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Seizure‑related differences 
in biosignal 24‑h modulation 
patterns
Solveig Vieluf 1,2*, Rima El Atrache1, Sarah Cantley1, Michele Jackson1, Justice Clark1, 
Theodore Sheehan1, William J. Bosl4,5, Bo Zhang3 & Tobias Loddenkemper 1

A seizure likelihood biomarker could improve seizure monitoring and facilitate adjustment of 
treatments based on seizure risk. Here, we tested differences in patient‑specific 24‑h‑modulation 
patterns of electrodermal activity (EDA), peripheral body temperature (TEMP), and heart rate (HR) 
between patients with and without seizures. We enrolled patients who underwent continuous video‑
EEG monitoring at Boston Children’s Hospital to wear a biosensor. We divided patients into two 
groups: those with no seizures and those with at least one seizure during the recording period. We 
assessed the 24‑h modulation level and amplitude of EDA, TEMP, and HR. We performed machine 
learning including physiological and clinical variables. Subsequently, we determined classifier 
performance by cross‑validated machine learning. Patients with seizures (n = 49) had lower EDA levels 
(p = 0.031), EDA amplitudes (p = 0.045), and trended toward lower HR levels (p = 0.060) compared 
to patients without seizures (n = 68). Averaged cross‑validated classification accuracy was 69% 
(AUC‑ROC: 0.75). Our results show the potential to monitor and forecast risk for epileptic seizures 
based on changes in 24‑h patterns in wearable recordings in combination with clinical variables. 
Such biomarkers might be applicable to inform care, such as treatment or seizure injury risk during 
specific periods, scheduling diagnostic tests, such as admission to the epilepsy monitoring unit, and 
potentially other neurological and chronic conditions.

Currently, the standard treatment outcome measure in epilepsy is seizure reduction or prevention. Therefore, 
effective epilepsy treatment relies on determining seizure frequency, and ideally preemptive seizure likelihood 
assessment. Seizure diaries are widely used for seizure tracking and show potential for seizure forecasting based 
on cyclic  patterns1–3. Furthermore, seizure likelihood assessments have been accomplished in adults with neuro-
surgically implanted intracranial  electrodes4, indicating that detectable physiological changes precede seizures. 
However, a less invasive seizure forecasting method is needed.

Recent developments in wearable technologies now enable improved seizure tracking based on autonomic 
manifestations of seizures. Autonomic nervous system (ANS) changes occur frequently in children with epi-
lepsy and may serve as a potential biomarker for seizure  risk5–7. Specifically, electrodermal activity (EDA), an 
autonomic marker for sympathetic skin activity, exhibits unique properties in the setting of seizures and thus 
may be used to determine seizure likelihood when combined with other ANS  modalities8–10 and potentially 
additional clinical information. In our previous study, group-specific analysis of continuously monitored EDA 
showed a 24-h pattern of  change11. The modulated pattern differed between patients with and without seizures. 
On a group level, recordings with seizures had lower EDA levels and amplitudes than recordings without sei-
zures. Our previous  study11 derived 24-h patterns from patient groups and thus was inherently limited to a group 
difference analysis. In this study, we present an individual-based analysis of 24-h patterns. To depict the ANS 
multidimensionally, we also include heart rate (HR) in our analyses in addition to EDA and peripheral body 
temperature (TEMP). An individualized modeling approach allows for testing biomarker performance as an 
essential next step to evaluate the clinical relevance.
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This study aims to validate seizure-related individual differences in 24-h modulation patterns in autonomic 
recordings, including EDA, TEMP, and HR. Additionally, we aimed to differentiate between patient groups with 
and without seizures by combining physiological and clinical variables. We enrolled patients undergoing continu-
ous video-EEG monitoring and asked patients to wear an E4 biosensor, utilizing video-EEG recorded seizures as 
the gold standard for seizure detection. Based on our previous group-based 24-h modeling, we expected lower 
modulation levels and amplitudes for patients with seizures.

