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ABSTRACT: Gay−Berne anisotropic potential has been widely used to
evaluate the nonbonded interactions between coarse-grained particles being
described as elliptical rigid bodies. In this paper, we are presenting a coarse-
grained model for twenty kinds of amino acids and proteins, based on the
anisotropic Gay−Berne and point electric multipole (EMP) potentials. We
demonstrate that the anisotropic coarse-grained model, namely GBEMP model,
is able to reproduce many key features observed from experimental protein
structures (Dunbrack Library), as well as from atomistic force field simulations
(using AMOEBA, AMBER, and CHARMM force fields), while saving the
computational cost by a factor of about 10−200 depending on specific cases and
atomistic models. More importantly, unlike other coarse-grained approaches, our
framework is based on the fundamental intermolecular forces with explicit
treatment of electrostatic and repulsion-dispersion forces. As a result, the coarse-
grained protein model presented an accurate description of nonbonded interactions (particularly electrostatic component)
between hetero/homodimers (such as peptide−peptide, peptide−water). In addition, the encouraging performance of the model
was reflected by the excellent correlation between GBEMP and AMOEBA models in the calculations of the dipole moment of
peptides. In brief, the GBEMP model given here is general and transferable, suitable for simulating complex biomolecular
systems.

■ INTRODUCTION

Many interesting biological phenomena occur on the time and
length scales that are usually beyond the capability of atomistic
molecular dynamics (MD) simulation.1,2 To increase the ability
of a molecular mechanics (MM)-based MD simulation to probe
more biological processes, a variety of coarse-graining
approaches have been suggested through reducing the total
number of degrees of freedom of the system of interest.3−5 As
such, the reduction of an atomistic structure into a simplified
model would alleviate computational costs and at the same time
allow larger integration time steps for MD simulations because
of the elimination of fast motions, enabling the exploration of
many mesoscopic scale phenomena that are inaccessible by
atomistic models.6−11

The way of coarse-graining a protein is not unique,
depending on the levels of granularity and specific applications.
However, the schemes of reducing an atomistic structure into a
simplified representation fall into two major categories: shape-
based (SB) and residue-based (RB) approaches. In the case of
proteins, the former approach is dependent on the protein
shapes while the later one is associated with specific amino acid
residues of the proteins. One of SB-CG examples is a model
recently developed by Schulten’s group.12 In this CG model, a
neural network like algorithm13 is employed to determine the
CG mapping of an atomistic protein structure. By doing this,

the shape of the protein is efficiently reproduced with as small
number of CG beads as possible. Interactions between CG
beads in this method, adopting the similar forms in the
CHARMM atomistic force field, are described by bond, angle,
6−12 Leonnard-Jones and Coulomb potentials. This CG
model, because of taking very simple form, is capable of
studying very large macromolecular systems. However, the SB-
CG would not be suitable for simulating protein folding or
distinguishing the dynamics of the wide type and mutant
proteins, which is possible for a RB-CG model since each
amino acid residue in a protein is specifically considered. Some
RB-CG models, employing either elastic network model
(ENM)14,15 or knowledge-based potentials,16−18 have been
proved quite useful in studying protein dynamics or predicting
protein structures. Nevertheless, the CG models using
knowledge-based potentials have been questioned recently
because of their lack of physical meaning and fundamental
basis.19−24

Alternatively physics-based CG potentials25 can be useful in
interpreting the underlying principles behind a biological
process in perspective. In general, the development of a
physics-based CG model follows the similar philosophy of
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developing an atomistic MM model, in which the interactions
between atoms are modeled after physical principles and the
parameters for the bonded and nonbonded terms are optimized
based on experimental or quantum mechanical data. Thus, a
physics-based CG model has the potential to offer a correct
physical interpretation of the observed biological phenomena.
Various physics-based CG models have been developed and
applied to different biological systems. For instance, one-bead
coarse-grained model, developed by Tozzini and McCammon,
was successfully applied to study the flap opening in HIV-1
protease,26 as well as the ligand binding to HIV protease;27

another one-bead coarse-grained model, called virtual atom
molecular mechanics (VAMM),28 has been devised and used to
calculate the atomic fluctuations of several proteins through
normal model analysis (NMA), showing excellent agreement
with experimental B-factors. Voth and co-workers proposed a
multiscale coarse-graining (MS-CG) approach,29,30 where a
transferable CG force field was derived from atomistic-scale
trajectories by force matching, and the resulting CG models of
the MS-CG method accurately reproduced many structural and
dynamical properties of a few biomolecular and liquid-state
systems. Recently, a very popular CG model, MARTINI model,
has been extensively used for modeling large biomolecules
including lipids and proteins;31,32 moreover, some hybrid
schemes through combining MARTINI with the atomistic
model or with elastic network model (ENM), have been
proposed to improve the accuracy and transferability of
MARTINI CG model;33,34 Feig and co-workers35 have
developed PRIMO (protein intermediate model) coarse-
grained force field, in which a additional hydrogen-bonding
energy term is included, and this model has been proved to be
quite useful in studying protein folding and dynamics. Yun-
Dong Wu36,37 proposed a coarse-grained model (PACE) for
proteins by coupling united atom model with the MARTINI
coarse-grained water model (four real waters are clustered into
one CG bead), and this hybrid model has been further
improved to study more accurately protein dynamics and
folding.38 However, the isotropic description of a CG particle in
these physics-based CG models would ignore the importance of
the anisotropic nature of the CG particle composing a group of
atoms. Therefore, employing anisotropic potentials in a coarse-
grained model has recently attracted more attentions than using
isotropic potentials as the computational power increases
exponentially roughly every two years.
On one hand, using ellipsoids to describe CG particles is

