculovirus Expression System as described previously4. Briefly, cells were infected with 

β2AR baculovirus at a density of 3 × 106 cells/mL and harvested 67 hours later. Next, cells 

were lysed using a lysis buffer [10 mM Tris, pH 7.4, benzamidine (10 mg/mL), leupeptin 

(10 mg/mL)] and subsequently solubilized in an n-Dodecyl-β-D-maltoside (DDM; 

Anatrace) containing solubilization buffer [1.0% DDM, 500 mM NaCl, 20 mM Tris, pH 7.4, 

benzamidine (10 mg/mL), leupeptin (10 mg/mL), PMSF (200 µmol)]. Functional β2AR was 

obtained using a three-step affinity-chromatographic procedure involving a first M1 anti-

FLAG-antibody affinity column, followed by alprenolol-ligand column and a second M1 

anti-FLAG antibody-affinity column4. The alprenolol-ligand affinity purification step 

selectively isolates functional receptors from those non-functional ones that are incapable of 

binding radioligand 3H-dihydroalprenolol. In the second anti-FLAG affinity 

chromatography, DDM was exchanged to MNG (Anatrace), for increased stability, by a 

gradual gradient of DDM:MNG buffer containing 0.001% (w/v) cholesterol hemisuccinate 

(CHS). FLAG-tagged β2AR was incorporated into high-density lipoprotein (HDL) particles 

using membrane scaffold protein 1, a derivative of apolipoprotein A-I51, as previously 

described. Briefly, FLAG-tagged β2AR was incubated with a 50-fold molar-excess of MSP1, 

8 mM POPC:POPG (3:2 molar ratio; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 

1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-[1’-rac-glycerol]) lipids (Avanti Polar Lipids) 

for 1 hour at 4 °C. After removal of detergent using BioBeads SM-2 (Bio-Rad) overnight at 

4 °C, receptor-containing HDL particles were purified by M1 anti-FLAG antibody-affinity 

column followed by size-exclusion chromatography. Receptors in HDL particles are 

generally stable and suitable for performing radioligand-binding experiments. Similarly as 

for the β2AR, FLAG-tagged (N-terminus) and hexahistidine-tagged (C-terminus) human 

angiotensin-receptor subtype 1a (AT1aR) with T4-lysozyme insertion in the third-

intracellular loop (between Y229 and E230) was expressed in baculovirus-infected Sf9 cells 

and solubilized in 1% (w/v) DDM. Receptor (in presence of telmisartan) was purified by Ni-

NTA-resin, followed by M1 Anti-FLAG antibody-affinity chromatography. Expression and 

purification of His-tagged nanobodies was performed as described previously42.

DNA templates, synthesis of 2′-F-pyrimidine RNA transcripts, and biotinylated RNA 
aptamers

The starting double-stranded DNA (dsDNA) library was composed of individual sequences 

of 107 nucleotides long, including flanking constant regions and a variable region containing 

40 nucleotides as described by the following example: 5′-

GGGGGAATTCTAATACGACTCACTATAGGGAGGACGATGCGG-N40-

CAGACGACTCGCTGAGGATCCGAGA-3′. The final sequence complexity of our dsDNA 

library was ~1015 unique sequences. A single-stranded DNA template library was converted 

to the dsDNA while introducing the T7 promoter (underlined sequence) by annealing with 

Klenow exo- (NEB), library 3′ template oligo, 5′-

TCTCGGATCCTCAGCGAGTCGTCTG-N40-CCGCATCGTCCTCCCTA-3′ and the 5′-

primer oligonucleotide, 5′-

GGGGGAATTCTAATACGACTCACTATAGGGAGGACGATGCGG-3′. The resulting 
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library was later PCR amplified using Taq DNA polymerase (Life Technologies), 5′-primer, 

and the 3′-primer, 5′- TCTCGGATCCTCAGCGAGTCGTC-3′. A combinatorial library of 

chemically modified 80-nucleotide RNA (~1015 unique sequences) was created by 

transcription of the randomized DNA oligonucleotide using Y639F mutant T7 RNA 

polymerase that allows incorporation of 2’-fluoro modified pyrimidines. Double-stranded 

DNAs representing RNA pools or individual aptamers were directly used for overnight in 
vitro transcription at 37 °C in transcription buffer containing a mutant T7 RNA polymerase 

