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Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface

of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its

biological functions are involved in many aspects of life processes, including mitosis,

autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as

intracellular lipid and protein transport, microtubule formation and assembly, lysosome

function maintenance, and glycosylation modification. Mutation inactivation or loss of

expression of GM130 has been detected in patients with different diseases. GM130

plays an important role in the development of the nervous system, but the studies on

it are limited. This article reviewed the current research progress of GM130 in nervous

system diseases. It summarized the physiological functions of GM130 in the occurrence

and development of Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic

lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE),

and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system

disease detection and treatment.
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INTRODUCTION

As a highly dynamic organelle, Golgi apparatus (GA) acts importantly in regulating cell
homeostasis. Many diseases related to endoplasmic reticulum (ER)-to-Golgi or Golgi internal
transport, including virus infection, cancer, ischemic stress, various nervous system diseases,
alcoholic liver injury, and so on, show serious dysfunction of Golgi structure and function (1–5).

Golgi matrix protein 130 (GM130) is the first reportedmatrix protein that regulates the structure
of GA (6). It was first identified in the screening of novel GA-associated proteins in 1995 (6). It is
encoded by the GOLGA2 gene and is one of the most studied Golgin proteins so far. GM130 is
a Golgi-shaping protein, tightly bound to Golgi membranes. Maintaining the advanced structure
of GA is the most important function of GM130. In addition, it plays a key role in fusion between
Golgi membranes and transport vesicles originating from ER (7), spindle assembly and cell division
(8), nucleation of microtubules on the Golgi (9), as well as regulation of the compartmental
organization in dendritic Golgi outposts (10).

Mutation inactivation or loss of expression of GM130 has been detected in patients with
different diseases. GM130 expression is lost in patients with colorectal cancer (11) and breast cancer
(11–13). However, the high expression of GM130 predicted shorter survival in patients with gastric
cancer (14). Diacylglycerol acyltransferase I (DGAT1) can inhibit prostate cancer by regulating
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the amount of microtubule-organizing center (MTOC) and
GM130 and damaging microtubule integrity (15). The
appearance of high mannose N-glycans on cell surface and
the Golgi localization of α-mannosidase 1A at GM130-
Golgi Reassembly and Stacking Protein 65 (GRASP65) may
be the markers of malignant prostate cancer cells (16). In
addition, damaging GM130-GRASP65 binding leads to the
degradation of GM130, resulting in GA fragmentation, and
leading to acute pancreatitis in mice (17). In cells lacking α-N-
acetylglucosaminidase (NAGLU), GM130 expression increased,
Golgi structure expanded and elongated, and abnormal lysosome
accumulated, while inhibiting the expression of GM130 could
restore the pathological phenotype lacking NAGLU (18). GM130
and mammalian GA play key roles in controlling the secretion of
surfactant proteins in pulmonary epithelial cells (19). Moreover,
the knockout of GM130 in the nervous system could lead to
progressive death of Purkinje cells in the cerebellum. The mice
showed obvious dyskinesia, decreased motor balance ability,
and unstable standing. In the tail suspension test, the mice
would rotate violently, and then the hook reflex occurred. Some
mice showed symptoms similar to cerebellar ataxia. In severe
cases, they would have paralysis symptoms, and these symptoms
had degenerative characteristics (20). In zebrafish, inactivation
caused by GM130 mutation resulted in severe skeletal muscle
dysgenesis and progressive microcephaly (MCPH). The patients
with the same GM130 homozygous mutation showed MCPH,
myofibrillar atrophy, hypotonia, and growth retardation, and all
symptoms showed obvious degeneration (21).

GM130 acts critically in the development of nervous system,
but the studies on it are limited. In this paper, we reviewed
the research of GM130 in nervous system diseases such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), MCPH, sepsis associated encephalopathy
(SAE), and Ataxia, aiming to provide a reference for the
further study of GM130 in nervous system disease detection
and treatment.

THE STRUCTURE OF GM130

GM130 is tightly bound to Golgi membrane, located on the
cis surface of GA, and is part of the cis-Golgi matrix (6).
According to the primary amino acid sequence, Nakamura
et al. (6) predicted that more than 60% of the entire GM130
molecule contains coiled-coil structures and possibly exceed 90%,
through the method of Lupas et al. (22). They are located in
the intermediate region of GM130 molecules, allowing GM130
to have a cord-like three-dimensional structure that facilitates
the capture of vesicles and the connection of GA membrane.
GM130 is bound to the Golgi membrane through the C-
terminal region (23). It also binds GRASP65, a peripheral Golgi
membrane protein that might play a role in cisternal stacking
through its C-terminal PSD95-DlgA-zo-1 (PDZ) ligand motif
(24–26). The N-terminal of GM130 is positively charged and
can bind to p115, another matrix protein of GA, which is
used to capture vesicles in transport (27). The study of Ishida
et al. (28) showed that GM130 has similar frequencies of I- and

FIGURE 1 | The structure of GM130.