attractive since it is able to give reasonable approximation to
the anisotropic shape of the CG particles. The Gay−Berne
anisotropic potential,39,40 based on a Gaussian-overlap
potential,41 is quite well used to describe the nonbonded
interactions between elliptic CG particles. In the United
Residue (UNRES) coarse-grained model developed by
Scheraga and co-workers,10,42 side chains are regarded as
Gay−Berne ellipsoids while each peptide group is modeled as
sphere. This feature enables the UNRES coarse-grained model
to attack the protein folding problem effectively. Voth and his
co-workers have developed a hybrid analytic−systematic
coarse-grained (CG) model43 for lipids, in which the systematic
component of the CG interactions is determined according to
the MS-CG method (force matching) and the analytic
component is associated with the anisotropic interactions
between Gay−Berne ellipsoids.
On the other hand, electrostatic interactions between CG

sites, which are usually ignored or are simply determined based

on point charge models in most of coarse-grained models,
should be described more accurately by introducing electric
multipole potentials.44,45 In this paper, we present another
physics-based CG model, namely, GBEMP model, consisting of
anisotropic Gay−Berne ellipsoids and point electric multipoles
(EMP).4,46−49 Similar to develop an empirical MM-based
atomistic model, the parametrization of the GBEMP model is
based on a combination of quantum mechanical principles and
experimental data. In this model, the side chain and backbone
information of an amino acid can be preserved as much as
possible because of (i) the Gay−Berne elliptic representation of
coarse-grained particles and (ii) point electric multipoles
sharing the same local frame with the Gay−Berne ellipsoids.
In this article, we organize our work as follows. First, we

describe the GBEMP coarse-grained model for amino acid
dipeptide models followed by the force field parametrization
and verification. Second, we present the results of two models
(AMOEBA and GBEMP) for the nonbonded interactions
between hetero/homodimers (peptide−peptide, peptide−
water). Third, we show that the GBEMP model is able to
reproduce many key features observed from experimental
backbone and side-chain conformations. In the end, we
demonstrate the good quality of the GBEMP model in
studying two proteins.

■ METHODS

GBEMP Mapping for Dipeptides. The GBEMP mapping
for the alanine dipeptide has been described in our previous
work48 in details. In this work we would extend the GBEMP
model to all 20 types of amino acids. The GBEMP
representations of all amino acid dipeptide models are depicted
in Figure S1 (Supporting Information). As an example, the
GBEMP mapping for phenylalanine dipeptide is shown in
Figure 1.
In Figure 1, the GBEMP model of the phenylalanine

dipeptide consists of six rigid bodies (I through VI) that are
connected by virtual or valence bonds. Bonding occurs between

Figure 1. GBEMP mapping schemes for phenylalanine (Phe)
dipeptides. Each rigid body, being enclosed by a dash line, consists
of a Gay−Berne particle (represented by shadowed ellipsoid, sphere or
disk) with a few electric multipoles or without any electric multipole.
The indices of rigid bodies, Gay−Berne sites, interacting EMP sites
and noninteraction EMP sites (just serve as connecting different rigid
bodies), are indicated by Roman numbers and Arabic numbers in
black, red, and blue, respectively.
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two different rigid bodies through Gay−Berne or EMP sites.
Each rigid body is composed of at least one Gay−Berne particle
(ellipsoid, sphere, or disk) with or without EMP sites. The
Gay−Berne sites 111, 482, 871 in the spherical rigid bodies (I,
III and VI) corresponds to methyl groups (−CH2 or −CH3),
the Gay−Berne sites 122 and 862 in the elliptical rigid bodies
(II and V) are positioned at the centers of mass of
corresponding peptide groups (−CONH-), and the Gay−
Berne site 492 is located at the center of mass of disklike rigid
body (IV) corresponding to the phenyl group (−C6H5);
oxygen atoms of peptide groups are regarded as the positions of
the EMP sites 121 and 861 included in the elliptical rigid bodies
(II and V), and nitrogen atoms of peptide groups as the
locations of the EMP sites 123 and 863 in the elliptical rigid
bodies (II and V); the EMP site 493 shares the same spot with
the Gay−Berne site 492 in the disklike rigid body (V); the
EMP sites 481 and 491, located at α and γ carbon atoms
respectively, are considered as the noninteraction sites serving
the purpose to connect two different rigid bodies. In such that,
bonds exist between sites (111,122), (123, 481), (482, 491),
(481, 862), and (862, 871), one example of an angle consists of
the sites (111, 122, 123) and that of a torsion angle is
composed of the sites (111, 122, 123, 481). The nonbonded
interactions between different Gay−Berne particles and
between EMP sites in different rigid bodies are given in the
following section.
GBEMP Energy Function. In GBEMP model, the effective

energy function is a sum of different energy terms

= + + + +U U U U U UGBEMP bond angle torsion GB EMP (1)

where Ubond, Uangle, and Utorsion correspond to bond stretching,
angle bending and torsional potentials, respectively. The bond
stretching term adopts the fourth-order Taylor expansion of the
Morse potential, the bond angle bending term utilizes a sixth-
order potential, and a three-term Fourier series expansion is
employed to calculate torsional energies. These valence
potentials adopt similar functional forms being used by classical
molecular mechanics potentials, such as MM350
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The parameters for bond stretching, angle bending and
torsional potentials were obtained through fitting to the
potentials of mean force (PMFs) constructed by sampling
atomic configurations from molecular dynamics simulations of
dipeptides using CHARMM force field (with CMAP).51 Then,
the parameters for torsional potentials were optimized in the
CG MD simulations of dipeptides through iteratively matching
to experimental results for the distributions of backbone torsion
(ϕ/ψ) and side chain torsion χ1.

