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ABSTRACT

The genome-wide identification of microRNA tran-
scription start sites (miRNA TSSs) is essential for
understanding how miRNAs are regulated in devel-
opment and disease. In this study, we developed
mirSTP (mirna transcription Start sites Tracking
Program), a probabilistic model for identifying active
miRNA TSSs from nascent transcriptomes generated
by global run-on sequencing (GRO-seq) and preci-
sion run-on sequencing (PRO-seq). MirSTP takes ad-
vantage of characteristic bidirectional transcription
signatures at active TSSs in GRO/PRO-seq data, and
provides accurate TSS prediction for human inter-
genic miRNAs at a high resolution. MirSTP performed
better than existing generalized and experiment spe-
cific methods, in terms of the enrichment of various
promoter-associated marks. MirSTP analysis of 27
human cell lines in 183 GRO-seq and 28 PRO-seq
experiments identified TSSs for 480 intergenic miR-
NAs, indicating a wide usage of alternative TSSs.
By integrating predicted miRNA TSSs with matched
ENCODE transcription factor (TF) ChIP-seq data, we
connected miRNAs into the transcriptional circuitry,
which provides a valuable source for understanding
the complex interplay between TF and miRNA. With
mirSTP, we not only predicted TSSs for 72 miRNAs,
but also identified 12 primary miRNAs with signifi-
cant RNA polymerase pausing alterations after JQ1
treatment; each miRNA was further validated through

BRD4 binding to its predicted promoter. MirSTP is
available at http://bioinfo.vanderbilt.edu/mirSTP/.

INTRODUCTION

MicroRNAs (miRNAs) are a growing class of small, non-
coding RNAs that play significant roles in cell identity, de-
velopment and disease (1). miRNAs mainly work together
with transcription factors to tune gene expression in re-
sponse to environmental changes (2). To fully understand
miRNA function, it is essential to connect miRNAs to their
transcriptional circuitry, including their upstream regula-
tors as well as their downstream targets. Compared to the
increasing knowledge of miRNAs modulating gene expres-
sion, our understanding of the regulation of miRNA tran-
scription is lagging far behind, mainly due to the fact that
miRNA transcription start sites are largely unknown. miR-
NAs are typically generated from long primary miRNAs
(pri-miRNAs). Pri-miRNAs are rapidly cleaved by the en-
zyme Drosha (3), which creates a challenge for conventional
transcription start site mapping approaches that rely on the
full complete RNA. Approximately 2000 miRNAs are an-
notated in humans (4,5), but only a handful of microRNA
transcription start sites (miRNA TSSs) have been identi-
fied (6–11). The sparse annotation of miRNA TSSs limits
our ability to locate promoter regions and to associate tran-
scription factor binding events with miRNA transcription.

Computational methods for genome-wide miRNA TSSs
recognition have been developed to address this limitation
(12–24). Early approaches utilized sequence features de-
rived from known promoters to scan regions upstream of
miRNAs for hallmarks of transcription start sites, such as
the TATA-box, over-represented DNA motifs, TF bind-
ing profiles, evolutionary conservation and CpG content
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(12–15). For example, discriminative models were trained
by core promoter sequences with all possible k-mers as in-
put features (14). Comparative genomics methods were also
used to search for highly conserved blocks within upstream
regions of miRNA genes (12). S-Peaker, a probabilistic
model to predict TSSs of single-peak transcription initia-
tion, was based solely on known transcription factor bind-
ing affinity (13). The recent advances of high-throughput
sequencing technologies led to significant improvements for
miRNA TSSs prediction. For instance, ChIP-seq (Chro-
matin Immunoprecipitation coupled with sequencing) for
RNA Pol II and H3K4me3 can demarcate active pro-
moters, while CAGE-seq (Cap Analysis of Gene Expres-
sion followed by sequencing) detects the 5′ end of capped
molecules and maps the location of TSSs genome-wide.
Several methods that successfully identify TSSs for numer-
ous miRNAs have been developed by integrating multiple
types of data and experiments from multiple cell types (16–
19,22). For example, 847 human miRNA TSSs were pre-
dicted using miRStart, a support vector machine model
by combining ChIP-seq of H3K4me3 from CD4+ T cells,
TSS-seq from six human cell lines and CAGE-seq from
124 human samples (19). In addition, PROmiRNA is a
semi-supervised statistical method based on the CAGE-seq
data of 33 human RNA libraries generated from FAN-
TOM project and sequence features, including TATA box,
conservation and CpG density. PROmiRNA has success-
fully identified TSSs for 1228 miRNAs, among which 389
are intergenic miRNAs (22). Pooling data from multiple
conditions/experiments provide researchers with the abil-
ity to discover all potential miRNAs; however, it is difficult
to predict cell/experiment-specific TSSs, which is very im-
portant since miRNAs have been reported to undergo tight
tissue-specific regulation (25,26).

In order to detect condition/experiment-specific miRNA
TSSs, microTSS was developed to integrate deep RNA-
seq with active transcription marks, including H3K4me3,
RNA Pol II occupancy and DNase-based TF footprints.
MicroTSS provided accurate TSS predictions for 86 and 82
intergenic miRNAs in hESC and IMR90 cells, respectively.
However, the performance of microTSS is dependent on se-
quencing depth since low-abundant pri-miRNAs are tran-
sient and can only be detected in deep-coverage RNA-seq
data (23). An alternative workflow to identify cell-specific
miRNA TSSs combines active promoter marks, such as
H3K4me3, chromatin accessibility from DNase-seq and se-
quence features (24). This strategy has successfully discov-
ered TSSs for 663 intragenic miRNAs, and 620 intergenic
miRNAs in 54 cell lines. The workflow’s major limitation is
its low-resolution and broad predictions due to the under-
lying features of histone and open chromatin marks, which
reduces the sensitivity in detecting alternative TSSs. It is
noteworthy that microTSS and the workflow presented by
Hua et al. both require multiple types of data in the same
cell/condition, which are expensive and not easily available
for new cells/conditions, thereby hindering a wide applica-
tion of these methods.