Y-shaped conformations, indicating that the N-terminal region
could exchange between non-branched state (closed or I-shaped)
and branched state (open or Y-shaped) (Figure 1).

PHYSIOLOGICAL FUNCTIONS OF GM130
IN NERVOUS SYSTEMS

GM130 plays a critical role in nervous system development. It has
many biological functions, including its roles in maintaining the
structure of GA, participating in transporting proteins and lipids,
influencing mitosis, regulating migrating and polarizing cells, as
well as in efficient glycosylation.

Maintain the Structure of GA
GA is an important part of the endomembrane system.
Alterations of the conventional Golgi organization are associated
with different neurodegenerative diseases (29). As a matrix
protein of the GA, the most noteworthy function of GM130
is to maintain the ribbon structure of GA (30, 31). The
abnormal GA structure is manifested by the decrease of GM130
expression (32). An important step in Golgi ribbon biogenesis
is to fully incorporate the ER-to-Golgi carriers (EGCs) into the
stacks, which requires the continuous circulation of GM130
between cis-Golgi and EGCs (30). The absence of GM130
disrupted this process, resulting in the accumulation of tubular
vesicle membranes, the shortening of flat ER vesicles, and the
decomposition of Golgi bands (30).

The C-terminal of GM130 is bound to GRASP65 and then
anchored to GA, while the N-terminal binds to P115 and
then binds to Giantin positioned on the vesicle membrane,
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FIGURE 2 | GM130 maintains the structure of GA and participates in the control of glycosylation. GA, Golgi apparatus; SNARE, soluble N-ethylmaleimide-sensitive

factor attachment protein receptor.

participating in the maintenance of the cis-face ribbon structure
of GA (33, 34) (Figure 2). Binding with GM130 induces
the conformational change of p115 from a self-inhibitory
state to one capable of binding to active Rab1 (35). The
subsequent interactions between p115 and Rab1, as well as
binding to unassembled soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNAREs), may be crucial
for the stable association of p115 with membrane (36).
The overexpression of GM130 lacking N-terminal peptide or
microinjection of N-terminal peptide of GM130 inhibits the
binding of p115 to Golgi membranes (37).

Eisenberg-Lerner et al. (38) found that even the partial
degradation of GM130 is enough to cause harm to GA
organization. The deletion of heme oxygenase-1 (HO-1) could
aggravate Golgi stress and Golgi fragmentation via decreasing
the expression of GM130, Golgi-associated protein golgin A1
(Golgin 97), and mannosidase II (39). The binding of p97/VCP
and 26S proteasomes to Golgi membrane or activation of Golgi
stress induces GM130 degradation, causing Golgi fragmentation
in turn (38). The p115-GM130 tethered complex is disrupted
by GM130 phosphorylation on serine 25 (Ser-25) mediated by
cyclin dependent kinase 1 (Cdk1) during mitosis, resulting in
the perturbation of Golgi structure (40). At telophase mitosis,
GM130 is dephosphorylated by protein phosphatase 2A (PP2A)
and Golgi is reassembled to form the ribbon structure (40).

Zhou et al. (41) indicated that protein arginine methyltransferase
5 (PRMT5) interacted with GM130, localized to the GA, and
regulated the formation of Golgi ribbon through methylation
of GM130.

Participate in Transporting
The Golgi complex (GC) could absorb a large amount of
membrane input from the ER, and the membrane input
might be equal to or even exceed the surface area of Golgi
stacks themselves under certain conditions (42). Such incoming
membranes act as pleiomorphic EGCs. GM130 interacts with
other proteins involved in membrane transport within cells.
It is an effector of Rab1b and Rab33b, influencing the intra-
Golgi and ER-Golgi docking and fusion in vitro (43, 44). P115,
GRASP65, GM130, and Giantin can form complexes, which
may be molecular tethers between the vesicle and the acceptor
membrane before fusion (30).

Vesicles mediate transport along the secretory pathway (37).
Two coated vesicles, coat protein (COP) I and COPII, are
involved in the early part of this pathway. COPI vesicles are
associated with anterograde transport of cargo molecules via
Golgi stacks (45) and/or reverse circulation of molecules back
to ER (46, 47), whereas COPII vesicles bud only from ER,
transporting cargo from ER to GA (48, 49). GM130 was shown
to be required for COPI vesicles to dock with the acceptor
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FIGURE 3 | GM130 participates in transporting and influences mitosis. GA, Golgi apparatus; ER, endoplasmic reticulum; COP, coat protein.