Y639F, 2′-hydroxyl normal purine nucleotides (ATP and GTP each at 1 mM; Roche), and 

2′-deoxy-2′-fluoro pyrimidine nucleotides (2′-Fluoro-modified CTP and UTP, each at 3 

mM; Trilink). All transcription reactions involving libraries or individual RNAs were 

performed using 2′-fluoro-CTP and 2′-fluoro-UTP, to generate RNAs that were resistant to 

extracellular RNases52. RNA transcription reactions were treated with DNase I (Roche) to 

remove dsDNA template, phenol-chloroform extracted, and concentrated using centricon 10 

in TE buffer [10 mM Tris, pH 7.4, 0.1 mM EDTA]. The concentrated RNAs were purified 

with polyacrylamide gel electrophoresis, 7 M urea, 0.5x Tris borate EDTA (TBE) gel. The 

RNA aptamers were then visualized by UV shadowing, excised from the gel, eluted in 5 mL 

of TE buffer at 37 °C for 3 hr. 5′-end biotinylated RNA aptamers were generated similarly, 

by performing in vitro 2′-F RNA transcriptions with 5′-Biotin-G-Monophosphate at 3 mM 

(GMP; TriLink)52.

Aptamer cloning and sequencing

Individual dsDNA forms of the RNAs were prepared by annealing, amplifying using PCR, 

and sub-cloning them as described above. The template DNA oligonucleotide for each 

aptamer was purchased from Integrated DNA Technologies. The starting dsDNA sequences 

(107 base-pair-long) of aptamers were generated by annealing template oligonucleotide 

(specific for each aptamer), 5′-TCTCGGATCCTCAGCGAGTCGTCTG-N40-

CCGCATCGTCCTCCCTA-3′ and the 5′- primer oligonucleotide, 5′-

GGGGGAATTCTAATACGACTCACTATAGGGAGGACGATGCGG-3′. Each annealed 

oligonucleotide was filled in with Klenow exo- and purified. The dsDNA products of desired 

aptamers or aptamer pools were cloned into pCR 2.1-TOPO vector cloning vector (Life 

Technologies), transformed into E. coli and sequenced (Eton Bioscience).

In vitro selection of aptamers

RNA aptamers were generated using a Systematic Evolution of Ligands by Exponential 

Enrichment (SELEX)31 procedure against purified β2AR that was either unliganded or 

BI167107-bound. The selection library consisted of 80 nucleotide-long RNA 

oligonucleotides with a central random region of 40 nucleotides, flanked by constant regions 

of a 15-base 5′-primer sequence and a 25-base 3′-primer sequence. The RNA library in 

selection buffer (20 mM HEPES, pH 7.4, 50 mM NaCl, 2 mM MgCl2, 2 mM CaCl2) was 

heat denatured at 65 °C, slowly cooled to room temperature (RT), and supplemented with 

MNG and CHS at final concentrations of 0.01% (w/v) and 0.001% (w/v), respectively. The 

RNA library solution was mixed with the nitrocellulose matrix, FLAG-peptide (0.5 µM), 

with or without BI167107, for selection against β2AR or β2AR-BI167107, respectively. The 

mixtures were incubated for 30 min at 25 °C, prior to every round of selection with 

unliganded or β2AR-BI167107, to remove nonspecific target-binding species. In the 

Kahsai et al. Page 12

Nat Chem Biol. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negative-selection step during the fifth round, the RNA library was incubated with a non-

target receptor (50 nM of AT1aR bound to 10 µM telmisartan). The pre-cleared RNA 

libraries (2.25 nmole) were recovered and then incubated with respective target protein, 

either unliganded or BI167107-bound β2AR (1.125 µM; RNA/receptor ratio 5/1) for 30 min 

at 25 °C in 400 µL selection buffer on a rotating wheel. Starting from round 2, yeast tRNA 

(20 ng/µL) was used in the selection mixture to eliminate nonspecific binding. After 

incubation, the selection mixtures were passed through nitrocellulose filters to capture 

β2AR-RNA complexes and remove supernatant containing unbound aptamers. Bound RNA 

molecules were then incubated in phenol:chloroform:isoamyl alcohol for 30 minutes at RT, 

chloroform extracted, ethanol precipitated, and resuspended in TE buffer (10 mM Tris pH 

7.4, and 0.1mM EDTA) to extract the RNAs from the membrane. One-quarter of the 

extracted RNA was reverse transcribed (RT) with 3′ primer, dNTPs, and AMV Reverse 