Gay−Berne Potential. The Gay−Berne anisotropic
potential energy function UGB is given by the form
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The range parameter σ and the strength parameter ε for
pairwise interactions are functions of the relative orientation of
the Gay−Berne particles. Each uniaxial molecule is associated
with a set of Gay−Berne parameters that describe its shape
(ellipsoid, sphere, or disk) and the orientation of its principal
axis in the inertial frame, defined according to the all-atom
model. The term dw is used to control the “softness” of the
potential.40 A generalized form of the range parameter σ(ûi, ûj,
rîj) is described as
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The notations l and d describe the length and breadth of Gay−
Berne particles. The terms χα2, χα−2, and χ2 can be calculated
as
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The total well-depth parameter is computed as
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The term ε0 refers to the well depth of the cross configuration;
the orientation-dependent strength terms ε1 and ε2 are
calculated in the following manner
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The notation εE is the well depth of the end-to-end/face-to-face
configuration, and εS is the well depth of the side-by-side
configuration. Between unlike pairs, all values and their εS and
εE are specified explicitly or computed using a combining rule
employed in AMOEBA polarizable force field.52,53 The
parameters μ and ν were set to canonical values of 2.0 and
1.0, respectively. The terms χ′2, χ′α′2, and χ′α′−2 were treated
as inseparable and computed directly as:
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The procedure of obtaining the parameters for the Gay−Berne
energy term UGB is described in more details in the Results and
Discussion.
Electric Multipole Potential. The interaction energy

between two electric multipole sites can be expressed in its
polytensor form:52
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where q, d, and Q are charge, dipole, and quadrupole moments,
respectively. The point−multipole model can accurately
describe the electrostatic interactions between CG particles
being separated with a certain distance (>5 Å). When two CG
particles are getting too close, however, the point-multipoles
cannot correctly represent the actual overlap of their charge
distributions such that the penetration error is produced. To
avoid the spurious interaction energy when two CG particles
interacting at very short-range (<5 Å), an effective solution to
correct the penetration error would be to introduce a damping
function,54 which was implemented to the multipole moments

in each pair of interaction sites. The damping function in this
work has the functional form

λ = − −e1 au3
(23)

where u is the effective distance and defined by u = rij/(αiαj), in
which rij represents the actual distance between particles i and j,
and αi indicates the “size” of the particle i. The factor a is a
dimensionless parameter to control the damping strength. In
this model, the value of a was tentatively set to 0.49. The λ is
applied to the regular formula of multipole interaction energy
and forces and approaches unity as the distance rij increases.
This method has proven to be effective in dealing with
polarization catastrophe of point polarizable model.52 By
introducing the damping function, the point multipoles are
replaced by smeared charge distributions. As such, the
penetration problem can be avoided. The parametrization of
electric multipole potential UEMP is presented in more details in
the Results and Discussion.

Molecular Dynamics Simulations of Dipeptides. To
determine the GBEMP parameters for bond stretching, angle
bending, and torsional potentials, we have carried out atomistic
molecular dynamics simulation on amino acid dipeptides using
the CHARMM22 force field with the CMAP torsion
potential.51 Each dipeptide was blocked with an acetyl group
(ACE) at the N terminus and with N-methylamide (NME) at
the C terminus. Each system was solvated in explicit waters (at
pH 7) in a cubic box with the distance of at least 12 Å from the
surface of the dipeptide to the edge of the box. Each charged
amino acid was neutralized with either chlorine or solium ion,
which was randomly placed by replacing the overlapping water
molecules. Initial configuration was briefly minimized and then
heated up to from 100 to 300 K through a series of simulations.
Then a 100 ps NPT simulation (equilibration run) under 300 K
was followed by a NPT production run of at least 100 ns to
generate the trajectory for final analysis. The periodic boundary
condition was employed to avoid solvent boundary artifact.
Electrostatic interactions were calculated with the particle-mesh
Ewald method55 using a 32 × 32 × 32 grid for the discrete fast
Fourier transform (FFT) and a direct space cutoff of 9 Å.
During the simulation, SHAKE56 was applied to constrain the
lengths of bonds involving hydrogen so that an integration time
step of 2 fs could be used. The temperature was controlled
using the Nose−Hoover algorithm.57
The coarse-grained (CG) MD simulation protocol used in

this work is described as follows. For each dipeptide model, the
CG MD simulation in generalized Kirkwood (GK) implicit
solvent58 was carried out in the “GBEMP” suite based on
TINKER program and the equation of motion was integrated
using the Euler’s rigid body integrator46 with the integration
step of 5 fs. The nonbonded interaction cutoff was set to 12 Å
with the truncate scheme, and van Der Waals (vdW)
interactions between 1 and 2 and 1 and 3 neighbors were
scaled by 0.01 and 0.7, respectively. Each system was minimized
and then was followed by an equilibration MD run of a few
nanoseconds under the temperature of 300 K. To generate the
trajectory for final analysis, at least 1 microsecond CG MD
simulations were carried out on dipeptides while 20 ns CG MD
simulations were performed on two proteins under the
temperature of 300 K.
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■ RESULTS AND DISCUSSION

Parameterization of Gay−Berne Potential. To deter-
mine Gay−Berne parameters for the CG particles predefined in
the phenylalanine dipeptide model (Figure 1), the atomistic
energy profiles for the van der Waals (vdW) interactions
between homodimers of CH4, HCONH2, and C6H6, each of
which adopts different special configurations (such as, side-by-
side, end-to-end/face-to-face, etc.) at various separations (from
short to long distances), were constructed using AMOEBA all-

atom model. At each separation, the homodimer interaction
energy (Figure 2) was calculated as a Boltzmann average over
conformations generated by rotating one molecule around its
primary axis. In this work, the Gay−Berne particles for CH4,
HCONH2, and C6H6 were treated as sphere, ellipsoid, and disk,
respectively. By employing a genetic algorithm, we obtained the
Gay−Berne parameters by fitting to the atomistic energy
profiles in gas phase and were further refined in the CG
simulations of dipeptides if necessary, and the final Gay−Berne
parameters for CH4, HCONH2, and C6H6 are listed in Table 1.