Golgi cisternae (50). With the help of small GTPase Rab1, the
vesicles of GM130-p115 bind to the budding COPII vesicles of
ER, regulating the transport from ER to the cis surface of GA
(51, 52). P115, GM130, and Giantin complexes are responsible
for mediating COPII vesicles to the cis surface of GA (53)
(Figure 3).

Interfering with GM130 could lead to vesicular membrane
accumulation and inhibition of ER-to-Golgi transport (33).
The cytoplasmic domain of Human Ether-à-go-go-Related Gene
(HERG) binds to GM130 (54), and the normal movement
of HERG from ER to GA could be upset by the pathogenic
mutation (55) in this domain. Roti et al. (54) proposed that the
cytoplasmic C-terminals of HERG were involved in tethering or
possibly targeting of HERG-containing vesicles in Golgi through
interacting with GM130. GM130 and Giantin are required to
deliver cargo proteins to the Golgi compartment containing
mannosidase II (33). Golgi peripheral membrane protein GM130
and vesicle tethering factor p115 promote transporting vesicles
to Golgi (50, 56). GCC88, golgin-97, and golgin-245 are three
of the four golgins sharing a C-terminal GRIP. They all capture
endosome to Golgi cargo, while Golgi-microtubule-associated

protein of 210 kDa (GMAP-210) and GM130 capture ER to Golgi
carriers (57). Theymay work together to surround different Golgi
regions with docking sites of specific vesicle types (52). Treating
Chinese hamster ovary (CHO) cells without GM130 expression at
39.5◦C caused structural damage of GA, and transport from ER
to GA was significantly affected (58). The disruption of p115 and
GM130 tethered complexes caused increased transport vesicles
and transport inhibition, suggesting that efficient transportation
of cargo throughGolgi requires tethering (37). Loss of function of
GM130 impairs the transfer of membrane to the top of dendrites
through the loss of Golgi positioning and decreased ER-to-
Golgi traffic rate, probably resulting from the defects in vesicle
tethering (20).

Influence Mitosis
The Golgi membranes in mammalian cells fragment as it enters
the mitotic cycle, while the fragmentation of GA is not a result
of mitosis, but a key to regulating the entry of cells into mitosis
(59). In vitro experiment of reconstructing mitotic specific
fragmentation of Golgi membranes, the addition of GRASP65
prevented Golgi from fragmenting (60). The proteins localized
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at the Golgi (GRASP65, Sac1, and Tankyrase) are necessary for
the normal function of centrosome during mitosis. When these
proteins are depleted, abnormal multipolar spindles could be
observed (61, 62).

GM130 regulates the binding of GRASP65 to GA, which is
required for the formation of a bipolar mitotic spindle. Therefore,
GM130 affects spindle formation indirectly (63). In addition,
GM130 regulates the localization and stability of GRASP65 (64).
The loss of GM130 resulted in centrosome abnormalities and
non-function. They had many γ-tubulin-negative and Centrin2-
positive foci, failing to organize microtubules during mitosis
and interphase (63). A Golgi-associated complex consisting
of GM130, Cdc42, the Rho GTPase, and Tuba regulates the
normal centrosome morphology during interphase (65). By
binding to Tuba at GA, GM130 activated a subset of Cdc42,
thereby regulating centrosomal organization of unstimulated
cells (65). When entering mitosis, GM130-depleted cells formed
multipolar spindles. They were arrested in metaphase and
then died (63). The spindle assembly factor targeting protein
for xenopus kinesin-like protein 2 (TPX2) is activated by
GM130 on Golgi membranes to promote the growth of astral
microtubule (66). The nuclear localization signal (NLS)-like
motifs of GM130 were thought to isolate Importin-α from
spindle assembly factor TPX2, and then stimulated microtubule
nucleation during mitosis (8). Chang et al. (67) hypothesized
that the association of Importin-α with GM130 during mitosis
might inhibit the interaction between GM130 and p115, resulting
in the disintegration of Golgi. During early mitosis, Cdk1
phosphorylates Ser-25 residues in the GM130 NLS-like motif,
and such GM130 phosphorylation is associated with mitotic
Golgi disassembly (27, 40). The deletion of GM130 or the
injection of GM130 antibody into cells resulted in aberrant
centrosome replication and formation of multipolar spindles,
leading to abnormal mitosis (67). GM130 regulated microtubule
organization and might play a role in aberrant spindle and
asymmetric division during oocyte maturation in mice (68).

Regulate Cell Polarization and Migration
Cell polarity, a highly coordinated multistep cellular process,
regulates multiple biological functions related to wound healing,
cell migration, and cancer (11). Golgi is considered to be
important in cell polarization (69, 70). The knock-out of GM130,
Stk25, and liver kinase B1 (LKB1) resulted in Golgi dispersion
(71), reducing its effect on cell polarity (72). Stk25 regulates
polarizedmigration in cultured cells through its interactions with
GM130 (73).