Transcriptase (Roche). The RT reaction was PCR amplified with the 5′ and 3′ primers 

described above using platinum Taq polymerase and standard PCR conditions. The PCR 

reactions were desalted and excess reagents were removed using Centricon 30 (Millipore) 

and washed with TE buffer. The dsDNA products were then used to generate RNA pools for 

the next round using in vitro transcription as described above. Nine rounds of selection were 

performed, and selection pressure was increased throughout the process as follows: i) Ionic 

strength (concentration of NaCl) was 50 mM for the rounds1 to 3, 75 mM for the rounds 4 to 

6, and 100 mM for the rounds 7 to 9; ii) The amount (nmoles) of RNA library input was 

decreased to 1, 0.5 and 0.25 in rounds 2, 5, and 8, respectively and the aptamer:β2AR ratio 

was 5:1 for the rounds 1 to 4, 7:1 for the rounds 5 to 7, 10:1 for the rounds 8 and 9. Filter-

binding assay was used to evaluate the binding affinity of the individual selected pools (see 

below).

High-throughput next-generation sequencing (NGS) of RNA aptamer pools

To determine the sequences enriched through in vitro selection, we performed high-

throughput next-generation sequencing (NGS) using HiSeq 2000 (Illumina). Each RNA pool 

was reverse transcribed using AMV Reverse Transcriptase (Roche), by substituting the 3′-

primer with the appropriate NGS 3′-primer that has 6-bases barcode and NKKNKK region 

(Supplementary Fig. 3). The cDNA for each selection round was amplified by PCR using 

Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Scientific) with 5’ and 3’ 

primers containing barcode (6-base Illumina-compatible unique DNA barcodes for each 

pool), NKKNKK region, and 12-base complement sequences of the original constant 

regions of dsDNA PCR selection primers. The NKKNKK sequence facilitates cluster 

identification and ensures generation of high quality reads during Illumina sequencing (a 

common remedy for Illumina amplicon low diversity issue) while the 6-base pair barcode 

sequence, unique for each pools, helps identify each pool during multiplex sequencing. The 

resulting barcoded PCR products were purified with QIAEX II Gel Extraction Kit and 

QIAquick PCR purification Kit protocols. The DNA fragment libraries (94-bp; Illumina-

compatible dsDNA fragments) were further purified and concentrated using phenol-

chloroform and ethanol-precipitation. The products were then ligated with the adapters 

(which included end-repair, A-tailing and paired-end adapter ligation), amplified by cluster 

generation and processed for NGS according the protocols provided by Illumina, Inc. Final 

library sizes were determined using the Agilent Bioanalyzer and quantified using the Qubit 
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(Life Technologies). Indexed DNA samples were pooled together with equal molar-ratios 

and used for multiplex sequencing. High-throughput sequencing from both ends of the 

library inserts (i.e., paired end sequencing) was performed by the sequencing core facility at 

Duke Center for Genomic and Computational Biology, Duke University.

Bioinformatics and in silico methods for sequence analysis

Raw paired-end reads from each pool were processed to: 1) remove low quality paired-end 

reads and adapters using CutAdapt (http://journal.embnet.org/index.php/embnetjournal/

article/view/200) 2) the first 6 random sequence that was designed to remedy amplicon low 

diversity issue was also trimmed similarly 3) demultiplex and identify each pool of 

multiplex pooled sample using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/

links.html). A custom Perl script was developed in-house for downstream data processing 

and analysis that 1) extracts the sequence of interests (random regions of interests) by 

removing the constant sequences that contain barcodes and PCR primers at the 5’ and 3’ 

regions, 2) clusters the resulting sequence (individual clonal sequences) based on sequence 

identity to generate a unique set of the sequences, 3) calculates the frequency and percentage 

of frequency of each unique sequence, and 4) transcribes the nucleotide sequences of the 

individual sequences into RNA sequences for downstream analysis. We used the frequency 

and percentage of frequency of each unique sequence in individual selection pools to 

compute enrichment-ratios between two rounds. Fold-enrichment of unique sequences was 

calculated by dividing percent frequency of the later round by that of the earlier round. We 

used fold-enrichment to account for the aptamers that might have had a low copy number, 

but still had relatively high numbers in the next round of selection. Secondary to this reason, 

we think the use of enrichment-ratios of individual sequences rather than copy number 

provides higher resolution characterization of pools and dynamics of enrichment of unique 

sequences, and thus, has significant advantage in the end in ensuring efficient and successful 

isolation of target specific binders. RNA sequences were ranked according to their fold-

enrichment across successive rounds and their enrichment dynamics were evaluated. To help 

us narrow candidate list that we could synthesize and test, next, we performed further 

bioinformatics analyses for the top ranking aptamers using combinations of tools including 