Global nuclear run-on sequencing (GRO-seq) (27) and
precision nuclear run-on sequencing (PRO-seq) (28) are
techniques used to measure active RNA polymerases by
quantifying nascent transcription. These methods allow for

the calculation of transcription rates, and the assessment
of polymerase pausing and elongation; they also provide
continuous signals throughout the entire transcription unit.
Both GRO-seq and PRO-seq data show sharp peaks around
TSSs in both the sense and antisense directions (27–29).
Utilizing these features, we developed mirna transcription
Start site Tracking Program (mirSTP), which provides a
sensitive, high resolution and highly accurate approach to
recognize condition-specific miRNA TSSs genome-wide.
MirSTP requires just one GRO/PRO-seq experiment rather
than multiple data types and focuses on the TSS identifica-
tion for intergenic miRNAs. We first evaluated the perfor-
mance of mirSTP using known gene TSSs, and then com-
pared the performance with existing methods in terms of ac-
tive promoter marks. Predicted miRNA TSSs were further
used to associate TF binding events with miRNA regula-
tion. Using mirSTP, we not only identified miRNA TSSs,
but also quantified pri-miRNAs expression and compared
pri-miRNA transcriptional pausing between JQ1 treatment
and control PRO-seq data. These estimations suggested that
Pri-miRNAs with significant transcriptional pausing alter-
ations after JQ1 treatment were directly regulated by the
BET family, all of which were further validated by BRD4
ChIP-seq data. The source code of mirSTP and the original
PRO-seq data generated in this study are freely available at
http://bioinfo.vanderbilt.edu/mirSTP/.

MATERIALS AND METHODS

Description of mirSTP algorithm

The development of mirSTP was motivated by two charac-
teristic features of GRO/PRO-seq data, one of which is di-
vergent transcription near transcription start sites. Specif-
ically, there are sharp peaks in both the sense (∼50 bp
downstream of TSS) and antisense directions (∼250 bp up-
stream of TSS). The other feature is a continuous signal
over pri-miRNA region, since GRO/PRO-seq captures all
elongation-competent RNA polymerase. MirSTP has two
steps. In the first step, mirSTP discriminated candidate TSS
sites from local background (non-TSS sites) based on Pois-
son distribution. The log likelihood of a candidate region i
to be a TSS site was estimated by the observed read distribu-
tion within ±500 bp region in both sense (+) and antisense
(−) directions:
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i+500) is a vector of the
observed read counts from the upstream to the downstream
500 bp of the candidate site i in the sense direction relative
to the direction of precursor miRNA, while X−

i−500,...,i+500

is the same, but in the antisense direction. x+/−
i+ j is the ob-

served read count of the position j relative to the candi-
date site i in the sense/antisense direction, where j ranges
from −500 to +500. The read count was calculated in 10-
bp window. The expected read density at position j rela-
tive to TSSs, λTSS j , was estimated from the known TSSs of
genes. GRO-seq and PRO-seq have their own TSS models,
i.e. λTSS j , which differs between GRO and PRO-seq data.
The non-TSS model was based on the read density esti-
mated from the local neighboring regions (+1 kb to +2kb
downstream of TSSs) and denoted by λlb. Different cutoffs
were set to determine whether a site is a TSS in both the
sense and antisense directions (C+and C−). The region i was
identified to be a candidate TSS site if log(L+(i = TSS)) >
C+ & log(L−(i = TSS)) > C−). To select appropriate cut-
offs, we applied mirSTP to identify TSSs for active genes on
K562 PRO-seq data. A higher cutoff will detect fewer, but
more accurate TSSs, while a lower cutoff will identify more,
but less accurate TSSs. To balance sensitivity and specificity,
we defined three cutoff levels: stringent, medium and re-
laxed. The stringent cutoff was chosen where only ∼80%
of active TSSs were identified, while the relaxed cutoff was
selected where ∼95% of active TSSs were identified and the
medium cutoff where ∼85% TSSs were identified. Although
the stringent level had the lowest sensitivity, we expected
that it would be the most accurate predictor of TSSs. In con-
trast, the relaxed level achieved the highest sensitivity, but
obtained the least accuracy of TSSs.

The second step of mirSTP was to filter inactive pri-
miRNAs. A pri-miRNA is active if there is a continuous sig-
nal over the whole gene body (gb) at the sense direction. Af-
ter counting the total number of reads from the downstream
1k of the TSS to the precursor miRNA (N is the number of
reads, l is the length of this gb region), mirSTP calculated
the probability Pgb that we would observe at least N reads
based on the Poisson distribution of the global background
density λ0 (27). The global background density λ0 was esti-
mated using the method (the default is 0.04 reads/kb) (27).

Pgb =
∞∑

n=N

(λ0 ∗ l)ne−λ0∗l

n!

In addition, mirSTP calculated the minimum number of
reads in non-overlapping sliding windows of 5kb, Nmin,5k =

min ( N1
5k, N2

5k . . . Nl/5k
5k ). If Pgb was <0.0001 and Nmin,5k >

Nc, the pri-miRNA was called active. Nc was set to 10 at the
stringent cutoff level, five at the medium cutoff level, and
two at the relaxed cutoff level.