GM130 also interacts with the signaling molecule kinase YSK1
to regulate cell migration and polarity. The mammalian sterile
20 (Ste20) kinases YSK1 target GA via GM130, whose binding
activates these kinases through facilitating autophosphorylation
of conserved threonine within the T-loop. Interfering with the
function of YSK1 disturbs perinuclear Golgi organization and cell
migration (73).

The small GTPase Cdc42 is a key polarity regulator (74). A
GM130-RasGRF complex was reported as a regulator of Cdc42
at GA (11). RasGRF family guanine nucleotide exchange factors
are regulators of small GTPase Ras (75, 76), while RasGRF2 is

a novel interaction partner for GM130 (11). Silencing GM130
could induce RasGRF to specifically inhibit the activity of small
GTPase Cdc42 on GA and activate the Ras GRF-dependent
Ras-extracellular signal-regulated kinase (Ras-ERK) pathway,
inducing the loss of cell polarity. Golgi polarity was lost after
short hairpin RNA (shRNA)-mediated depletion of GM130 in
hippocampal granule cells (77). GM130 is not necessary for the
initial polarization of Golgi, but it contributes to maintaining
the polarized distribution of GA in Purkinje cells, probably via
binding to AKAP450 and centrosome (20).

Studies have demonstrated the effect of GM130 deletion on
cell migration: the loss of GM130 inhibited directional motility
and increased random cell motility at the same time (13). GM130
regulates the original polarity of cells by regulating the balance
between Cdc42 and Ras signals, and changes the persistence of
cell migration (13) (Figure 4).

Participate in the Control of Glycosylation
Even if the glycosylation patterns of surface or secreted proteins
changes slightly, it would induce various cellular phenomena,
disrupting the homoeostasis of tissues (78, 79), while GM130may
be involved in providing a suitable glycosylation environment.
The GM130-GRASP65 complex might physically connect
adjacent Golgi stacks, then allow lateral membrane fusion and
enzyme balance to obtain the best processing environment (64).
Giantin deficiency in androgen-independent prostate cancer cells
leads to Golgi targeting glycosyltransferases and α-mannosidase
IA transferring from Giantin to GM130-GRASP65, and the
disorder of glycosylation environment at this site would cause
the complete change of downstream glycosylation pathway (80).
The study of Chang et al. (81) also showed that the down-
regulation of GM130 might cause glycosylation deficiency in
cancer cells. The production of abnormal O-glycosylation IgA1 is
a major cause of IgA nephropathy, while the down-regulation of
GM130 increases IgA1 O-glycosylation deficiency. Via negatively
regulating the expression of β1, 3-Gal transferase (C1GalT1),
GM130 is of critical importance in IgA1 O-glycans deficiency in
IgAN patients (82).

In addition, Golgi-ribbon architecture contributes to cell-type
specific glycosylation patterns in mammals. Knockout of GM130
led to the absence of Golgi-ribbon formation, related to increased
enzyme deviation and the defective sialylation of cell surface
proteins (Table 1).

THE STUDY OF GM130 IN NERVOUS
SYSTEM DISEASES

In developing neurons, GA could serve as non-centrosome-
associated outposts, being important for transporting cargo
directly to the newly formed dendritic plasma membrane and
local microtubule nucleation to help dendrite morphogenesis
(10, 83–85). GA fragment in neurodegenerative diseases such as
AD (86), PD (87), ALS (88), and spinocerebellar ataxia type 2
(SCA2) (89). GM130 is conducive to the ribbon morphology of
Golgi, tethering transport vesicles to promote ER-to-Golgi traffic
(30, 37), Golgi positioning and cytoskeletal regulation (7, 8), as
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FIGURE 4 | GM130 regulates cell polarization and migration. GA, Golgi apparatus.

TABLE 1 | The main physiological functions of GM130 in nervous system.

References Function Mechanism

Alvarez et al.

(33),

Zhang and

Seemann (34)

Maintain the

structure of GA

The C-terminal of GM130 binds to

GRASP65 and is then anchored to GA,

while the N-terminal binds to P115 and

then binds to Giantin positioned on the

vesicle membrane, participating in the

maintenance of the cis-face ribbon

structure of GA

Alvarez et al.

(33)

Participate in

transporting

Interfering with GM130 could lead to

vesicular membrane accumulation and

ER-to-Golgi transport inhibition

Kodani and

Sütterlin (63)

Influence mitosis The depletion of GM130 led to abnormal

interphase centrosomes and nonfunctional

multipolar spindles during mitosis

Preisinger et al.