Microsoft Access, Microsoft Excel, GraphPad Prism, MacVector (MacVector, Inc.), Clustal 

Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/), and RNA folding algorithm Mfold 
(http://unafold.rna.albany.edu/?q=mfold). The analyses include primary sequence alignments 

and comparisons between them to pick the representative of each cluster; analysis of the 

relative structural stability of individual sequences from minimal energies computed from 

the secondary structure predictions; scatter plot analysis of fold-enrichments between the 

two selection types; and rank-order copy numbers (e.g., at R6 and R9 selected pools). Based 

on these analyses we selected 20 top candidate aptamers to be cloned and synthesized as a 

5′-end biotin moiety or radio (32P)-labeled RNA aptamer versions, to subsequently evaluate 

their binding with the selection targets.

Radiolabeling of RNA aptamers

RNA aptamers were radioactively labeled by 32P at the 5′-end, initially by removing the 5′-

terminal phosphate group with bacterial alkaline phosphatase (Life Technologies) at 65 °C 

for 1 hr and then purifying them by phenol/chloroform extraction followed by ethanol 
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precipitation. 3 pmol of each dephosphorylated aptamer was incubated with 32P-labeled γ-

ATP and T4-polynucleotide kinase (NEB) at 37 °C for 45-minute. Radiolabeled aptamers 

were finally purified using G25-spin column (GE Healthcare) following the manufacturer’s 

instructions. Incorporated radioactivity was quantified using a scintillation isotope counter.

Filter binding assay

The binding affinities of the different RNA pools or individual aptamers were determined by 

nitrocellulose-membrane filtration-based saturation binding assay. Constant amounts of 5′-

[32P]-radiolabelled RNA aptamers (at 2000 CPM/µL final) were incubated with increasing 

concentrations of the β2AR or β2AR:BI (12 two-fold serial dilutions starting from 2 µM) in 

a buffer containing 20 mM HEPES, pH 7, 50 mM NaCl, 2 mM MgCl2, 2 mM CaCl2, 0.01% 

MNG and 0.001% CHS for 30 minutes at RT. The final reaction volume was 20 µL. The 

β2AR-RNA aptamer mixtures were then passed through a stack of membranes on a vacuum-

manifold consisting of a Protran-nitrocellulose that captures RNA-protein complexes and 

GeneScreen Plus® nylon membrane that captures unbound RNA molecules. After washing 

twice with 100 µL binding buffer the membranes were air dried for 5 minutes, exposed to 

Phosphoimager screens (1 hr), and scanned using a Molecular Typhoon Phosphoimager (GE 

Healthcare). Finally, the fraction of RNA-bound was calculated, adjusted for background 

and graphed using GraphPad Prism. The equilibrium dissociation constant (Kd) for the RNA 

aptamers were obtained by fitting the fraction of nitrocellulose-bound RNA to the following 

equation: Y = (Bmax*X) / (X + Kd), where Bmax is the maximum value of Y (when X = 

∞); and Kd, the dissociation constant, is the value of X when Y = Bmax /2.

Pull-down experiments

In order to measure the binding activity of aptamers to the β2AR, we pulled down receptors 

using NeutrAvidin-beads (Pierce) by immobilizing biotinylated aptamers. Beads were first 

incubated in blocking buffer [20 mM HEPES, pH 7.4, 100 mM NaCl, 2 mM MgCl2, 2 mM 

CaCl2, 0.1% BSA] at 4°C to block non-specific binding sites. Biotinylated RNA aptamers in 