Results
We included 117 patients with epilepsy diagnoses and complete clinical data. Forty-nine patients formed the 
seizure group (8 patients with FIAS, 26 patients with GTCS, and 15 patients with both FIAS and GTCS), and 
68 patients formed the no-seizure group (see Supplement 1 for inclusion diagram). Demographic and clinical 
characteristics are summarized in Table 1 for each subgroup. Additional seizure information is presented in 
Supplement 2 for the seizure group.

Individual recordings revealed a pattern of change over time for both groups and all modalities (Fig. 1). 
While EDA and TEMP peaked at night, HR decreased during the night and showed a trough in the morning 
hours, starting around 6 am. TEMP was peripherally recorded at the wrist or ankle and therefore varies from 
core temperature curves. EDA level and amplitude, as well as tendencies for HR level, showed group differences 
with lower values for the seizure group. Descriptive group statistics and univariate logistic regression p-values 
for modulation level and amplitudes of EDA, TEMP, and HR are summarized in Table 2.

The differentiation of recordings with and without seizures was better than chance. On average, cross-val-
idated machine learning models differentiate between groups with an accuracy of 0.69, a sensitivity of 0.68, a 
specificity of 0.69, and an AUC-ROC of 0.75 (see Supplement 3 for individual classifier performance). Label 
shuffling revealed that classification results significantly differ from chance (mean accuracy of 200 shuffles = 0.52; 
p = 0.05, for all classifiers). Feature selection embedded in the cross validation revealed an optimal parameter 
number of 15, meaning that all wearable and clinical data contribute to the best classification model. Wearable 
data alone did not classify patients. Clinical data contained relevant information and allowed classifying patients 
with and without seizures (see Supplement 3 for classifier performance).

Results of a within patient comparison of EDA, TEMP, and HR levels and amplitudes are illustrated in Sup-
plement 4. In our data set, 14 patients had a pre-seizure and a seizure record. The 14 patients are part of the 
seizure group, and the seizure-free recordings were only included in the within-patient comparison and not 
for the group comparison. HR levels were lower in pre-seizure compared to seizure recordings (F(1,13) = 6.68, 
p = 0.02, ηp

2 = 0.34). EDA amplitudes (F(1,13) = 3.46, p = 0.09, ηp
2 = 0.21) trended lower in pre-seizure com-

pared to seizure recordings. Modulation TEMP levels and amplitudes (level: F(1,13) = 0.94, p = 0.35, ηp
2 = 0.07; 

amplitude: F(1,13) = 0.81, p = 0.38, ηp
2 = 0.06), HR amplitude (F(1,13) = 2.01, p = 0.18, ηp

2 = 0.13) and EDA level 
(F(1,13) = 1.27, p = 0.28, ηp

2 = 0.09) did not differ between recordings.

Discussion
In a previous study, we showed seizure-related differences in 24-h EDA patterns, modeled per patient group, 
between patients with and without seizures. The current study validated our previous finding and built on the 
results through patient-specific 24-h pattern modeling and the inclusion of clinical variables and HR record-
ings, enabling us to differentiate between patients who had one or more seizures and patients without seizures 
during the recording. We used patient-level analysis to test the characteristics of the 24-h pattern as a biomarker 
for seizure monitoring. Following a multimodal approach, we analyzed characteristics of 24-h patterns of HR, 
EDA, and TEMP to classify patients into those with and without seizures. Patients with seizures had lower 
EDA levels and amplitude and lower HR as compared to patients without seizures. Feature selection revealed 
that combining EDA mean levels with clinical variables produced the best model and this model differentiates 
between patients with and without seizures better than chance. Comparing pre-seizure to seizure recordings 
within the same patient suggests that changes happen before the seizure day and, consequently, physiological 
markers might be predictive.