If multiple active TSS sites were identified for one
precursor miRNA, the site with the maximum score
log(L+(i = TSS)) + log(L−(i = TSS)) was the representa-
tive TSS for the miRNA.

PRO-seq data library preparation

Most PRO-seq or GRO-seq datasets were downloaded
from GEO (Supplementary Table S1). PRO-seq data from
Kasumi-1, OCI-LY1, MV4-11, U936 and Daudi cell lines
were generated in our lab according to previously published
methods with minor modifications (28,30). Briefly, 20 mil-
lion nuclei were isolated and in vitro nuclear run-on assays
were performed using regular ATP, UTP, GTP and biotiny-
lated CTP at 30◦C for 3 min, so that newly synthesized RNA
was labeled with biotin. Total nuclear RNA was isolated
using TRIzol, then was fragmented by base hydrolysis in
0.2 N NaOH and run through P-30 columns for buffer ex-
change. Fragmented biotinylated nascent RNA was puri-
fied using streptavidin beads and 3′ RNA adaptor was lig-
ated. After the second bead purification, 5′ end repair was
performed and 5′ RNA adaptor was ligated. After the third
bead purification, reverse transcription was performed to
generate cDNA, which was followed by polymerase chain
reaction amplification with indexed primers for sequencing.
Libraries were submitted to the Vanderbilt Technologies for
Advanced Genomics (VANTAGE) for sequencing.

GRO/PRO-seq analysis

We trimmed the adapter sequences using cutadapt (version
1.9.1) (31) and any reads less than 15 bp were removed.
PRO-seq reads were reverse complemented. GRO-seq reads
and reverse complemented PRO-seq reads were aligned to
the human genome hg19 using Bowtie2 (version 2.1.0) (32).
Reads mapped to rRNA loci and reads with a mapping
quality <10 were removed. Only the 5′ end of GRO-seq and
the 3′ end of PRO-seq reads were kept.

GRO-cap and ChIP-seq data

Predicted TSSs were evaluated by the GRO-cap data,
Pol II binding and various histone modification profiles.
The GRO-cap data of K562 cells were obtained from
GEO (GSM1480321) (29). Pol II, H3k4me2, H3k4me3,
H3k9ac, H3k27ac, H3K9me3, H3K27me3, H3k79me2 and
H3K63me3 ChIP-seq data of K562 cells were obtained
from the ENCODE project, which are available at https:
//www.encodeproject.org/ (33). The GRO-cap enrichment
(normalized to 10 Mb) within the region ±100 bp centered
by the predicted TSSs with the bin size of 20 bp was gen-
erated. Pol II, H3k4me2, H3k4me3, H3k9ac and H3k27ac,
H3K9me3, H3K27me3, H3k79me2 and H3K63me3 signals
within the region ±2k bp around the predicted TSSs with
the bin size of 200 bp were analyzed.

The uniform peaks of ChIP-seq data of transcrip-
tion factors in K562, GM12878 and H1-hesc cells

https://www.encodeproject.org/
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were downloaded from the ENCODE project (33),
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeAwgTfbsUniform/. Peaks were
assigned to the closest known and predicted TSSs by
HOMER (http://homer.salk.edu/) (34). Peaks more than 2
kb away from TSSs were not considered.

TCGA miRNA expression data

miRNA expression data from 10 TCGA cancer types,
including head and neck squamous cell carcinoma, uterine
corpus endometrial carcinoma (UCEC), thyroid carci-
noma, stomach adenocarcinoma (STAD), lung squamous
cell carcinoma (LUSC), prostate adenocarcinoma (PRAD),
colon and rectum adenocarcinoma, breast invasive car-
cinoma (BRCA), ovarian serous cystadenocarcinoma
(OV) and kidney renal clear cell carcinoma, were down-
loaded from Firehose, developed by the Broad GDAC
(https://confluence.broadinstitute.org/display/GDAC/
Dashboard-Stddata). Log2 transformed RPM values
(reads per million miRNA matures reads) were used to
calculate the Pearson correlation between two miRNAs.

RESULTS

Identification of TSSs at a high resolution

We applied mirSTP to predict TSSs for active genes in K562
PRO-seq (∼388M unique mapped reads) and K562 GRO-
seq data (∼20M unique mapped reads). MirSTP scanned
and scored upstream regions of active genes and identi-
fied the representative TSS for each gene. Three levels of
thresholds were used to select representative TSSs: strin-
gent, medium and relaxed. Stringent is the highest cutoff
level for TSS identification, while relaxed is the lowest. TSSs
from ∼80% of active genes were identified using the strin-
gent cutoff, while ∼85% of active genes were detected at the
medium cutoff, and ∼95% of active genes were discovered at
the relaxed cutoff level. Although the stringent cutoff level
obtained the lowest sensitivity, it was expected to deliver the
highest accuracy. We evaluated the performance of mirSTP
based on known TSS annotations from Refseq, UCSC and
Ensembl. In general, the median distance of predicted TSSs
from known TSSs was around 35–102 nt in both PRO-seq
(Figure 1A) and GRO-seq data (Figure 1B) no matter which
annotations (Refseq, UCSC or Ensembl) were compared
and which cutoff levels (stringent, medium or relaxed) were
chosen. This result is comparable to the microTSS method,
which benefits from high-resolution and deep-sequencing
RNA-seq data and outperformed the existing methods in
prediction accuracy in the cell-specific comparison (23,24).
The result also demonstrated that mirSTP worked well in
both GRO and PRO-seq data, although GRO-seq (∼50 bp
resolution) provides a lower resolution than PRO-seq (sin-
gle bp resolution) (35). We observed shorter distances be-
tween predicted and known TSSs for Ensembl and UCSC,
than with Refseq, mainly due to the fact that Ensembl and
UCSC have more transcript isoforms than Refseq. The me-
dian distance of predicted TSSs from the Ensembl anno-
tated TSSs was only 35 nt at the stringent cutoff level. Many
alternative TSSs that are annotated in Ensembl or UCSC,