Figure 2. Atomistic energy profiles (dash lines) for the vdW interactions between homodimers of the (A) CH4, (C) HCONH2, and (E) C6H6
molecules, each of which adopts different special configurations at various separations, were constructed using AMOEBA all-atom model. The solid
lines represent Gay−Berne interaction energies. Meanwhile, the correlations between the Gay−Berne and AMOEBA results for the vdW interactions
between homodimers of (B) CH4, (D) HCONH2, and (F) C6H6, were measured in this work, respectively.
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To determine the Gay−Berne parameters of the coarse-
grained particles included in the rigid bodies I and VI of
phenylalanine dipeptide model, one needs to construct the
atomistic energy profile for the vdW interactions between the
CH4 homodimer. As the shape of the CH4 molecule was
considered to be spherical in this work, the Gay−Berne
potential, describing the vdW interactions between the two
spherical particles, is equivalent to the well-known Lennard-
Jones potential. Finally, the Gay−Berne parameters of the
coarse-grained particles were determined from the match
between Gay−Berne and AMOEBA results, as shown in Figure
2A. In the case of the HCONH2 molecule, the corresponding
coarse-grained particle was considered as an ellipsoid, three

special configurations (cross, end-to-end, and t-shape) of the
HCONH2 homodimer were used to acquire the Gay−Berne
parameters of the coarse-grained particles defined in the rigid
bodies II and V of phenylalanine dipeptide model. As illustrated
in Figure 2B, the comparison between Gay−Berne and
AMOEBA results can reveal the quality of the obtained
Gay−Berne parameters. In the case of the C6H6 molecule, the
shape of the molecule was regarded to be disklike; thereby,
three special configurations (face-to-face, side-by-side and t-
shape) of the C6H6 homodimer were used for the calculation of
the vdW intermolecular interactions at different separations. By
fitting to the atomistic energy profile (see Figure 2C), the
Gay−Berne parameters were obtained for the Gay−Berne
particle in the rigid body IV of the phenylalanine dipeptide
model. Meanwhile, the correlations between Gay−Berne and
AMOEBA results for the vdW interaction energies of these
homodimers were evaluated as given in Figure 2B, 2D, and 2F
respectively, indicating the quality of the Gay−Berne
parameters.
Similarly, for the other amino acid models, the Gay−Berne

parameters of the CG particles defined in Supporting
Information Figure S2 were obtained through fitting to the
AMOEBA atomistic interaction energy profiles of correspond-
ing all-atom models and were further refined in the following
CG simulations of dipeptides. The final Gay−Berne parameters
of the CG particles for all amino acids are given in Supporting
Information Table S1.

Table 1. Gay−Berne Parameters of the Coarse-Grained
Particles Defined in the Phenylalanine Dipeptide Model

index
of

Gay−
Berne
site L (Å) D (Å) dw

ε0
(kcal/mol)

εE
(kcal/mol)

εS
(kcal/mol)

111 2.475 2.475 1.000 0.343 1.000 1.000
122 3.763 2.462 1.202 0.681 1.479 1.437
482 2.475 2.475 1.000 0.343 1.000 1.000
492 2.475 2.475 1.000 0.343 1.000 1.000
862 3.763 2.462 1.202 0.681 1.479 1.437
871 2.475 2.475 1.000 0.343 1.000 1.000

Figure 3. Atomistic energy profiles (dash lines) for the electrostatic interactions (A) between HCONH2 and H2O and (C) between C6H6
homodimer, have been constructed using AMOEBA all-atom model. The solid lines represent the coarse-grained EMP energy profiles. Meanwhile,
the correlations between the coarse-grained and AMOEBA models for two systems (HCONH2−H2O and C6H6−C6H6) were measured and given in
panels B and D, respectively.
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Parameterization of Electric Multipole Potential. In
the GBEMP model of phenylalanine dipeptide, one EMP site
was included in the rigid body III and two EMP sites were
placed in the rigid bodies II, IV, and V, respectively. Among
these EMP sites, one should note that the sites 481 and 491 are
noninteraction EMP sites, which just serve as the purpose of
connecting two different rigid bodies. Thus, to obtain the EMP
parameters of phenylalanine dipeptide model, one only needs
to determine the EMP parameters of the coarse-grained
particles of the corresponding HCONH2 and C6H6 molecules.
Note that AMOEBA atomic multipole moments for atoms
were calculated from the ab initio quantum mechanics using
Stone’s distributed multipole analysis,59 so it is quite
straightforward to expand the point multipoles at any location
in HCONH2 and C6H6. In this work, the point multipoles were
placed at oxygen and nitrogen atoms for the HCONH2
molecule, and at the center of mass of corresponding atoms
for the C6H6 molecule. To optimize the EMP parameters of the
coarse-grained particles (HCONH2 and C6H6), we have
constructed the AMOEBA atomistic energy profiles for the
electrostatic interactions between HCONH2 and H2O, and
between the C6H6 homodimer, respectively, as given in Figure
3. The correlations between EMP and AMOEBA electrostatic
interaction energies were measured as shown in Figure 3B and
3D, showing good agreement between two models. The final
optimized EMP parameters for the phenylalanine dipeptide
model are listed in Table 2. In the same way, the EMP

parameters for the other amino acid models were derived from
the QM calculations based on the Stone’s distributed multipole
analysis and were further refined in the calculations of
electrostatic interactions between homodimers and/or between
heterodimers, and all EMP parameters are given in Supporting
Information Table S2.
The quality of the optimized EMP parameters for different

dipeptide models have been further evaluated by calculating
their dipole moments using both GBEMP and AMOEBA
models. The correlations between the two models for the
magnitude of dipeptide dipole moment and x, y, and z
components have been calculated respectively, as shown in
Figure 4 and Supporting Information Figure S2, demonstrating
good quality of the GBEMP model, especially for hydrophobic
amino acid residues. In the calculations of the dipole moment

for each dipeptide, the atomistic configurations were chosen
randomly from the structures generated from atomistic MD
simulations (using AMOEBA force field), and the correlations
did not vary significantly by randomly selecting different sets of
conformations. Furthermore, for each dipeptide model, a
number of waters were generated randomly surrounding it
(any heavy atom in a dipeptide molecule was separated from an
oxygen atom of the water molecule in the range of 3.0−5.0 Å),
and then the electrostatic interaction energies were calculated
between the dipeptide and a single water being placed at
different positions, showing rather encouraging agreement
between GBEMP and AMOEBA models, as seen in Figure 5.