(73), Baschieri

et al. (13)

Regulate cell

polarization and

migration

GM130 interacts with the signaling

molecule kinase YSK1 to regulate cell

migration and polarity. GM130 regulates

the original polarity of cells by regulating

the balance between Cdc42 and Ras

signals

Puthenveedu

et al. (64)

Participate in the

control of

glycosylation

Golgi-ribbon architecture contributes to

cell-type specific glycosylation patterns in

mammals and the knockout of GM130

leads to the absence of Golgi-ribbon

formation

GA, Golgi apparatus; ER, endoplasmic reticulum.

well as the organization of neuronal Golgi outposts (10). The
accumulation of vesicles, Golgi apparatus disorganization, and
other alterations in GM130 function may account for neuron

dysfunction and death (90). Partial loss of GM130 function
in human induced pluripotent stem cells and neurons affected
stem cell polarity, motility, migration, as well as neurogenesis
and neuritogenesis (91). GM130 is involved in nervous system
diseases for its various physiological functions.

Alzheimer’s Disease
Alzheimer’s disease (AD) dementia is a specific onset and course
of disease in which age-related cognitive and functional decline
is accompanied by a particular neuropathology. The initial stages
of AD are characterized by the defective ability to encode
and store new memories, followed by progressive changes in
cognition and behavior (92). At present, the treatment strategy
of AD mainly uses acetylcholinesterase inhibitors as cognitive
enhancers and non-steroidal anti-inflammatory drugs, which
can delay the occurrence and development of AD and alleviate
cognitive dysfunction (93).

The accumulation of abnormally folded amyloid-β (Aβ) is
causally associated with neurodegenerative processes in patients
with AD (94). As a cleavage product of amyloid precursor protein
(APP), Aβ peptide is involved in regulating neurite growth, cell
adhesion, synaptogenesis, etc. as a cell surface receptor (95). The
hippocampal tissues of transgenic AD mice expressing the APP
Sweden mutation and presenilins 1 (PS1) deletion mutation were
observed by fluorescence microscopy. The GA were scattered
in fragments, contrary to the perinuclear ribbon organization
of wild-type mice (96). In addition, since the earliest stages
of disease development, GC fragmentation and dispersion has
been observed in the neurons of patients with AD (86). At the
ultrastructural level, the Golgi stack appears to be broken and of
decreased diameter, and there are vesicles near the stacks (97).
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Losing the correct Golgi structure may change the correct speed
and sequence of protein transport through Golgi membranes,
which would change APP classification and processing, leading
to the increased production of Aβ (96, 98, 99). However, the most
important function of GM130 is to maintain the structure of GA.

In AD, the Cdk5 activity is aberrant, so deregulated Cdk5
might be involved in Golgi disassembly (100). The identification
of Cdk5 phosphorylation site on GM130 showed that the
deregulation of Cdk5 in AD might lead to GA fragmentation,
whereas GM130 is a substrate of Cdk5 (100). At the beginning of
the early prophase, GM130 is phosphorylated by Cdc2. It remains
this state in metaphase and anaphase (27). The phosphorylation
of Ser-25 disrupts the interaction between vesicle-docking
protein p115 andGM130, resulting in GA fragmentation. GM130
is dephosphorylated at telophase, leading to the reassembly of
Golgi (27). Cdk5 might act in a similar manner as Cdc2, due to
its similar substrate specificity with Cdk5 (100).

Parkinson’s Disease
As the most common severe movement disorder, Parkinson’s
disease (PD) is age-dependent, affecting about 1% of adults over
60 years old (101). Idiopathic PD is related to risk factors such
as age, family history, environmental chemicals, and pesticide
exposure due to pathophysiological loss or degeneration of
dopaminergic neurons in the midbrain substantia nigra and
neuronal Lewy bodies development (102). PD patients typically
present with shaking, resting tremor, rigidity, bradykinesia,
stooping posture, slowmovement, instable posture, and difficulty
in walking and gait (102, 103). PD patients have difficulty in
hand function and walking, as symptoms of the disease become
more pronounced. They are prone to falls. Although the ultimate
cause(s) of PD is (are) unknown (102), it is caused by loss of
dopaminergic neurons (53).

The molecular mechanisms underlying selective
dopaminergic neuronal degeneration remain unclear, although
lots of reports have shown that genetic factors are involved in
PD pathogenesis (104). It is characterized by the accumulation
of α-synuclein (α-syn), a synaptic protein, existing in the form of
amyloid fibrils in neurites and Lewy bodies of the nervous system
(105). Lysosomal storage disorder (LSD) is the most common
cause of pre-adult neurodegeneration, and the accumulation of
storage vesicles in cells is considered as a feature of lysosomal
storage diseases (90). Loss-of-function mutation of metabolic
genes is an important risk factor for PD and other common
neurodegenerative diseases (106). As shown in AD and PD,
alterations in endolysosomal and/or macroautophagy pathways
are closely related to neurodegeneration (107–109). A major
obstacle in PD treatment is lacking identifiable therapies to
reduce aggregation in human neuronal model systems (110).
Lysosome dysfunction leads to α-syn accumulation and PD
pathogenesis (111). Decreased expression of GM130 can alleviate
abnormal lysosomal formation in HeLa cells lacking NAGLU,
whereas overexpression of GM130 can lead to the formation of
abnormal lysosomal with functional defects (18).