but not in Refseq, were confirmed by mirSTP. For exam-
ple, mirSTP predicted that the TSS of ARHGAP6 was lo-
cated at chrX: 11 445 343 (hg19) in K562 GRO/PRO-seq
data. Although the predicted site is ∼283k bp away from
the Refseq TSS annotation (chrX: 11 683 821, Figure 1C),
there are TSSs annotated in UCSC (uc004cun.1) and En-
sembl (ENST00000380376) (chrX: 11 445 893) that match
mirSTP’s prediction. The TSS was also supported by K562
GRO-cap and RNA-seq data (Figure 1C), further demon-
strating that it is a real TSS and probably a K562-specific
TSS.

To assess the effect of sequencing depth on mirSTP per-
formance, we randomly sampled K562 PRO-seq data (∼388
M unique mapped reads), resulting in 4 subsets of 100M,
50M, 30M and 10M reads. We evaluated the performance
of mirSTP on each subset based on known TSS annotations
from Ensembl at the medium cutoff level. The median dis-
tance between the predicted and known TSS annotations
are similar across different sequencing depth (Figure 1D).
Supplementary Figure S1 displays the distances against all
three databases (RefSeq, Ensembl or UCSC) at each cut-
off level (stringent, medium or relaxed). Even at a very low
sequencing depth (10M reads), mirSTP provides accurate
TSS predictions, suggesting that sequencing depth has a mi-
nor effect on mirSTP performance.

Comparison with existing methods

A total of 1595 human annotated miRNAs were obtained
from miRBase v19 (4,36), of which 592 were classified as
intergenic, as they are not located inside of any Refseq an-
notated genes. MiRNAs that have a downstream Refseq an-
notated gene within 2000 bp on the opposite strand were re-
moved to avoid false TSS signatures caused by GRO/PRO-
seq signals of downstream genes extending to miRNA pro-
moter regions. After the filtration, 572 miRNAs were in-
cluded in the analysis. We applied mirSTP to scan upstream
regions of these 572 intergenic miRNAs on K562 PRO-seq
data, and identified 104 active miRNA TSSs at the relaxed
cutoff level, corresponding to 135 miRNA precursors (Sup-
plementary Data). Due to the lack of a large benchmark set
of miRNA promoters, it is difficult to make a direct com-
parison between mirSTP and other methods. Therefore,
we performed an indirect comparison based on promoter-
associated signals, such as GRO-cap, Pol II binding and
chromatin features. GRO-cap, a modified form of GRO-seq
used to sequence the 5′ end of cap-protected nascent RNAs,
provides a comprehensive and precise map of TSS locations
(29). RNA polymerase II occupancy is associated with gene
transcription, which shows peaks centered near TSSs (37).
The enrichment of H3K4me3 is also a hallmark of actively
transcribed promoters (38,39). In addition, H3K4me2 and
H3ac have been reported to be strongly enriched around
TSSs of genes (40).

We first compared mirSTP with two generalized meth-
ods: miRStart (19) and PROmiRNA (22). Both of these
methods used data pooled from multiple cell lines to in-
fer all putative miRNA TSSs without being constrained
to a specific condition. MiRStart combined CAGE tags
from 124 human samples, TSS seq tags from six cell lines
and H3K4me3 modifications from CD4+ T cells, while

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/
http://homer.salk.edu/
https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata
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Figure 1. Prediction distance from known gene TSSs annotated by RefSeq, UCSC or Ensembl databases at relax, medium or stringent cutoffs in K562
PRO-seq data (A) and K562 GRO-seq data (B). Genomic characteristics of the region around the predicted ARHGAP6 TSS by mirSTP in the K562 cell
line, including PRO-seq, GRO-seq, GRO-cap and RNA-seq. The predicted TSS was supported by GRO-cap and RNA-seq data. Although the TSS was not
annotated by Refseq, it was included in both UCSC and Ensembl (C). MirSTP performance on variable K562 PRO-seq depth (D). Y-axis is the prediction
distance from known gene TSSs annotated by Ensembl at the medium cutoff, while x-axis is the random subsampled PRO-seq size.

PROmiRNA trained a model based on deep CAGE data
from 33 human RNA libraries and promoter features. Since
PROmiRNA offered multiple TSS predictions for each
miRNA, we compared the TSS with the highest score (-H)
and the TSS closest to precursor miRNA (-C). TSSs of 44
miRNAs were commonly detected by mirSTP, PROmiRNA
and miRStart. Analyzing a ±100 bp window around the 44
TSSs predicted by mirSTP, PROmiRNA-H, PROmiRNA-
C and miRStart, we found that TSSs by mirSTP were more
enriched for the GRO-Cap signal than for other methods
(Figure 2). We analyzed a ±2 kb window around the TSSs,
and discovered that TSSs by mirSTP were more enriched
for Pol II ChIP-seq data with a C-terminal domain anti-
body specific for phosphorylated Ser5, which is associated
with transcription initiation and polymerase pausing and

mainly detects Pol II at the 5′ ends of genes (Figure 2).
Additionally, we observed stronger activating methylation
marks (H3K4me2 and H3K4me3) and acetylation marks
(H3K9ac and H3K27ac) around TSSs by mirSTP (Figure
2). In contrast, TSSs from different methods presented sim-
ilar signals associated with repressive histone methylation
marks (H3K9me3 and H3K27me3, Supplementary Figure
S2) and marks of transcriptional elongation (H3K79me2
and H3K36me3, Supplementary Figure S2). The strong
enrichment for various promoter-associated marks around
our predicted TSSs demonstrated the power of mirSTP to
identify miRNA TSSs.