24-h patterns of peripherally recorded autonomic activity differ between recordings with and without seizures 
within and across participants. Central regulations of circadian patterns modulate ANS  activity12. As a result, 
ANS subsystem activity shows interconnected 24-h patterns that change based on the disease  state13,14. For 
epilepsy patients, 24-h patterns might be affected by long- and short-term alterations of autonomic function-
ing. While individual seizures manifest in acute autonomic responses, recurrent seizures and changes in central 
structures may cause long-term changes in autonomic control and  regulations15. Heart rate, body temperature, 
and EDA exhibit circadian variation. The suprachiasmatic nucleus, responsible for the body’s circadian control, 
guides the autonomic outputs to maintain homeostasis and the organized physiological shifts between sleep and 
awake. Disruption of this control may increase susceptibility to  disease16. In healthy subjects, HR peaks early in 
the afternoon and drops during the  night17. Sweating threshold and skin temperature are highest in the evening 
and lowest past  midnight18. Conversely, EDA peaks past midnight and is lowest during late afternoon  hours11,19, 
which is similar to the no-seizure group results. In this study, we focused on seizure-related differences in 24-h 
modulation patterns of autonomic activity and therefore included patients with epilepsy diagnosis only. We 
validated our previous finding that 24-h modulation patterns in EDA recordings show a seizure-related lower 
amplitude and level of the  curve11. Moreover, the multimodal analysis revealed a lower HR level in the 24-h 
modulations, confirming the effects of epilepsy on cyclic regulation of the cardiorespiratory  system20,21.

Furthermore, for a small subset of patients, the patient-specific analysis showed that HR levels are lower while 
EDA amplitudes tended to be higher in pre-seizure compared to seizure recordings. This result suggests HR is 
altered before a seizure and is a step towards understanding the 24-h modulation curve flattening as a pre- or 
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post-ictal phenomenon and that seizure-related autonomic changes might occur on different time scales for 
different modalities, i.e., following a multimodal pattern.

The combination of physiological and clinical variables allows to distinguish between recordings with and 
without seizures. Combining 24-h pattern levels and amplitudes with select clinical variables classifies best 
between patient groups. Patient group classification has been mostly limited to psychogenic nonepileptic seizures 
and epileptic seizures across  patients23–25. Thus, we expected peri-ictal changes to induce a pattern of change that 
is constant across patients. However, while some similarities exist across patients, ANS activity largely varies 
between and within  individuals26–28.

Individual clinical characteristics affect ANS modulation in patients with epilepsy. By including clinical 
variables, we accounted for some of this variability across patients. The final classification model included sex, 
epilepsy diagnosis, age at first seizure, MRI findings, reduction of ASM during the hospital stay, normal EEG, 

Table 1.  Group-wise demographic and clinical characteristics of all patients included in 24-h EDA pattern 
analysis. We calculated Chi-square tests for categorical and Mann–Whitney-U tests for continuous variables 
to compare groups. *Patients with interictal abnormalities may have had more than one abnormality. **If 
two wristbands were placed, we included one recording and preferred left wrist, over right wrist, over ankle 
recordings.

No-seizure group (n = 68) Seizure group (n = 49) p-value

Sex 0.098

Male 30 (44.1%) 30 (61.2%)

Female 38 (55.9%) 19 (38.8%)

Age at enrollment 0.019

In years, median (IQR, p25-p75) 9.4 (8.4, 7.0–15.4) 13.2 (7.2, 9.6–16.8)

Age at First Seizure 0.021

In years, median (IQR, p25-p75) 3.5 (5.9, 1.1–7.0) 7.0 (8.5, 2.0–10.5)

Seizure frequency (estimated per 30 days) 0.839

No per month (IQR, p25-p75) 4.0 (20.3, 0.7–20.9) 4.0 (9.7, 1.0–10.7)

Etiology of epilepsy 0.219

Structural 22 (32%) 23 (47%)

Unknown 36 (53%) 20 (41%)

Genetic 6 (9%) 3 (6%)

Immune 1 (2%) 2 (4%)

Infectious 0 (0%) 1 (2%)