HNKMC buffer [20 mM HEPES, pH 7, 25 mM NaCl, 5 mM KCl, 5 mM MgCl2, 2 mM 

CaCl2] were heat denatured at 65 °C for 5 min and cooled down to RT for proper re-folding 

into their native conformations. Biotinylated RNA aptamers, each at 2.5 µM concentration, 

were then immobilized onto 25 µL NeutrAvidin beads in HNKMC buffer with 0.01% MNG 

and 0.001% CHS for 20 min at RT with rotation. The bead-aptamer mixtures were 

subsequently incubated with β2AR (final concentration at 250 nM) that has a carrier solvent 

or indicated ligand (final concentration at 25 µM) for 1 hr at RT in a 125-µL total reaction 

volume. For nanobody competition studies, pull-down experiments were performed as 

described here with minor adjustments. Intracellularly acting β2AR-specific nanobodies 

(Nb80 and Nb60, a positive and negative allosteric modulators, respectively) were used to 

assess cooperativity and competition with the aptamers. 10 ìM of nanobody (Nb80 or Nb60) 

or buffer alone was mixed with receptor (pre-reacted with carrier solvent, ICI-118,551 or 

BI167107) and added to bead-aptamer mixtures. In both cases after incubation, the receptor 

complexes (with or without aptamer and/or nanobody) were centrifuged and unbound 

mixtures were washed three times. Bound complexes were eluted with 37.5 µL buffer 

containing 20 mM HEPES, pH 7, 100 mM NaCl, 250 mM DTT, 500 µM Biotin and 50 mM 

EDTA for 20 min at RT. 12.5 µL of 4x SDS sample buffer was added to each eluted sample 
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prior to performing a Western blotting using anti-β2AR antibody (sc-569; Santa Cruz), and 

ethidium bromide (EtBr) staining for RNAs on a 10% TBE gel (Life Technologies).

Binding affinity measurements by biolayer interferometry (BLI)

The kinetics of interactions of aptamers (A1, A2, A13, or A16) with the BI167107 or 

ICI-118,551-bound β2AR were measured by BLI on a ForteBio’s Octet RED96 System. 

Prior to immobilization the biotinylated aptamers were incubated at 65°C for 5 min and then 

cooled to RT. Biotinylated aptamers were then immobilized onto Streptavidin (SA) 

biosensor tips (FortéBio) in a buffer composed of 20 mM HEPES, pH 7, 25 mM NaCl, 5 

mM KCl, 5 mM MgCl2, and 2 mM CaCl2 by dipping the SA sensors into wells containing 

biotinylated aptamers for 600 seconds. The loading levels of aptamers were kept between 1 

and 1.2 nm in screening assays and between 0.2 and 0.35 nm for titrations. The aptamer-

loaded sensors were washed with buffer for 60 seconds. After obtaining baseline in the 

buffer that contained 0.01% MNG and 0.001% CHS, the association of BI167107 or 

ICI-118,551-bound β2AR (at a 1:20 receptor to ligand ratio) at varying concentrations was 

monitored for 300 seconds, followed by dissociation into the buffer for 300 seconds. 

Aptamer-free blank SA sensors were used in parallel to record signals due to non-specific 

interactions, which were subtracted out to obtain specific binding data. Signal from the 

interaction between receptor-free buffer with 0.01 % MNG and sensors was used to double 

reference to remove drifts in specific binding data. The association and dissociation rate 

constants (kon and koff) and the dissociation constant (Kd) values were obtained by fitting the 

aptamer specific binding data globally to a 1:1 Langmuir binding model using FortéBio’s 

Data Analysis software 7.1.0.36 (ForteBio) and/ or BiaEval 4.1 programs.

Competitive radioligand binding experiments

Competition radioligand binding assays were performed with purified β2AR reconstituted 

into HDL particles (nanodiscs) and radioiodinated cyanopindolol ([125I]-CYP (2200 Ci/

mmol; PerkinElmer). Binding experiments (150 µL) contained 60 pM [125I]-CYP, a serial 

dilution of competitor (isoproterenol), aptamers (2.5 µM), and β2AR in HDL (~ 0.6 ng) 

diluted in assay buffer (20 mM HEPES pH 7, 20 mM NaCl, 5 mM KCl, 10 mM MgCl2, 2 

mM CaCl2, 0.05% BSA, 1mM L-ascorbic acid). Aptamers were first heat denatured at 65 °C 

for 5 min and then cooled at RT. After a 90 min incubation at RT, binding assays were 

terminated by vacuum filtration through GF/B glass-fiber filters treated with 0.3% 

polyethylenimine and washed three time with cold buffer using a harvester (Brandel). Total 

binding was measured in the absence of competitor and nonspecific binding was determined 

in the presence of 10 µM propranolol. Radioligand binding was measured in a Packard 

Cobra Quantum gamma counter (Packard). All results are from at least three independent 

experiments. Fifty percent inhibitory concentrations (IC50) were determined by fitting the 

data from the competition studies to nonlinear regression analysis (one-site competition 

model) using Prism (GraphPad Software).