We then compared mirSTP with the prior method de-
veloped by Hua et al. for predicting cell-specific miRNA
TSSs (24). Integrating H3K4me3 ChIP-seq and DNase-seq,
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Figure 2. Comparison between mirSTP, PROmiRNA and miRStart in
terms of GROcap, Pol II occupancy and promoter-associated histone
modification profiles, including H3K4me2, H3K4me3, H3K9ac and
H3K27ac. Promi-H and Promi-C represent the highest scored and the clos-
est distance to pre-miRNAs.

as well as sequence features, Hua et al. identified TSSs for
122 intergenic miRNAs in the K562 cell line. Although both
methods successfully recognized TSSs for 53 miRNAs (Fig-
ure 3A), their predicted sites were different. We found that
the 53 TSSs identified by mirSTP showed a stronger enrich-
ment for GRO-cap signals than those identified by Hua et
al.’s method, suggesting that mirSTP is more accurate. TSSs
of 82 miRNAs were uniquely identified by mirSTP (Figure
3B). We observed strong GRO-cap signals around the 82
TSSs as well, which indicated that they were highly likely
to be true TSSs (Figure 3C). For example, mirSTP detected

the TSS of miR-146b, about 900 bp upstream from the pre-
cursor (Figure 3E). The TSS, marked by strong divergent
GRO-Cap and Pol II binding signals, has been experimen-
tally validated by a 5′ RACE technique (10). Other exam-
ples of TSSs are illustrated in Supplementary Figure S3.
TSSs of 69 miRNAs were uniquely detected by Hua et al.
Although there were comparable GRO-cap signals around
the predicted TSSs (Figure 3C), PRO-seq and H3K36me3
signals around the ±2 kb window of the corresponding pre-
cursor miRNAs were much weaker than those identified
by mirSTP (Figure 3D), which suggested that the miRNAs
were not active in the K562 cell line. Taking a detailed look
at GRO-cap data, we found that high GRO-cap signals were
actually generated by their neighboring active genes, prov-
ing that the unique predicted TSSs by Hua et al. included
several false positives. For example, the predicted TSS of
miR3142/miR146a is actually the TSS of PTTG1 (Supple-
mentary Figure S4). Several other examples are given in
Supplementary Figure S4.

Identification of intergenic miRNA TSSs in 27 cell types

We applied mirSTP to 183 GRO-seq and 28 PRO-seq ex-
periments in 27 human cell lines (Supplementary Table S1).
In total, mirSTP identified putative TSSs for 480 of 572 in-
tergenic miRNAs. The number of predicted miRNA TSSs
varied greatly across different datasets. Only 47 miRNA
TSSs corresponding to 50 miRNA precursors were identi-
fied in HelaS3 GRO-seq data, while 269 miRNA TSSs cor-
responding to 353 miRNA precursors were recognized in
CyT49 GRO-Seq data (Supplementary Data).

Predicted miRNA TSSs suggested the existence of alter-
native TSS usage in different cell lines. An example of cell-
specific TSS usage for miR200b cluster (miR-200b, -200a
and -429) is illustrated in Figure 4A. In the MCF7 cell line,
the TSS for the miR200b cluster was predicted to be located
4 kb upstream of miR200b (chr1: 1 098 244, hg19), which
had been validated by previous studies (41,42). A strong
RNA Pol II and H3K4me3 signal overlapping the predicted
TSS also indicated preferential transcription from this site
in MCF7 cells. However, in the K562 cell line the predicted
TSS was located 9kb upstream of miR200b (chr1:1 093 024,
hg19). Although this TSS has not been previously reported,
the site was supported by the enrichment of RNA Pol II and
H3K4me3 signatures. The GRO-cap data of the K562 cells
showed divergent transcription around this site. Moreover,
these two sites were both supported by the strict TSS pre-
dictions based on CAGE peaks in the FANTOM5 project
(43,44). Comparing the similarity of the predicted TSSs
across experiments, we observed the expected high similar-
ity of the TSS usage in the MCF7 cell line from multiple
GRO-seq datasets. Most interestingly, we found the tissue-
specific usage of alternative TSSs (Supplementary Figure
S5). For example, most of the blood cells clustered together
(including B-cell, CD4, Kasumi-1, MV4-11, Daudi, U936
and Jurkat), suggesting that TSS usage was more similar
within cells in blood than cells from other tissues. As an-
other example, CyT49 and H1-Esc, two stem cell lines, were
more similar in the TSS usage than other cell lines. The
tissue-specific TSS usage may contribute to tissue-specific
expression of miRNAs.



PAGE 7 OF 12 Nucleic Acids Research, 2017, Vol. 45, No. 13 e121

Figure 3. Comparison between mirSTP and method by Hua etal, which also provides experiment-specific miRNA TSSs. Venn diagram of the number
of predicted TSSs for intergenic miRNAs in the K562 cell line (A). GRO-cap signal around the predicted TSSs for the common 53 intergenic miRNAs
(B). GRO-cap signal around the predicted unique TSSs for 82 intergenic miRNAs by mirSTP and 69 intergenic miRNAs by Hua etal. (C). The PRO-
seq and H3K36me3 profiles for +/− 2k regions around 82 intergenic miRNAs whose TSS were predicted by mirSTP and 69 by Hua etal. (D). Genomic
characteristics of the region around the predicted miR146b TSS by mirSTP in K562 cell line, including PRO-seq, GRO-cap and Pol II ChIP-seq. The
predicted TSS was supported by GRO-cap and Pol II occupancy (E).