Metabolic 0 (0%) 0 (0%)

Not Reported 3 (4%) 0 (0%)

Interictal EEG*

Normal 18 (26%) 4 (8%) 0.097

Spikes 55 (81%) 43 (88%) 0.320

Focal Slowing 14 (21%) 23 (47%) 0.002

Generalized Slowing 10 (15%) 0 (0%) 0.005

MRI Findings 0.050

Normal 20 (29%) 6 (12%)

Abnormal 33 (49%) 25 (51%)

Not done/not available 15 (22%) 18 (37%)

Reduction of at least 1 ASM during EMU stay 0.001

Yes 18 (26%) 31 (63%)

No 46 (68%) 18 (37%)

Not available 4 (6%) 0 (0%)

Wristband Location** 0.350

Left wrist 18 13

Left ankle 18 18

Left unavailable 3 0

Right wrist 17 13

Right ankle 11 4

Right unavailable 1 0

Unavailable 0 1

Recording length in hours (after 10 min segment exclusion) 0.014

Mean (p25-p75) 20.94 (18.5–23.0) 19.33 (17.0–21.3)
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spikes, and generalized slowing. Females generally have higher parasympathetic activity, whereas males have 
higher sympathetic  surges29. Additionally, sex might interact with other clinical variables as well as with the 
physiological variables, but our data set is too small to further explore interactions or potential influence of 
puberty onset. The age at first seizure relates to many developmental processes and indicates the duration of 
epilepsy as well, which might result in the manifestation of seizures over time. Furthermore, structural brain 
abnormalities seen on MRI may alter or disrupt the pathways and processes of the central autonomic  network30. 
The reduction of ASM is meant to induce seizures during the stay and our results illustrate this aspect. The impact 
of ASMs on seizure likelihood is crucial, and while we did not have detailed pharmacokinetic data, we included 
patients if ASMs were reduced to adjust for possible interaction, and medication effects will require additional 
future study. Furthermore, interictal EEG findings contribute to the classification of patients with and without 
seizures. Twenty-two patients had a normal EEG and were diagnosed with epilepsy. More of those patients were 
in the no-SZ (18) than in the SZ (4) group, meaning that a patient with a normal EEG is likely to not have a 
seizure. Two types of epileptiform activity, i.e., spikes and general slowing contributed to the predictive model, 
while focal slowing was excluded. Note that patients can have multiple interictal EEG abnormalities. Beyond 
the importance of EEG activity for seizure likelihood assessments, the interplay of autonomic markers and the 
interictal EEG activity may also be of interest for further developing seizure detection and prediction systems. 

Figure 1.  Individual recordings of EDA, TEMP, HR (from top to bottom) averaged over 10-min segments of 
no-seizure (teal left panel) and seizure patients (purple middle panel) are displayed over 24 h. The right panel 
shows the mean curves of respective autonomic modalities for no-seizure (green) and seizure (purple) patient 
groups.

Table 2.  Group-wise summary of modulation level and amplitude of the 24-h modulation of EDA, TEMP, and 
HR. Mean, standard deviation (SD), median, and 25th and 75th percentiles are presented for the no-seizure 
and seizure groups. P = values of univariate logistic regressions are presented in statistics. Significant values are 
in bold.

No-seizure group Seizure group Statistics

Mean SD Median Percentile 25 Percentile 75 Mean SD Median Percentile 25 Percentile 75 P

Level of 24-h modulation

EDA (µS) 2.31 3.38 1.21 0.30 2.58 1.11 1.17 0.74 0.34 1.29 0.031

TEMP (°C) 35..02 1.29 35.02 34.02 35.90 34.96 1.35 34.73 34.34 35.84 0.804

HR (bpm) 91.05 14.16 91.11 79.70 99.89 86.17 12.52 83.92 77.81 93.97 0.060

Amplitude of 24-h modulation

EDA (µS) 5.33 6.20 3.26 0.45 8.14 3.18 4.21 1.41 0.59 4.14 0.045

TEMP (°C) 1.67 1.17 1.46 0.82 2.29 2.05 1.62 1.54 0.99 2.66 0.148

HR (bpm) 24.28 10.52 22.31 16.39 31.25 24.04 10.91 22.72 15.03 31.52 0.906
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Selecting and collecting the most informative physiological and clinical data will remain an ongoing process and 
might improve classifier performance.