Genetic analysis has suggested that defective vesicle trafficking
can also lead to PD (112, 113). The coiled-coil structure of
GM130 and its combination with p115 can capture vesicles

and participate in vesicle transport. P115, GM130, and Giantin
complexes are responsible for mediating COPII vesicles to
the cis surface of GA (53). Researches indicated that α-syn
disrupts vesicle trafficking in the early secretory pathway (110,
114–116). COPII vesicle fusion with cis-Golgi requires rab1a-
GM130 interactions (117). Mazzulli et al. (110) found that α-
syn aggregation at the cell body led to abnormal association
with GM130 and disrupted ER-Golgi localization of rab1a, an
important mediator in vesicle transport, and then disrupts COPII
vesicle fusion, leading to Golgi fragmentation.

Furthermore, DJ-1 is a pathogenic gene in the autosomal
recessive form of PARK7-linked early-onset PD, while DJ-1 is
co-located with GM130 and synaptic vesicle proteins, including
rab3a and synaptophysin (104).

Amyotrophic Lateral Sclerosis
ALS is a fatal idiopathic neurodegenerative disease of human
motor system (118), characterized by degeneration of upper
and lower motor neurons, resulting in muscle weakness and
eventually paralysis (119). The initial symptoms are concentrated
in random areas of the body (120). At onset, the pathological
process of clinical manifestations is focal and distributed
randomly throughout the nervous system (121). No definitive
diagnostic test or biomarker for ALS exists at present, and
neurologists have to rely on clinical diagnostic criteria (118).
There can be many reasons for the same phenotypes, such
as different genetic mutations. Thus, a variety of molecular
mechanisms may cause ALS, which means the disease is a
syndrome (122). There are two possible treatments for ALS that
slow the progression of the disease, but patients are primarily
treated with symptomatic therapies, including speech therapy for
dysarthria and muscle relaxants for spasticity (119).

Alterations in GA can be detected in degenerating ALS motor
neurons of cerebral motor cortex and spinal cord (88, 123). In
ALS patients, the GA of motor neurons is fragmented, studied
with an organelle-specific antiserum (124, 125). GA-fragmented
motor neurons were moderately atrophied (126). In those cells,
the number of discrete immunostained elements in organelles
was more than twice that of normal neurons, and both the
proportion of GA in cytoplasmic area and the size of each Golgi
element decreased (126). The fragmentation of GA of motor
neurons in ALS perhaps represents early change of organelle
which is possibly involved in ALS pathogenesis (125), while
GM130 helps to maintain the integrity of GA.

Among the specific gene mutations causing ALS, the most
common is the mutation of superoxide dismutase 1 (SOD1), a
powerful antioxidant enzyme protecting cells from the damage
of superoxide radicals (127). The Golgi ribbon was observed
to disintegrate into disconnected Golgi stacks, vesicles, and
tubules in motor neurons of mutant SOD1 mice (128). Bellouze
et al. (128) investigated the possible subcellular redistribution
of Golgi tethers in these mice via biochemically dividing spinal
cords into vesicles, membranes, and cytosol fractions. They
found that GM130 was significantly redistributed, indicating that
the expression of mutant SOD1 caused Golgi vesicle tethering
defects due to GM130 redistribution. This might be conducive
to developing new blood biomarkers for ALS.
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Microcephaly
The occipito-frontal head circumference of MCPH is below
the third percentile, or 2 standard deviations (SD) or more
lower than the mean for age, sex, and race (129, 130). The
pathogenesis of MCPH is heterogeneous, ranging from genetic
causes to environmental factors that can have an impact
on developmental process influencing brain size (131, 132).
Primary MCPH present at birth is a static developmental
anomaly, while secondary MCPH develops postnatally and is a
progressive neurodegenerative disease (133). Both primary and
secondary MCPH could be acquired or genetic (134). Different
causes and severity of MCPH may lead to different symptoms
in children, including development retardation, intellectual
disabilities, cerebral palsy, epilepsy, as well as vision and hearing
disorders (135).