Bimane fluorescence spectroscopy

β2AR (minimal cysteine version with mutations: C77V, C327S, C378A, and C406A) 

purified as described above was labeled with monobromobimane (mBBr) (Life 

Technologies) at Cys265 on TM6. Labeling was performed at a 1:2.5 receptor-mBBr molar 

Kahsai et al. Page 16

Nat Chem Biol. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ratio in buffer (20 mM HEPES pH 7.4, 100 mM NaCl, 2 mM MgCl2, 2mM CaCl2, 0.01% 

MNG and 0.001% CHS) overnight on ice in the dark. Labeled receptor was purified by gel 

filtration. RNA aptamers were prepared in HNKMC buffer [20 mM HEPES, pH 7, 25 mM 

NaCl, 5 mM KCl, 5 mM MgCl2, 2 mM CaCl2] and heat denatured at 65 °C for 5 min and 

then cooled down at RT. To determine the effect of aptamers, spectra were taken after 30 

min incubation of bimane-labeled receptor (2 µM) at RT with or without isoproterenol (ISO; 

200 µM), BI167107 (BI; 200 µM), ICI 118551 (ICI; 200 µM) or aptamers (4 µM), or a 

combination of a ligand and an aptamer. Fluorescence spectra were read in a SpectraMax 

M5 plate reader (Molecular Devices) using an excitation wavelength set at 370 nm and 

emission range from 430 to 600 nm in 1-nm increments. Spectra were corrected for 

background intensity from buffer, ligands and aptamers. Fluorescence emission curves fit to 

normal distribution were drawn using Prism.

Adenylyl cyclase (AC) activity assay

The effect of aptamers on β2AR-dependent stimulation of AC activity was assessed by 3’, 

5’-cyclic AMP (cAMP) accumulation on HEK-293 membrane homogenates stably 

expressing β2AR53 (a clone developed in the laboratory that has an expression level of ~ 2 

pmoles/mg), by measuring the conversion of [α-32P]-ATP to [α-32P]-cAMP as previously 

described54. Typical assay setup contained a final total volume of 100-µL, performed in 3-

steps. First, a premix sample (with or without ligand) of 60 µL consisting of final 

concentrations of 50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 1 mM ATP, 1 µM GTP, 1 mM 

cAMP, 2 µCi [α-32P]-ATP, ATP-regenerating system [20 mM creatine phosphate and 13 

units/100 µL of creatine-phosphokinase], and phosphodiesterase inhibitors [250 µM of Ro 

20–1724 and 100 µM of 3-isobutyl-1-methylxanthine] with or without 100 nM isoproterenol 

were mixed. Second, HEK-293 membrane homogenates (150 µg) were incubated with 

individual aptamers (4 µM; heat denatured and refolded as described above) or assay buffer 

alone in a total volume of 40 µL for 20 min on ice. Then, to measure AC activity in response 

to isoproterenol (100 nM) or isoproterenol (100 nM) in combination with aptamers (4 µM), 

the premix samples (60 µL) and membrane mixtures (40 µL) were incubated at 37 °C for 10 

min. Reactions were terminated with 0.8 mL cold trichloroacetic acid (6.25% wt/vol); and 

100 µL of [3H]-cAMP (~25,000 cpm) was added as a recovery marker. Samples were 

pelleted by centrifugation at 1,500 × g for 20 min at 4°C. The [α-32P]-cAMP formed was 

then isolated from the remaining ATP by applying the 1 mL reaction mixture to a sequential 

chromatography using a Dowex gel column followed by filtration on an aluminum oxide 

column and elution with 4 mL of 0.1 M imidazole, pH 7.5. The samples were counted for 

both 3H and 32P, and the counts were converted to AC activity as picomole of cAMP/mg of 

protein/min as described previously54.