Intermolecular Interactions between Dipeptides. The
performance of the GBEMP model for amino acid dipeptides
was further examined by comparing the GBEMP and atomistic
results for the intermolecular interaction energies between
dipeptide homodimers and heterodimers. In this work, we have
constructed twenty dipeptide homodimers (such as Ala/Ala,
Arg/Arg, ..., Val/Val), and the intermolecular interaction
energies of each system were calculated at different separations
by using AMOEBA atomistic and GBEMP coarse-grained force
fields respectively. In addition, three specific dipeptide
heterodimers, such as Gln/Glu, Gln/Lys, and Glu/Lys, were
chosen for the study because they represent the intermolecular
interactions between neutral and charged amino acids, and
between charged amino acids respectively. The comparison
between GBEMP and AMOEBA results for a few representa-
tive intermolecular interactions are given in Figure 6, and van
der Waals, electrostatic and total interaction energies for all
dipeptide dimers are presented in left, middle and right
columns of Supporting Information Figure S3, respectively,
showing the promising future of the GBEMP model in the
study of intermolecular interactions between dipeptide dimers.
From Supporting Information Figure S3, it can be observed

that, comparing to atomistic AMOEBA model, the GBEMP
model slightly underestimated the van der Waals interaction
energies in the attractive region. The worse case was found in
the calculation of the vdW interaction energies for the Asp
homodimer, showing the difference of 2.5 kcal/mol between
two models at the deepest point of the potential well
(Supporting Information Figure S3). The difference of less
than 1.0 kcal/mol between two models, however, was observed
for most of cases, indicating that the current Gay−Berne
parameters for dipeptide models are satisfactory.
The electrostatic interaction energies for dipeptide dimers

have been compared between the AMOEBA and GBEMP
models in Supporting Information Figure S3. Particularly, we
have shown that our GBEMP model was able to correctly
capture the repulsive feature of the electrostatic interactions for
some dipeptide dimers, such as Arg/Arg, Asp/Asp, Glu/Glu,
Gly/Gly, Gln/Glu, Lys/Lys, and Pro/Pro, as well as the
attractive property of the electrostatic interactions for some
other dipeptide dimers, such as Ala/Ala, Asn/Asn, Cys/Cys,
Gln/Gln, Ile/Ile, Leu/Leu, Met/Met, Phe/Phe, Ser/Ser, Thr/
Thr, Trp/Trp, Tyr/Tyr, Val/Val, Gln/Lys, and Lys/Glu.
In summary, the outstanding agreement between the

GBEMP and AMOEBA models in the calculations of
intermolecular interactions between dipeptide homodimers or
between dipeptide heterodimers, including the electrostatic and
vdW components, should lie on the anisotropic nature of the
Gay−Berne potential as well as the explicit treatment of electric
multipole potential. To further improve the transferability of
the GBEMP model, it appears to be more reasonable if

Table 2. EMP Parameters of the Coarse-Grained Particles
Defined in the Phenylalanine Dipeptide Model

index of EMP site charge dipole quadrupole

121 0.000 −1.463 2.001 −1.148 −0.014
0.281 −1.148 −0.927 0.009

−0.003 −0.014 0.009 −1.074
123 0.000 0.879 1.067 −1.148 0.138

−0.437 −1.148 1.258 −0.128
−0.024 0.138 −0.128 −2.325

493 0.000 0.879 1.067 −1.148 0.138
−0.437 −1.148 1.258 −0.128
−0.024 0.138 −0.128 −2.325

861 0.000 −1.463 2.001 −1.148 −0.014
0.281 −1.148 −0.927 0.009

−0.003 −0.014 0.009 −1.074
863 0.000 0.879 1.067 −1.148 0.138

−0.437 −1.148 1.258 −0.128
−0.024 0.138 −0.128 −2.325
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dipeptide dimers adopting more different configurations are
chosen as the training sets to optimize force field parameters.
However, it is impractical to comply with this idea because of
computational expenses or insufficient sampling. It is believable
that the best way of increasing the quality of GBEMP protein
model should be to use a large training set of proteins from
protein data bank for the parametrization, which is ongoing
work.
Distribution of the Backbone Torsions (ϕ/ψ). Under a

physiological condition, a folded protein usually consists of α-
helical and β-strand secondary structure elements connected by
random coils, such as turns and loops. It has been recognized
that both protein structure and conformational dynamics are
essential to biology function. Therefore, to thoroughly
understand protein functions, it is necessary to obtain dynamic
information of secondary structure elements, which are related
to two degrees of freedom: the backbone torsion angles ϕ(C−
N−Ca−C) and ψ(N−Ca−C−N). For instance, the Ramachan-
dran plot,60 describing the (ϕ/ψ) distribution, has been
extensively used to illustrate the propensity of the formation
of secondary structures for amino acids. In general case (except
for glycine and proline), the well-known Ramachandran plot
gives two major minima: (1) the first one is located in the
neighborhood of αR (ϕ ≈ −60, ψ ≈ −40) which belongs to α
basin; (2) the second one is observed in the region PPII (ϕ ≈
−60, ψ ≈ 150) or C5 (ϕ ≈ −150, ψ ≈ 170) of β basin. In
addition, some minor minima having higher relative free
energies are observed at αL (ϕ ≈ 60, ψ ≈ 40) and C7ax (ϕ ≈
−75, ψ ≈ 75), which are believed to be relevant to the

formation of turns and loops. However, the conformational
preferences of proline (Pro) are restricted to two regions αR (ϕ
≈ −60, ψ ≈ −40) and PPII (ϕ ≈ −60, ψ ≈ 150). In contrast,
glycine (Gly) has more conformational preferences distributed
in many different regions.
From the data gathered from Dunbrack Library,61 (see