Some intergenic miRNAs shared the same TSSs across
multiple cell lines, which suggested they were tran-
scribed from single polycistronic transcripts. We identi-
fied the 22 most frequently occurring polycistronic miR-
NAs (Supplementary Table S2), including miR106a∼363,
miR130b/301b and mir200a/b/429. To investigate whether
they derive from a common primary transcript, we explored
the potential of miRNA member co-expression in the same
cluster across 10 TCGA cancer types using miRNA-seq
data. A highly correlated expression is expected if they
come from a common primary transcript. Of 22 miRNA
clusters, three (miR3179∼miR3670, miR3674/miR596 and
miR4421/6650) were not detected in any cancer types. Ad-
ditionally, no correlation coefficients were obtained for four
miRNA clusters since one miRNA member was either lowly
or not expressed in all cancer types. For the remaining
15 miRNA clusters, members were highly co-expressed in
most cancer types (Figure 4B). In some cases, all mem-
bers of the same cluster shared similar expression patterns
across all cancer types. For example, miRNA clusters, like
miR192/194-2, miR221/222, miR23a/27a, miR29b-2/29c

and miR30b/30d, were co-expressed in all 10 TCGA cancer
types. In other cases, co-clustered miRNAs presented differ-
ent expression patterns across cancer types, where miRNA
members were highly co-expressed in some cancer types but
the correlation was lost in other cancer types. For instance,
the expressions of miR130b and miR301b were highly cor-
related in UCEC, STAD, LUSC and BRCA (R > 0.7), yet
they were poorly correlated in OV (R = 0.3, Figure 4B and
Supplementary Figure S6). As another example, miR940
and miR3677 were highly co-expressed in BRCA, STAD
and UCEC (R > 0.7), but they correlated poorly in PRAD
(R = 0.34, Figure 4B and Supplementary Figure S7). These
results indicated that although they are indeed polycistronic
miRNA transcripts, there are cancer/tissue-specific post-
transcriptional regulatory mechanisms that disturbed the
co-expression of miRNA members.

Prediction of TF–miRNA interactions

Knowing miRNA TSSs makes it possible to accurately
connect miRNA to the transcription regulatory network.
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Figure 4. Genomic characteristics of the region around the predicted miR200a/200b/429 TSS by mirSTP in MCF7 and K562 cell lines, including GRO-seq,
Pol II occupancy and H3K4me3. The predicted TSSs in MCF7 and K562 cell lines were both supported by Pol II occupancy and H3K4me3 enrichment.
The TSS in K562 cell line was also supported by the corresponding GRO-cap data (A). The maximum expression correlation value between mature miRNAs
within each polycistronic miRNA across 10 TCGA cancer types (B). The number of TF ChIP-seq peaks within 500 bp, 500∼1k, 1k∼2k or 2k∼5p away
from predicted miRNA TSSs (miR TSS) or precursor miRNAs (miR) in K562, GM12878 and H1-hesc cell lines (C). The number of intergenic miRNA
targets for each TF (D).

To identify transcription factors (TF) regulating these 480
miRNAs, we downloaded the TF ChIP-seq Uniform Peaks
from ENCODE in the Tier 1 cell lines (K562, GM12878
and H1-hesc), and linked the peaks to cell-specific miRNA
TSSs. We discovered that the peaks were much more en-
riched in the predicted TSSs than in the miRNA precursor
loci (Figure 4C). In the K562 cell line, for example, most
peaks (1815 peaks, 54%) were within 500 bp of the pre-
dicted TSSs, while only 52 peaks were within 500 bp of the
miRNA loci (Figure 4C). We observed a similar pattern in

the GM12878 and H1-hesc cell lines, which supported the
accuracy of the predicted TSSs (Figure 4C).

If the TF ChIP-seq peak was within 2 kb from a miRNA
TSS, we considered it a TF–miRNA interaction. In the
K562 cell line, 2678 ChIP-seq peaks were assigned to 135
intergenic miRNA/miRNA clusters. After removing the
redundancy, 1893 TF–miRNA interactions were discov-
ered, including 97 TFs and 101 miRNA/miRNA clusters
(Supplementary Table S3). Max and Myc were the most
commonly discovered DNA binding TFs, and POLR2A



PAGE 9 OF 12 Nucleic Acids Research, 2017, Vol. 45, No. 13 e121

transcribed the majority of these miRNAs/miRNA clus-
ters (65 miRNA TSSs), (Figure 4D). These predicted TF–
miRNA regulations include both previously described and
novel interactions. Many of the 54 miRNAs/miRNA clus-
ters targeted by Myc have been identified by previous stud-
ies, which verified the reliability of our prediction method.
For example, Myc regulates miR-101 (45), miR-129 (46),
miR-148a (47), miR-23a/b (48), miR-200 members (49)
and miR-29 (50). The reliable TF–miRNA interactions
provided us with a valuable source for understanding the
miRNA function in complex regulatory networks. In addi-
tion, we found statistically co-associated TFs regulating the
101 miRNAs in the K562 cell line (Supplementary Table
S4). TF co-binding across the genome was compiled by the
Encode project (51,52), which was also confirmed by our
study; TF factors included Stat1 and Stat2 (53), Maff and
Mafk (54), Max-Myc-Maz (55), Jun and Fos (56) and the
RNA Polymerase III preinitiation complex (Pol III, Bdp1
and Brf1) (57) (Supplementary Figure S8). Our results in-
dicated that known TF complexes also co-bind to the pro-
moter regions of intergenic miRNAs.