In 2016, Shamseldin et al. (21) suggested the important
role of GM130 in human and zebrafish development. They
found that a female patient with GM130 homozygous mutation
had obvious MCPH, low muscle tone and growth retardation
at 4 months of age, and infantile spasm at 6 months.
All symptoms showed a trend of gradual aggravation with
age. Magnetic resonance imaging showed non-specific brain
volume reduction, delayed myelin sheath, and thinned myelin
sheath. Electroencephalogram showed hypsarrhythmia. Muscle
biopsy showed non-specific mild atrophy. The patient’s clinical
manifestations were speculated as the result of abnormal
sorting or post-translational modification of proteins, since
GM130 was not localized to the cis-Golgi (21). No possible
pathogenic mutation was found in clinical triple exome
sequencing. The whole exon sequencing results revealed that
GM130 had 4 bp deletions, leading to early termination
of protein translation. GM130-knockout zebrafish with the
same mutant GM130 form showed similar symptoms to
this patient: severe skeletal muscle development disorder and
progressive MCPH.

Loss of the mitotic function of GM130 may be a cause of
growth deficiency and MCPH (21). GM130 provides a long-
sought molecular connection between cytoskeleton and GA,
and thus its deficiency contributes to GA fragmentation and
prevents normal mitosis (23, 26, 27). In order to promote
the proper partitioning of mitotic cells, Golgi is decomposed
by inhibiting vesicle fusion (67). The p115-mediated fusion
of vesicle with Golgi membranes is reduced during mitosis,
and the secretory pathway is down-regulated (136, 137). This
triggers the formation of Golgi vesicles, which is required
for the Golgi partitioning during cell division (138). The
mitotic phosphorylation of GM130 on Ser-25 is believed to
be responsible for the reduced binding of p115 to Golgi
membranes (27, 136–138). Chang et al. (67) found that the
binding of Importin-α and GM130 regulates Golgi disassembly,
and thereby controls mitotic progression. The phosphorylation
of GM130 also could promote the disintegration of GA during
mitosis (23).

Moreover, many Mendelian diseases are caused by
mutations in genes encoding GA components, and these are
multisystem disorders resulting from perturbed posttranslational

glycosylation of proteins in GA (139, 140), while GM130 is
involved in providing a suitable glycosylation environment.

Sepsis-Associated Encephalopathy
As a systemic inflammatory response, sepsis is life-threatening
and common in patients with bacteremia (141, 142). SAE,
a frequent sequela of sepsis, is a diffuse brain dysfunction
without direct central nervous system (CNS) infection (141, 142).
The patients present with acute mental state changes. SAE is
associated with increased mortality and morbidity rate in septic
patients (142, 143). When it occurs as a manifestation multiple
organ dysfunctions, the mortality in SAE is estimated at 70%
(142). Treatment of SAE is still limited to managing underlying
infections (142, 144, 145).

Blood-brain barrier (BBB) is critical in the establishment
and maintenance of brain (146). The disruption of BBB is
implicated in SAE pathogenesis (147). The permeability of
BBB is altered to regulate the substances transporting in blood
and brain (148), thereby maintaining a state of homeostasis
in the CNS (149). When BBB is damaged, its permeability
increases. Endotoxin and inflammatory factors then enter the
brain tissue, resulting in impaired or even loss of brain function
(150). Endothelial Nitric Oxide Synthase (eNOS) regulates
many key functions of vascular endothelial cells and plays
an important role in maintaining the function of BBB (151).
The normal structure and complete function of GA could
effectively maintain the circulation and transport of eNOS in
cells (152). GA is involved in regulating calcium ion release.
Ca2+ release due to GA rupture may activate eNOS on the
plasma membrane in a Ca2+/calmodulin-dependent manner
and aggravate BBB injury (152). Moreover, GA is indispensable
in maintaining the normal function of endothelial cells (ECs),
tight junctions (TJ) protein, and astrocytes (152). Deng et al.
(152) speculated that protecting GA might be a new therapy
to protect BBB and treat nervous system diseases caused by
BBB dysfunction.

Tight junctions are important parts of BBB (153, 154).
Overactivation of Cdc42 leads to TJ degradation (155), whereas
the appropriate level of Cdc42 activation promotes BBB integrity
by assembling TJ proteins (156, 157). In the study of Baschieri
et al. (11), Cdc42 appeared in a parallel cell pool, co-located
with GM130. Loss of GM130 released RasGRF and inhibited
Cdc42, leading to changes in cell polarity (11). Kodani et al.
(65) demonstrated that GM130 regulates the activation of Golgi-
localized Cdc42 via promoting the interaction between Golgi-
localized Cdc42 and Golgi-localized Tuba.

Qiu et al. (158) conducted real-time polymerase chain reaction
and Western blotting, aiming to explore the changes of tight
junction protein, Cdc42, GM130, and mRNA expression in the
brain of rat after intracerebral hemorrhage (ICH). They found
that both the protein and mRNA levels of GM130 decreased
significantly after ICH, and the structure of Golgi changed or
even disintegrated, suggesting that GM130 may participate in
the destruction of BBB through oxidative stress after ICH, which
is related to the activation of apoptotic hydrolase induced by
oxidative stress after ICH, thus hydrolyzing GM130.
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TABLE 2 | The role of GM130 in nervous system related diseases.