Monitoring 24-h modulation patterns might contribute to seizure detection and prediction. We have shown 
the ability to distinguish between recordings with and without seizures based on machine learning-based clas-
sifications. As our data analysis includes full-day recordings despite seizure time during the day, we, currently, 
cannot determine whether the 24-h modulations are affected by pre-ictal or post-ictal changes or both. This 
distinction would allow for further evaluation of 24-h patterns as biomarkers for seizure detection, prediction, 
and forecasting. Our group-based monitoring approach could be combined with patient-specific approaches 
presented for seizure prediction and  detection10,22,31–33. Estimating seizure risk based on group classification is 
feasible after one day of recording and without the occurrence of a seizure. These findings show great potential 
for the development of patient-specific approaches to individualized seizure monitoring but require obtaining 
recordings with multiple seizures.

The 24-h pattern biomarkers could also be combined with existing forecasting approaches. Besides physi-
ological data, seizure diaries and spike evaluations from EEG recordings have been successfully tested as seizure 
forecasting tools. In the outpatient setting, seizure diary data has shown the potential to monitor  seizures34,35. 
In the inpatient setting, specifically during video-EEG monitoring, spikes are valuable to seizure forecasting 
 models36,37. Both approaches involve cyclic seizure patterns and may be related to the 24-h patterns we establish 
here. First empirical evidence showed that seizures occurred phase-locked to circadian and multi-day cycles in 
HR  recordings38. As seizure patterns occur on multiple time  scales1,2, it might be of interest to test for similar 
patterns in multimodal ANS recordings. Seizure monitoring systems may even further be improved by combin-
ing these ANS recordings with seizure diaries and characteristics of physiological rhythm.

Findings need to be interpreted in the setting of data acquisition, including related selection and information 
bias. This study is limited by the patient cohort, quality of the E4 signals, and study setting. While our patient 
population is robust in the context of a clinical trial, machine learning approaches require a much larger number 
of patients to achieve high algorithm performance and clear results. Larger sample size would allow the inclusion 
of additional patient variables in the forecast, which would reduce classification uncertainty. Additionally, the 
wide age range of the cohort may have limited feature selection. Our best model did not include age at enrollment 
or age at epilepsy onset, but these variables could be predictive with a larger sample size. As this is a retrospective 
study, clinical data collection is limited to a chart review of existing clinical notes, which induces an information 
bias. Collecting and analyzing additional clinical information, such as ASM type and dose, patients specific and 
physiological variables, as well as seizure diary information, could improve the model.

We attempted to mitigate selection bias based on enrollment of patients to the video-EEG monitoring by 
offering enrollment randomly to patients, but we cannot rule out that we may have selected more severely affected 
patients based on inpatient enrollment, and results can therefore not be generalized without additional analysis. 
To test for generalizability, 24-h patterns in patients with other seizure types need to be assessed. Longitudinal 
measurements would also be necessary for within-patient analysis, which may lead to markers for day-to-day 
variability in 24-h patterns. Ideally, longitudinal measurements would occur in both inpatient and outpatient 
settings. However, the outpatient setting might introduce recording quality challenges.