A major advantage of using GRO/PRO-seq data is that
it can track miRNA TSSs, and quantify primary miRNA
transcription rates simultaneously in a single experiment.
By applying mirSTP to PRO-seq datasets in the Kasumi-1
cell line (30), we discovered TSSs for 72 intergenic miRNAs
at the stringent cutoff, corresponding to 59 pri-miRNAs.
We quantified the pri-miRNA expression by counting the
PRO-seq reads in the sense strand from the predicted TSSs
to the precursor miRNAs, and calculated the pausing index
for each pri-miRNA as the ratio of promoter-proximal den-
sity (pp) divided by gb density (27,58–60). We evaluated the
significance of pausing index alteration in BET-inhibitor-
treated versus DMSO samples using Fisher’s exact test fol-
lowed by multiple testing adjustments (27). After JQ1 treat-
ment, 10 pri-miRNAs showed a significant increase in paus-
ing index (FDR < 0.01), while only two pri-miRNAs exhib-
ited a decrease in pausing index (FDR < 0.01, Supplemen-
tary Table S5), which suggested that these 12 pri-miRNAs
are direct targets of the BET family (Figure 5A).

As a further support of the PRO-seq results, we ex-
plored BRD4 ChIP-seq derived from MUTZ3 (an AML
cell line, Array Express accessions: ERR412006) and found
that all 12 pri-miRNAs were bound by BRD4 except
miR29b2/miR29c (distance < 500 bp). Although no bind-
ing signal was found for miR29b2/miR29c in the MUTZ3
cell line, BRD4 binding to miR29b2/miR29c was verified
by ChIP assays in the Kasumi-1 cell line (30). MiR221/222
was the second most affected by BET inhibitors with in-
creased proximal-promoter (pp) and decreased gb density,
which had not been previously recognized (30). The pre-
dicted TSS for miR221/222 by mirSTP was located ∼
23 kb upstream of the precursor and showed a strong
increase in pausing index after the addition of BET in-
hibitors (log2FC = 1.12, FDR < 2e-24) (Figure 5B). Mean-
while, ChIP-seq revealed BRD4 binding to the promoter
regions of miR221/222 (Figure 5B), which suggested that
miR221/222 was a direct target of BRD4. The tight associ-
ation between the PRO-seq and ChIP-seq results demon-
strated that the accurate identification of miRNA TSSs
and the quantification of pri-miRNA transcription from

GRO/PRO-seq data are very useful for defining the tran-
scriptional regulation of miRNAs.

DISCUSSION

The accurate identification of miRNA TSSs is crucial
for locating the core promoters of miRNAs, and inte-
grating the control of miRNA transcription into com-
plex regulatory networks. MiRNAs are initially transcribed
into large pri-miRNAs, which undergo sequential process-
ing steps to generate mature miRNAs. It is difficult for
traditional transcriptome profiling, such as RNA-seq, to
capture pri-miRNAs, because of their transient nature.
GRO/PRO-seq techniques, which directly map elongation-
competent RNA polymerases (including RNAPI, II and
III) across the entire genome to detect RNA transient tran-
scription on a genome-wide scale (including the transient
pri-miRNAs), provide an ideal method for mapping pri-
miRNA TSSs and link them to transcription rates. In this
study, we developed a novel method, mirSTP, for predict-
ing intergenic miRNA TSSs by taking advantage of two
major features characterized by GRO/PRO-seq data: di-
vergent transcription around TSSs and continuous tran-
scription across gb regions. MirSTP provides accurate,
experiment-specific and high-resolution miRNA TSS pre-
dictions, which are strongly supported by GRO-cap signals
and other TSS-associated histone markers. MirSTP com-
pares well with existing CAGE- or chromatin-based, gener-
alized or experiment-specific miRNA TSS prediction meth-
ods.

MirSTP is readily applicable to any cell line or con-
dition with available GRO/PRO-seq data. Compared to
microTSS, which also provides experiment-specific and
highly accurate predictions for intergenic miRNA TSSs,
mirSTP has much lower requirements regarding data types
and sequencing depth. MicroTSS requires three datasets
to perform a prediction, including deep sequenced RNA-
seq, ChIP-Seq and DNase-Seq, which can be very costly
to generate. In contrast, mirSTP only uses one dataset
(GRO/PRO-Seq) and takes advantage of the sharp di-
vergent peaks near the TSS to provide highly accurate
predictions without the requirement of deep sequencing.
Algorithms based on GRO-cap and CAGE data, like
PROmiRNA and miRStart, also provide high-resolution
predictions. However, GRO-cap and CAGE only measure
the 5′ end of the transcript, making it difficult to decide
whether the observed TSS belongs to the miRNA with-
out the continuous signal to the precursor. In contrast,
GRO/PRO-seq, with the ability to capture all active tran-
scription, is able to track the whole primary transcript.
Another advantage of GRO/PRO-seq data is its ability to
quantify pri-miRNA expression. After TSS prediction, re-
searchers can complete the same analysis for pri-miRNAs,
just as they would for genes, including quantifying the tran-
scriptional changes in promoter-proximal and gb regions,
and estimating pausing index alteration. After BET in-
hibitor treatment, pri-miRNAs with significant pausing in-
dex changes were highly likely to be BRD2/3/4 targets, and,
in fact, each contains BRD4 binding in the predicted pro-
moter regions. Therefore, in a single experiment, researchers
can both identify miRNA TSSs, and provide a direct read-
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Pri-miRNA log2FC FDR BRD4 peaks
(dist bp)