Figure 7), it appears that, in the β basin, alanine (Ala), arginine
(Arg), cysteine (Cys), glutamine (Gln), glutamic acid (Glu),
histidine (His), leucine (Leu), lysine (Lys), methionine (Met),
phenylalanine (Phe), serine (Ser), threonine (Thr), and
tyrosine (Tyr) follow a similar energy pattern that two minima
are separated by a very shallow barrier. From the GBEMP
results (Figure 8), two minima were also found in the β basin
for arginine (Arg), glutamic acid (Glu), phenylalanine (Phe),
serine (Ser), threonine (Thr), and tyrosine (Tyr), but only one
minimum was observed for alanine (Ala), cysteine (Cys),
glutamine (Gln), histidine (His), leucine (Leu), lysine (Lys),
and methionine (Met). However, the relative populations of
the β region for these amino acids are matched reasonably well
between the GBEMP model and experimental results, see
Table 3.
The experimental free energy maps for the hydrophobic

residues, isoleucine (Ile) and valine (Val), exhibit a single
minimum in the β basin that is close to the C7eq region. This
feature has been captured by our GBEMP result for valine
(Val). It is surprising that two minima were observed from the
GBEMP energy map but one single minimum was found in the
experimental free energy map. The difference may be ascribed
to the reason that the GBEMP results were obtained from

Figure 4. Correlations between the GBEMP and AMOEBA results for the magnitude of the dipole moment of different dipeptide models (20 kinds
of dipeptides in total). In the calculations of the dipole moment for each dipeptide model, various conformations were chosen randomly from the
atomistic structures generated from atomistic MD simulation (using AMOEBA force field).
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simulating dipeptides while the experimental results were
actually derived from the folded protein structures. In fact, the
similar results have been observed from both the earlier work
done by Feig62 and our current work by performing the
atomistic simulation of valine (Val) using CHARMM force field
(Supporting Information Figure S4).
Comparing to some other amino acids, aspartic acid (Asp)

and asparagines (Asn) have overall broader β basin that
includes the C7eq region. Although the GBEMP model for Asp
and Asn have failed to reproduce this feature, the relative
populations of the β region in the (ϕ/ψ) distribution are
comparable between the GBEMP model and experimental
results, see Table 3.
In the α basin, the experimental energy landscape based on

the folded protein structures (Dunbrack Library) displays that
the predominated conformations around the αR region have
been sampled for all amino acids (Figure 7), which were
observed in GBEMP results as well (Figure 8). In addition, the
relative populations of the αR region are matched reasonably
well between the two methods, see Table 3.
According to the experimental Ramachandran plot based on

the Dunbrack library, most of amino acids have a shallow
minimum in the αL basin, which are also captured by our
GBEMP model in some cases. However, comparing to the β
and αR basins, αL conformations are less populated, which have
been correctly shown by our GBEMP model, explaining the

excellent correlation between the experimental and GBEMP
results in the (ϕ, ψ) distribution, see Figure 9.

Distribution of the Side Chain Torsion χ1. According to
the distribution of the side chain torsion χ1 for amino acids
(except for Gly, Ala, and Pro residues) calculated from either
experimental protein structures (Dunbrack Library) or our
GBEMP simulations of dipeptides (see Figure 10), three
dominated conformations were sampled in three narrow
regions g− (∼ 60°), t (∼180°), and g+ (∼300°), and in
general the relative population of the three regions follows the
order of preference: g+ > t > g−, demonstrating the excellent
correlation between the experimental and GBEMP results, as
seen in Figure 11.
In cases of the amino acids having the nonpolar or aromatic

side chains, such as isoleucine (Ile), (leucine) Leu,
(methionine) Met, valine (Val), phenylalanine (Phe), trypto-
phan (Trp) and tyrosine (Tyr), the slight difference between
the GBEMP and experimental results for the χ1 distribution was
observed. In particular, the excellent agreement between the
GBEMP and experimental results was found in the most
dominated region g+, where the relative population has been
measured as of 0.51−0.81, see Table 4.
Among the amino acids with polar and uncharged side

chains, asparagine (Asn), cysteine (Cys), and glutamine (Gln)
still favor the g+ conformation, for instance, the relative
populations of the three regions (g+, t, and g−) have been
measured as of 0.55−0.62, 0.26−0.31 and 0.07−0.14,

Figure 5. Correlations between GBEMP and AMOEBA results for electrostatic interactions between dipeptides and a single water (each water was
placed in different positions, see insert figures). For each dipeptide (its atomistic representation is shown in colored sticks in each inset figure
respectively), a number of waters (only oxygen atoms are shown in red beads in inset figures) were generated randomly surrounding it (any heavy
atom in a dipeptide molecule was separated from an oxygen atom of any generated water molecule in the range of 3.0−5. 0 Å), and then the
electrostatic interaction energies were calculated between the dipeptide and a single water placed in different positions respectively.
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respectively, according to the experimental χ1 distribution
(Dunbrack Library). However, in cases of serine (Ser) and
threonine (Thr), the most dominated region switches to the g−
conformation, the experimental relative population of which
has been measured as of 0.46−0.47. It is exciting that these
features observed from the experiment have been captured
quite well by our GBEMP model, as shown in Table 4 and
Figure 10. The obvious difference between the GBEMP and
experimental results for serine (Ser) has been observed in the t
region, perhaps owing to the different sampling methods
adopted by experiment and theoretical modeling, as we
mentioned above. For instance, this difference was similarly
observed in the atomistic CHARMM simulation of serine
dipeptide (see Supporting Information Figure S5).