Data quality is one of the major challenges with wearable recordings. In this study, we set thresholds to 
detect low signal quality. For example, periods, where the device lost contact with skin, were excluded from 
further analysis. A standardized data quality assessment tool would help to score signal quality and could be 
integrated into outcome reliability estimations. Data storage and battery life are the main limiting data quality 
factors in wearables but can be addressed in preprocessing to select recorded ANS modalities. Furthermore, 
the sensors used in this study do not include a marker for respiratory changes, core body temperature, or room 
temperature. However, the device has the advantage that the sub-modalities are recorded synchronized at the 
same body position. Future fine tuning of machine learning parameters based on larger data set may be able to 
refine results further. Despite limitations, this study confirms seizure-related differences in modeled 24-h pat-
terns from shorter recordings and shows that the analysis of these patterns in the longitudinal setting could have 
much potential in seizure monitoring.

In summary, seizure-induced changes in autonomic activity affect 24-h modulation patterns in individuals. 
Differences point towards lower activity and smaller deflections on a 24-h scale. Within-patient comparison vali-
dates our previous finding that ANS changes occur before seizures with different timing for different modalities. 
Our results show the potential to monitor epileptic seizures based on changes in 24-h patterns from wearable 
recordings when combined with clinical variables. Such biomarkers might have the potential for application to 
other neurological diseases that affect autonomic activity.

Materials and methods
Standard protocol approvals, registrations, and patient consent. The study was approved by 
the Boston Children’s Hospital Institutional Review Board (IRB-P00001945). Written informed consent was 
obtained from all participants and/or their guardians. This research was performed in accordance with the 
guidelines and regulations of the Institutional Review Board at Boston Children’s Hospital and all applicable 
government regulations and the Declaration of Helsinki.

Patient selection. We included prospectively enrolled patients admitted to the Long-Term Epilepsy Moni-
toring Unit (EMU) for video-EEG monitoring at Boston Children’s Hospital, between February 2015 and Febru-
ary 2021, who wore an E4 biosensor (Empatica Inc., Milan, Italy) on either wrists or ankles. We selected patients 
who had at least one generalized tonic–clonic seizure (GTCS) or focal impaired awareness seizure (FIAS) during 
video-EEG while wearing the E4 device (SZ), or who did not have seizures during video-EEG (no-SZ) (Supple-
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ment 1). We excluded patients with status epilepticus (seizures longer than 10 min for FIAS and 5 min for GTCS) 
and patients with incomplete data. If multiple recordings were available per patient, we included the earliest 
recording favoring the right body side, to equalize the number of recordings of the left and right sides of the 
body, as the sensor was placed more often on the left body side in this dataset. The sensor location did not differ 
between groups (see Table 1). For the SZ group, the recording that included at least one seizure was selected. 
If multiple 24-h recordings contained seizures, we selected the one with fewer seizures to maximize inter-ictal 
recording length.

Data recording and quality check. The E4 sensors captured electrodermal activity (EDA, sampling rate 
4 Hz), peripheral body temperature (TEMP, sampling rate 4 Hz), and heart rate (HR, sampling rate 1 Hz). The 
recordings started between 9 a.m. and 4 p.m. We included data up to 5 p.m. the next day. To allow wristbands 
to calibrate and to exclude the wristband removal time from the recording, we excluded the first 20 min and 
last 10 min of each recording. The recording start time was rounded up to the nearest 10-min increment (e.g., 
a recording start time of 9:47 a.m. was rounded to 9:50 a.m.). We performed a data quality check per 10-min 
segment. The quality check failed when 10-min mean values had either an EDA level lower than 0.05 µS, an HR 
lower than 45 bpm or higher than 200 bpm, or a TEMP lower than 20 °C or higher than 40 °C. The peripheral 
recordings represent a combination of ambient and body temperatures and therefore might be comparably low 
if the ambient temperature is low. If the data quality check failed, we excluded these segments from the analy-
sis. After the quality check and seizure time exclusion, we excluded any remaining patients with less than 80 
clean segments, to ensure that our 24-h modeling is based on a recording length of over 13 h. For SZ patients, 
we excluded three 10-min pre-ictal segments and six post-ictal 10-min segments, including the segment dur-
ing which the seizure occurred. We evaluated a total of 18,072 segments. From those we excluded 2589 due to 
low data quality and 1016 due to seizures, leading to a final data set of 14,467 10-min segments. Some patients 
were enrolled on multiple days during the same EMU stay. For the above-mentioned analysis, we included only 
one recording per patient. If there were multiple recordings, we selected one with seizure, and between seizure 
recordings we chose the first one during the admission for the main analysis. To obtain insights into within-
patient effects, we analyzed seizure-free recordings for the SZ patients, when available. Seizure-free days were 
recorded one or two days before the seizure day, and we modeled 24-h patterns and calculated amplitude and 
level for EDA, HR, and TEMP as described above. The within-patient comparison was a separate analysis testing 
for within-patient changes to derive a hypothesis about using 24-h patterns in seizure forecasting models. This 
data set did not contain enough seizure-free days after the seizure day so we could not evaluate the potential of 
24-h patterns in seizure detection models.