miR29B2/29C 1.99 6.2E-44 *
miR221/222 1.11 1.1e-24 25

miR182/183/96 -1.47 3.1e-04 -25

miR223 0.81 4.7e-04 -121

miR193a/365b/4725 0.96 6.1e-04 22,-292

miR181c/181d 1.18 6.8e-04 70

miR505 0.77 6.8e-04 28,-805

miR146a/3142 -0.76 1.9e-03 -101,325

miR3679 0.94 2.7e-03 -36

miR5684 1.16 5.6e-03 -21,-714

miR23a/27a 0.23 7.4e-03 -3
miR30b/30d 0.38 9.5e-03 150

* BRD4 binding verified by ChIP assays in Kasumi-1 cell line

A B

miR221 miR222
Pri-miRNA

ChrX:45629705~23kb

Figure 5. The table lists 12 pri-miRNAs with significant pausing alteration (FDR < 0.01) after JQ1 treatment, all of which have BRD4 binding peaks
close to their predicted TSSs (A). Predicted TSS for pri-miR221/222 and PRO-seq profiles in promoter-proximal (pp) and gene body (gb) regions of pri-
miR221/222 in DMSO and JQ1 treatment samples. Pri-miR221/222 showed an increased signal in pp regions but decreased signal in gb regions, resulting in
a significant elevation of pausing after JQ1 treatment. BRD4 ChIP-seq data revealed its binding to the TSS region, further demonstrating pri-miR221/222
is a direct target of BRD4 (B).

out of pri-miRNA activity, which is very helpful for unveil-
ing targets of the regulator of interest. One limitation of
mirSTP is that it predicts the representative TSS for each
miRNA, rather than all possible TSSs. This limitation could
be overcome by pinpointing all of the divergent transcrip-
tion sites instead of the maximal one by mirSTP. However,
this strategy could greatly increase the number of false TSSs.
Additional efforts would be needed to choose an appropri-
ate cutoff or incorporate TSS-relevant sequence features to
balance the sensitivity and specificity.

By applying mirSTP to 183 GRO-seq and 28 PRO-seq ex-
periments in 27 human cell lines, we identified TSSs for 84%
of intergenic miRNAs. No putative TSSs were discovered
for some miRNAs, which is mainly due to two reasons. One
reason is that the miRNAs were not expressed or expressed
at low levels in the 27 cell lines. Applying mirSTP to a vari-
ety of cell lines would probably uncover TSSs for those miR-
NAs. The second reason is due to the lack of divergent tran-
scription around TSSs for some miRNAs. Previous studies
have found that not all active genes display significant diver-
gent transcription around promoter-proximal regions (27).
MirSTP cannot identify those TSSs without divergent tran-
scription since it highly depends on this feature to recognize
TSSs. In this case, other types of data such as CAGE-seq,
histone modification profiles or sequence features would be
helpful for identifying TSSs.

By comparing TSSs detected in different cell lines, we
found a wide usage of tissue-specific alternative start sites,
which further emphasizes the advantage of experiment-
specific TSSs methods versus generalized TSS prediction
methods. The identification of TSSs in the cell type or
condition of interest allows researchers to build condition-
specific regulatory networks to interpret the regulation of
gene expression more accurately. MirSTP results also dis-
cover known and novel polycistronic miRNA transcripts.
Most miRNAs derived from the same transcripts are either
highly co-expressed or co-silenced across all 10 TCGA can-

cer types, demonstrating that they are truly co-regulated.
For example, all members are highly co-expressed in some
cancer types, while co-expression is lost in other types of
cancer. Such an observation suggests the existence of a
cancer-specific post-transcriptional regulation mechanism
that blocks individual members of polycistronic transcripts
from the maturation process. This agrees with a previous
study, which reported that ADARs (Adenosine deaminases
acting on RNAs) are responsible for the differential expres-
sion of polycistronic miRNA clusters by altering the struc-
tural conformation of pri-miRNA (61).

Beyond the development of mirSTP, we also integrated
Encode TF ChIP-seq data (51) with the predicted TSSs in
the same cell type to predict TF–miRNA regulations. We
found that the peaks were highly enriched in the predicted
TSS regions. Many TF–miRNA interactions have been re-
ported by previous studies, which demonstrated that the ac-
curate identification of TSSs is essential for reliably defin-
ing the regulation of miRNAs. Increasing evidence has in-
dicated the reciprocal regulation between TF and miRNAs,
which play very important roles in biological processes
such as development, homeostasis and pathology (47,62–
64). Previous studies have reported instances of a MYC-
miRNA circuitry where MYC targets a number of miR-
NAs, and, simultaneously, miRNAs regulate MYC, thereby
creating double negative feedback loops (62,63,65). For in-
stance, the MYC-miRNA circuit acts as a mechanism to
sustain a MYC oncogenic signal and to drive lymphoma
progression (62). Twenty-three miRNA ↔ TF composite
feedback loops were found in Caenorhabditis elegans that
provide for a highly coordinated and adaptable control of
gene expression (64). Our highly reliable TF–miRNA in-
teractions would dramatically extend the interplay between
TF and miRNAs. For example, some known associations
between TF and miRNAs were identified, such as Myc ↔
miR-101 and Myc ↔ miR-200. Novel reciprocal interac-
tions could be revealed if we combined TF–miRNA inter-
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actions with miRNA target prediction. The TF–miRNA in-
teractions add an additional layer to these regulatory net-
works and provide an invaluable source for understanding
how TF and miRNAs interact to achieve the precise regu-
lation of gene expression.
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