Specimen preparation and EM imaging of negative-stained samples

To prepare for EM visualization of the β2AR-aptamer complexes, affinity-purification using 

biotin/NeutrAvidin system was employed, as described above, for pull-down assays. An 

anti-FLAG Fab was developed to specifically label the FLAG-tagged β2AR at its 

extracellular N-terminus. This Fab was derived from a monoclonal mouse anti-FLAG M1 

IgG that recognizes the FLAG-epitope was produced using hybridoma technology for 

antibody production43. The anti-FLAG Fab was isolated by digestion of the monoclonal 
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mouse anti-FLAG M1 IgG on an immobilized-papain protease resin and followed by 

purification on a Protein-A column (Pierce)43. The β2AR and aptamer complexes 

(assembled as 10 µM and 20 µM in 125 µL volume, respectively) were formed in a buffer 

composed of 20 mM HEPES, pH 7, 25 mM NaCl, 5 mM KCl, 5 mM MgCl2, 2mM CaCl2, 

0.01% MNG, 0.001% CHS and 10 µL ligand. β2AR-aptamer complexes were eluted in a 

buffer that has 4 mM biotin and then prepared for EM using conventional negative-staining 

protocols as described previously44. Specimens were imaged at RT with a FEI Tecnai G2 

Twin electron microscope operated at 120 kV using low-dose procedures. Images were 

recorded at a magnification of ×65,200 and a defocus value of ~1.5 µm on an Eagle 2K CCD 

camera.

Two-dimensional classification

Two-dimensional EM reference-free alignment and classification of particle projections 

were performed using ISAC44. Particles were both automatically and manually excised 

using Boxer (part of the EMAN 2.1 software suite)44. Over 10k 0° particle projections of 

either β2AR alone, β2AR-aptamer (A1, A2, A13 or A16), Fab-β2AR, or Fab-β2AR-aptamer 

(A1, A2, A13 or A16), were subjected to ISAC, producing at least 50 classes. Given the 

challenge of observing aptamers via EM due to their small size, our goal was to identify the 

particle averages, which allowed visualization of the β2AR-aptamer interaction. 

Approximately 5–10% of the particle averages demonstrated β2AR-aptamer interaction. To 

determine β2AR-aptamer conformations, each class average was designated as ‘receptor 

alone’, ‘receptor-aptamer’ or ‘unassigned’ and the number of projections resulting in 

‘receptor-aptamer’ complex formation were utilized (relative to Fab-tag) to help identify 

extracellular versus intracellular interactions.

Statistical analysis

Statistical analysis and curve fitting were done using Prism 6 (GraphPad Software). For 

statistical comparison, one-way analysis of variance (ANOVA) with p-values of < 0.05 

considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation of conformation-specific RNA aptamers against the β2AR
(a) Schematic overview of the selection strategy, NGS, bioinformatics analysis, and 

characterization of candidate aptamers. Ribbon diagram representation for selection against 

inactive β2AR (colored in blue; PDB: 2RH1) or active β2AR bound to high affinity agonist 

BI167107 (colored in red; PDB: 3SN6). MNG detergent micelles are represented in gray. 

Encircled orange areas show potential binding regions for aptamers to different β2AR 

conformations. (b) Scatter plot from NGS analysis, comparing fold enrichment-ratios (R4 to 

R9) for the top 20-aptamer sequences from selection on unliganded β2AR (x-axis) versus 
BI167107-bound β2AR (y-axis). Each point in the plot represents a unique aptamer (the top 

seven candidate binders are color-coded in red, blue, or purple) according to their 

enrichment and selectivity to a selection target. (c) Bar graph shows top seven aptamers and 

their capacity to bind unliganded β2AR or BI167107-bound β2AR as assessed by pull-down 
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assay. Boxed bars denote the four aptamers, selected for further characterization. Data 

shown represent the mean ± s.e.m. (*P < 0.05; **P < 0.01; ***P < 0.001) of three 

independent experiments, analyzed by one-way ANOVA followed by a Fisher’s LSD post-

test.
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Figure 2. Aptamers distinguish between inactive and active conformations of the β2AR
Binding kinetic profiles for the interactions of four biotinylated aptamers with BI167107-

bound (active) β2AR or ICI-118,551-bound (inactive) β2AR as analyzed using biolayer 

interferometry (BLI). (a–d) Representative sensorgrams for the interactions of four 

biotinylated aptamers with BI167107-bound β2AR (left panels) or ICI-118,551-bound β2AR 

(right panels): A1 (a), A2 (b), A13 (c), and A16 (d). Data was globally fit to 1:1 binding 

model as described in methods. Kd (dissociation constant) is shown as the ratio of koff 