References Diseases Cause The role of GM130

Marra et al. (30),

Mitchell et al.

(31)

AD Fragmentation of

GA

GM130 maintains the

structure of GA

Hunn et al.

(112),

Martin et al.

(113), Alvarez

et al. (53)

PD Defective vesicular

transport

The coiled-coil structure of

GM130 and its combination

with p115 participate in

vesicle transport

Wallis et al.

(174)

ALS Fragmented GA of

motor neurons

The alteration of GM130

labeling suggests the

fragmentation of GA

Shamseldin

et al. (21)

MCPH Fragmentation of

GA and abnormal

mitosis of cells

This may be due to the loss

of mitotic function of GM130

Deng et al.

(152)

SAE The disruption of

BBB

GA protects BBB, while

GM130 maintains the

structure of GA

Liu et al. (20) Ataxia Related to the

stability of the GC

Selective deletion of GM130

in neurons leads to the

fragmentation and defective

positioning of GA

GA, Golgi apparatus; BBB, blood-brain barrier; GC, Golgi complex; AD, Alzheimer’s

disease; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; MCPH,

microcephaly; SAE, sepsis-associated encephalopathy.

Ataxia
Cerebellum participates in motor control. Its damage leads to
ataxia, a syndrome of incoordinate movement (159). Ataxia
can be inherited, acquired, or sporadic (160). The causes of
cerebellar ataxia are various, from infectious, immune mediated,
to degenerative (161). Symptoms and signs are usually associated
with the location of lesions in the cerebellum: lesions in
the cerebellar hemisphere result in limb (appendicular) ataxia;
lesions of the vermis lead to truncal and gait ataxia with
limbs relatively spared; vestibular cerebellar lesions cause vertigo,
disequilibrium, and gait ataxia (162). The treatments of ataxia
include symptomatic and disease-modifying therapies (161). The
sporadic adult-onset ataxia of unknown etiology still remains a
diagnostic challenge (163). Few ataxias are completely treatable,
but the promise of effective gene therapy and drug therapy
is emerging.

Patients with several types of congenital disorders of
glycosylation (CDG) caused by mutations in the genes that
encode Golgi-associated proteins show ataxia (164). Liu et al.
(20) reported that the targeted deletion of golgin GM130
resulted in a profound neurophenotype in mice: GM130-
knockout mice showed severe ataxia, developmental delay, and
postnatal death. They indicated that the selective GM130 deletion
in neurons resulted in GA fragmentation and positioning
defects, impaired secretory transport, as well as dendrite atrophy
in Purkinje cells (20). Cellular defects are characterized by
decreased cerebellar size and Purkinje cell number, causing
ataxia (20).

Expansion of polyglutamine repeats to 32 or longer leads to
SCA2 (89). In this disease, mutant ataxin-2 mainly contributes
to the neurodegeneration of Purkinje neurons and selected
neurons in the brain stem, leading to ataxia and death (165–
167). Research showed that ataxin-2, the product of SCA2 gene,
was predominantly located in GA, and suggested that the mutant
ataxin-2-mediated cell death was related to GC stability (89). Key
to maintaining GA is a set of Golgi tethering proteins, connecting
Golgi stacks to a ribbon (30, 168, 169). GA has a characteristic
structure, consisting of one or more stacks of cisternae, laterally
connected to form Golgi ribbon in vertebrate cells (170, 171).
GM130 contributes to GA morphology. Experimental depletion
of GM130 resulted in the loss of the ribbon architecture into
stacks (172). Golgi assembly was inhibited by disrupting GM130-
p115 complexes with competing peptides or antibodies, or by the
expression of GM130 mutants (23, 173) (Table 2).

CONCLUSIONS AND PROSPECTS

The biological function of GM130 involves all aspects of life
process. At present, its research in nervous system diseases is still
very limited. A number of studies have confirmed that GM130
is critical for the maintenance of the typical ribbon structure of
GA in mammalian cells. In many neurodegenerative diseases,
the GA is fragmented. Therefore, targeted therapies designed to
protect or restore GA may be a treatment for CNS diseases in the
future. GM130 plays an important role in material transport, cell
mitosis, migration and polarity, glycosylation, as well as lysosome
formation. This also creates potential for the development of new
drugs targeting GM130 and the treatment of various diseases.
Due to the diversity of physiological functions of GM130, there
are great limitations in study at the individual level. At present,
the research in this field is still in the early stage and has not
formed a systematic research system. Further studies on animal
models are expected to be carried out on the basis of existing
studies at the cellular level. Thus, the results of the study on the
physiological function of GM130 at the individual level could be
applied to the detection and treatment of corresponding diseases
and the development of specific targeted therapy.
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