As for the charged amino acids, such as arginine (Arg),
aspartic acid (Asp), Glu, and lysine (Lys), their relative
populations in the χ1 distribution have been measured as of
0.50−0.56, 0.33−0.34, and 0.07−0.16 for the g+, t, and g−
regions, respectively, on the basis of the Dunbrack library.
Generally speaking, our GBEMP model was able to capture
main features observed from the experimental results, especially
in cases of charged amino acids with long side chain, such as
Arg, Glu, and Lys. Although the apparent difference in the χ1
distribution between experimental and GBEMP methods was
observed for the charged amino acid having short side chain,
such as Asp, the overall correlation between GBEMP and
experimental results can be satisfactorily achieved in the χ1
distribution. As a matter of fact, the visible difference in the χ1

Figure 6. Intermolecular interaction energies for peptide dimers: (A) Phe/Phe, (B) Glu/Glu, (C) Gln/Gln, (D) Gln/Glu, (E) Gln/Lys, and (F)
Lys/Lys, using AMOEBA atomistic force field (in black) and GBEMP coarse-grained force field (in red).
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distribution has also been detected between atomistic and
experimental results when the atomistic simulation of Asp
dipeptide was performed by using CHARMM 27 force field
with CMAP (Supporting Information Figure S5). The sampling
method employed in theoretical and experimental models
might contribute to the difference, as it happened in the case of
serine (Ser).

Molecular Dynamics Simulations of Proteins. In this
work, we attempt to apply the GBEMP model to study the
dynamics of two test cases of proteins (PDB IDs 2M6O and
2LXY),63,64 which have different secondary structures and sizes.
Actinobacterial transcription factor RdpA (PDB ID 2M6O)63 is
a small protein (48 amino acid residues) consisting of two
antiparallel β-sheets; 2-mercaptophenol-α3C (PDB ID

Figure 7. Potential of mean force (PMF) results for the backbone torsion (ϕ/ψ) distributions of amino acids, calculated from the experimental
protein structures (Dunbrack Library). The color bars represent the free energy in the unit of kcal/mol.

Figure 8. Potential of mean force (PMF) results for the backbone torsion (ϕ/ψ) distributions of amino acids, calculated from the GBEMP
simulations of dipeptides. The color bars represent the free energy in the unit of kcal/mol.
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2LXY)64 is a three α helix-bundle protein of 67 amino acid
residues. In order to evaluate the quality of our GBEMP model
in modeling the proteins, we have also carried out atomistic
MD simulations on the two cases using AMBER 03 force field65

in the AMBER simulation package.66

The backbone Cα root-mean-square deviations (RMSDs) of
two proteins, plotted in Figures 12A and 13A, were measured
as of around 4.0 Å, indicating that the overall native structures
of the proteins were reasonably maintained throughout the
coarse-grained MD simulations. Figures 12A and 13A show that
the coarse-grained MD simulations reached equilibrium within
10 ns while the equilibrium can be obtained within 2 ns as for
the atomistic MD simulations. So, the last 10 and 3 ns were
considered as the production runs for the coarse-grained and
atomistic MD simulations respectively. Although larger RMSD
values were observed for the GBEMP model when comparing
to atomistic AMBER model, the difference of the equilibrated

RMSD values between the GBEMP and atomistic AMBER
models is about 1.5 Å, acceptable for a coarse-grained model.
The backbone Cα root-mean-square fluctuations (RMSFs)

along amino acid sequence of a protein can provide the
information about the protein’s flexibility. The peaks indicate
the high flexibility while the valleys are associated with the low
flexibility. In the case of the actinobacterial transcription factor
RdpA, the overall RMSF landscape of the atomistic AMBER
model is consistent with that of our GBEMP model (Figure
12B), especially in the regions near either N-terminus or C-
terminus. The RMSF values in the region (residues 20−25)
were overestimated by GBEMP model; however, the segment
(residues 20−25) belongs to an intrinsically flexible loop
connecting two antiparallel beta sheets. In the case of 2-
Mercaptophenol-alpha3C protein, the atomistic model has
shown that the two regions (residues 22−26 and residues 44−
48) are significantly flexible, and this feature was captured by
the GBEMP model (Figure 13B). Overall the peaks and valleys
in the atomistic RMSF landscape were reasonably well
reproduced by the coarse-grained model, demonstrating that
this anisotropic model is promising in modeling proteins.
In the end, we would like to point out that the computational

efficiency of our GBEMP model is upbeat in modeling proteins.
When we simulated the protein 2M6O (48 residues) by using
coarse-grained GBEMP and atomistic AMBER models with a
single processor, a day was needed for the GBEMP simulation
to acquire the 20 ns MD trajectory while it was necessary to
spend about 13 days to obtain the 5 ns atomistic MD trajectory.
Similarly, in the case of the protein 2LXY (67 residues), 2.5
days was required for the 20 ns GBEMP simulation and a
month for the 5 ns AMBER simulation with TIP3P waters.
Therefore, in both cases, the GBEMP model would be able to
speed up MD simulation by the factor of around 50 with
acceptable loss of accuracy. In this respect, our GBEMP model
can outperform the PRIMO CG model, which has been tested
with achieving about 10 to 20 speedup compared to
CHARMM atomistic simulation in an explicit solvent. Although
our GBEMP model underperforms the MARTINI coarse-
grained model (achieving about 75−100 speedup)67 in terms of

Table 3. Relative Populations of Different Regions (αR, β and αL) in the (ϕ/ψ) Distribution for Amino Acids Obtained from the
Experimental Protein Structures (Dunbrack Library) and GBEMP Simulations of Dipeptides

αR β αL

amino acid experiment GBEMP experiment GBEMP experiment GBEMP

Ala 0.463 0.464 0.450 0.447 0.040 0.033
Arg 0.568 0.654 0.389 0.271 0.022 0.049
Asn 0.471 0.587 0.362 0.269 0.097 0.101
Asp 0.522 0.651 0.366 0.296 0.044 0.034
Cys 0.601 0.577 0.356 0.412 0.026 0.000
Gln 0.601 0.588 0.356 0.325 0.026 0.050
Glu 0.644 0.639 0.324 0.326 0.018 0.022
His 0.476 0.617 0.454 0.382 0.033 0.000
Ile 0.429 0.380 0.564 0.619 0.001 0.000
Leu 0.567 0.570 0.413 0.388 0.007 0.014
Lys 0.581 0.589 0.373 0.410 0.029 0.000
Met 0.560 0.715 0.408 0.284 0.013 0.000
Phe 0.450 0.475 0.512 0.478 0.015 0.046
Ser 0.468 0.462 0.484 0.503 0.016 0.000
Thr 0.455 0.485 0.512 0.501 0.003 0.010
Trp 0.489 0.589 0.475 0.368 0.012 0.004
Tyr 0.452 0.563 0.506 0.432 0.016 0.000
Val 0.378 0.355 0.614 0.618 0.001 0.013