Clinical data collection. We collected clinical data for patients that passed the data quality check. Using 
clinical notes, we collected age, sex, age of first seizure, etiology of epilepsy, MRI findings, seizure frequency, 
reduction in anti-seizure medications (ASM) during the hospital stay, and interictal abnormalities, i.e., normal 
EEG, spikes, focal slowing, generalized slowing (for details see Supplement 5). Seizure frequency values were 
missing for 22 patients. We replaced those with the group mean to include patients for the overall analysis. Per 
ILAE 2017 guidelines, a board-certified epileptologist reviewed the video-EEG recordings to determine seizure 
type and electrographic seizure onset and offset  times39. We classified tonic–clonic seizures of focal and general-
ized onset as GTCS.

Data analysis and statistics. Data analysis was performed using MATLAB (Version R2019b, The Math-
Works Inc., Natick, Massachusetts, USA). EDA, TEMP, and HR recorded values were averaged over 10-min 
segments for data analysis (Fig. 2). Using a nonlinear mixed-effects harmonic  model40,41, we modeled the 24-h 
pattern of EDA, TEMP, and HR, by the nlinfit function implemented in MATLAB with two harmonic terms 
for EDA and HR and one harmonic term for TEMP. We calculated the modulation’s mean level and amplitude 
from the resulting curve of each patient. Two-tailed statistical tests were used and a significance level of 0.05 was 
predetermined. SPSS version 23 (IBM Corp., Armonk, New York, United States) was used for data analysis. We 
performed univariate logistic regression and tested for group differences in modulation level and amplitude of 
EDA, TEMP, and HR.

For classification between seizure and no seizure patients, we implemented several supervised learning algo-
rithms from scikit-learn version 0.23.2 in Python (Python Software Foundation, Wilmington, DE, USA; version 
2020.3.3)42. Specifically, we investigated the performance of the following five learning algorithms along with 
logistic regression: K-nearest neighbor, random forest, Ada Boost, Gaussian naive Bayes, and support vector 
machine (SVM; linear and nonlinear with Radial Basis Function (RBF) kernel). We used tenfold cross-validation 
and default hyperparameters of the scikit-learn toolbox. Additionally, we randomly shuffled the data labels 200 
times and statistically compared the performance of the classifiers for the shuffled labels to the original labels 
by t-test. Code can be found here: https:// doi. org/ 10. 7910/ DVN/ MHU1V2. We applied Bonferroni correction 
to the p-values to account for multiple testing. For within-patient comparison, we performed repeated-measure 
ANOVA, with recording time (seizure-free recording before seizure recording and seizure recording) as the 
repeated factor. We excluded etiology, a nominal variable, from the classification. To verify the contribution of 
clinical and wearable data we ran a feature ranking and ran the same classifiers with clinical data and wearable 
data, leaving age and sex in both model (see Supplement 3).

Data availability
All statistical analyses and results are included in the manuscript. The original data are available upon reason-
able request and when compatible with the IRB (please contact Tobias.Loddenkemper@childrens.harvard.edu).

https://doi.org/10.7910/DVN/MHU1V2
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