(dissociation) to kon (association) rate constants. Each Kd value represents the mean affinity 

Kahsai et al. Page 24

Nat Chem Biol. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



values ± s.e.m. of three independent experiments. Blue, gray, green, and light blue curves 

represent the measured responses for each tested concentration of β2AR (BI167107 or 

ICI-118,551-bound β2AR). Whereas overlay the curves in red show the global fitting results 

of the binding data.
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Figure 3. Selectivity of aptamers for specific β2AR conformations correlates with receptor ligand 
efficacy or ligand specificity
(a) Dose-response curves for the competition of the radioiodinated antagonist cyanopindolol 

([125I]-CYP) binding with isoproterenol in β2AR reconstituted within HDL particles in the 

presence or absence of aptamers (A1, A2, A13, A16 or CNT-Apt). The ordinates represent 

the specific binding of 60 pmol/L [125I]-CYP in the presence of different concentrations of 

ISO. Curves were obtained from three independent experiments. Error bars represent 

standard errors. (b–e) Western blotting analyses from binding experiments using specified 

biotinylated aptamers (A1, A2, A13 or A16) interacting with β2AR in the absence or 
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presence of various ligands. Agonists are shown (bars, royal blue) and antagonists (bars, 

cyan). Structures and functional properties of the nine β-adrenoceptor ligands are shown in 

Supplementary Figure 6. Binding of four aptamers to various forms of β2AR: A1 (b) and 

A13 (d) preference for agonist-bound β2AR; A2 (c) preference for ligand-specific form of 

β2AR; and A16 (e) preference for antagonist-bound β2AR. Aptamer input is indicated by 

ethidium bromide staining of the eluted RNA. Data correspond to the mean ± standard error 

of at least three independent experiments.
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Figure 4. Influence of aptamers on conformational changes conferred by ligands
(a–d) Bimane fluorescence quenching measurement shows that aptamers A1, A2, and A13 

stabilize active forms of β2AR, while aptamer A16 stabilizes an inactive conformation. 

Bimane fluorescence quenching measurement detects conformational changes of the β2AR 

via movement of a bimane probe on TM6 (at C265) upon the binding of agonists, (BI167107 

[BI] or isoproterenol [ISO]) and/or aptamer: A1 (a), A2 (b), A13 (c) or A16 (d). 

Fluorescence emission spectra showing ligand-induced conformational changes of bimane-

labeled β2AR in the absence (black dashed line) or presence of full agonist (ISO, blue 

dashed line, or BI, red dashed line), inverse agonist ICI-118,551 (ICI, green dashed line), 

aptamer A1, A2, A13, or A16 (black solid line), or a combination of aptamer (A1, A2, A13, 

or A16) with ISO (blue solid line), BI (red solid line), or ICI (green solid line).
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Figure 5. Functional effect of aptamers on β2AR–mediated Gαs and AC activation
β2AR-dependent stimulation of AC activity and accumulation of cAMP was measured in 

HEK-293 membrane homogenates stably expressing β2AR (expression level: ~2.5 

pmoles/mg) in the presence of 100 nM of isoproterenol (ISO) or combination of 100 nM 

ISO with aptamer (A1, A2, A13, A16 or control aptamer). Data represents the means ± 

s.e.m. of at least four independent experiments. Asterisks in the bar graphs denote 

significant differences (*P < 0.05; **P < 0.01) by one-way ANOVA (with Tukey’s multiple 

comparisons test) from results for AC activity performed with control aptamer.
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Figure 6. EM analysis and molecular architecture of β2AR–aptamer complexes
(a–d) EM characterization of purified β2AR-aptamer-Fab complexes. Shown on the left side 

of each panel are two-dimensional (2D) particle class average particles of the β2AR–

aptamer-Fab complexes. Scale bar is 10 nm. The left side of each panel shows 2D particle 

averages of anti-FLAG Fab labeled β2AR in complex with aptamer A1 (a), A2 (b), A13 (c) 

or A16 (d). The right side of each panel shows a cartoon representation of the class average; 

the various components in the 2D–image maps (β2AR in red; detergent micelle labeled with 

“m” in light-gray; anti-FLAG Fab antibody in dark-red; the aptamers in lime-green [A1], 

medium-purple [A2], pink [A13] and gray [A16]).
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