Figure 9. Correlation between the GBEMP and experimental
(Dunbrack Library) results for the relative population of the three
regions (αR, β, and αL) based on the Ramachandran plot for non-
proline and non-glycine amino acids.
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speed, it is believable that our GBEMP model would be more
accurate than the MARTINI model due to the use of
anisotropic Gay−Berne potential and the inclusion of electric
multipoles. Furthermore, by comparing the speed of GBEMP
model with that of AMOEBA and CHARMM models in
simulating dipeptides in implicit solvents (GK model for
AMOEBA and GB model for CHARMM), the speedup factor
of about 50−200 can be achieved compared to implicit
AMOEBA simulations and that of about 10−50 can be reached
compared to implicit CHARMM simulations respectively,
depending on the type of amino acids. This speed-up will be

further improved by optimizing the preliminary rigid-body MD
code.

■ CONCLUSIONS
In most of coarse-grained models, the coarse-grained particles
are considered to be isotropic. However, in a biomolecular
system, a coarse-grained particle, representing a group of atoms,
is actually anisotropic, and thus it is necessary to use anisotropic
potentials to provide accurate description of the nonbonded
interactions. Among a variety of anisotropic potentials, the
Gay−Berne potential, based on a Gaussian-overlap potential,

Figure 10. Distributions of the side chain torsion χ1for amino acids (except for Gly, Ala, and Pro), calculated from the experimental protein
structures (Dunbrack Library) and GBEMP simulations of dipeptides. Experimental and GBEMP results are represented by the dash and solid lines,
respectively.
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has been extensively used to measure the van der Waals
interactions between the coarse-grained particles being
considered to be elliptic. In this paper, we presented the
extension of the GBEMP coarse-grained model, adopting the
framework of combining anisotropic Gay−Berne potential with
point electric multipole (EMP) potential, to accurately and
efficiently model amino acid dipeptides and proteins. In the
GBEMP model, the atomistic information of amino acids was
well preserved in the rigid bodies composed of Gay−Berne
particles and point electric multipoles. Thus, the GBEMP
model can not only be used to study proteins in a standalone
fashion but can also be combine with other atomistic models in
the “parallel” or “serial” manner.
The GBEMP model was parametrized to reproduce the

individual energy components, vdW, and electrostatics, of the
atomistic force field. As for various peptide−peptide and
peptide−water systems, the coarse-grained model was able to
provide the description of nonbonded interactions comparable
to atomistic AMOEBA model. Furthermore, for each dipeptide

Figure 11. Correlation between the GBEMP coarse-grained and
experimental (Dunbrack Library) results for the relative population of
the three regions (g−, t, and g+) in the χ1distribution for amino acids
(except for Gly, Ala, and Pro).

Table 4. Relative Populations of Different Regions (g−, t, and g+) in the χ1 Distribution for Amino Acids Obtained from the
Experimental Protein Structures (Dunbrack Library) and GBEMP Simulations of Dipeptides

g− t g+

amino acid experiment GBEMP experiment GBEMP experiment GBEMP

Arg 0.087 0.177 0.338 0.329 0.575 0.494
Asn 0.148 0.099 0.299 0.294 0.553 0.607
Asp 0.164 0.087 0.332 0.357 0.504 0.556
Cys 0.171 0.231 0.264 0.302 0.565 0.467
Gln 0.071 0.061 0.312 0.395 0.617 0.544
Glu 0.080 0.246 0.336 0.250 0.584 0.504
His 0.125 0.093 0.350 0.254 0.524 0.652
Ile 0.123 0.057 0.086 0.135 0.791 0.807
Leu 0.013 0.082 0.332 0.215 0.655 0.703
Lys 0.069 0.056 0.344 0.453 0.587 0.490
Met 0.070 0.163 0.291 0.190 0.638 0.647
Phe 0.118 0.057 0.341 0.426 0.541 0.517
Ser 0.463 0.615 0.243 0.165 0.294 0.220
Thr 0.468 0.529 0.078 0.143 0.454 0.328
Trp 0.156 0.154 0.340 0.342 0.504 0.504
Tyr 0.123 0.203 0.346 0.317 0.531 0.480
Val 0.093 0.171 0.333 0.210 0.574 0.619

Figure 12. (A) RMSD values of the backbone Cα atoms from the
crystal structure (PDB ID 2M6O) and (B) RMSF values of the
backbone Cα atoms were calculated using AMBER 03 atomistic force
field (in black) and GBEMP coarse-grained force field (in red).
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model, the excellent correlation between GBEMP and
AMOEBA models was observed in the calculations of the
dipole moment (total magnitude, x-, y-, and z-components),
providing additional support for the promising performance of
the GBEMP model
For a variety of common amino acids, the conformational

distributions of the backbone torsional angles (ϕ, ψ) and the
side chain torsion χ1 were both in excellent agreement with
PDB structural statistics (Dunbrack Library). In addition, two
proteins (2M6O and 2LXY) having different sizes and
structures were simulated to evaluate the quality of the
GBEMP model. It has been shown that the native structures
of the proteins were reasonably maintained and the landscape
of B-factors derived from atomistic simulations was mostly
reconstructed by the GBEMP model. Meanwhile comparing to
AMOEBA, AMBER and CHARMM force fields, the computa-
tional cost of the GBEMP model in simulating proteins can be
reduced about 10−200 times, depending on specific cases or
atomistic models.
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