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Abstract

Understanding the impact of variation in lesion topography on the expression of

functional impairments following stroke is important, as it may pave the way to

modeling structure–function relations in statistical terms while pointing to con-

straints for adaptive remapping and functional recovery. Multi-perturbation Shapley-

value analysis (MSA) is a relatively novel game-theoretical approach for multivariate

lesion-symptom mapping. In this methodological paper, we provide a comprehensive

explanation of MSA. We use synthetic data to assess the method's accuracy and per-

form parameter optimization. We then demonstrate its application using a cohort of

107 first-event subacute stroke patients, assessed for upper limb (UL) motor impair-

ment (Fugl-Meyer Assessment scale). Under the conditions tested, MSA could cor-

rectly detect simulated ground-truth lesion-symptom relationships with a sensitivity

of 75% and specificity of �90%. For real behavioral data, MSA disclosed a strong

hemispheric effect in the relative contribution of specific regions-of-interest (ROIs):

poststroke UL motor function was mostly contributed by damage to ROIs associated

with movement planning (supplementary motor cortex and superior frontal gyrus)

following left-hemispheric damage (LHD) and by ROIs associated with movement

execution (primary motor and somatosensory cortices and the ventral brainstem) fol-

lowing right-hemispheric damage (RHD). Residual UL motor ability following LHD

was found to depend on a wider array of brain structures compared to the residual

motor ability of RHD patients. The results demonstrate that MSA can provide a

unique insight into the relative importance of different hubs in neural networks,

which is difficult to obtain using standard univariate methods.
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1 | INTRODUCTION TO MULTI-
PERTURBATION SHAPLEY-VALUE ANALYSIS
AND LESION-SYMPTOM MAPPING

The large majority of previous studies that aimed to reveal the impact

of lesion configuration on residual motor or cognitive functions post-

stroke used univariate lesion-symptom mapping (LSM) methods. Such

methods ignore the fact that processing of information relevant to

motor or cognitive functions is accomplished by the orchestrated

activity of large-scale networks, where the strength of connectivity

between different network hubs is important and is subject to prac-

tice effects (Koch et al., 2016). For example, in the widely used voxel-

based LSM (VLSM) method (Bates et al., 2003; Rorden &

Karnath, 2004) the impact of damage to each voxel of the normalized

brain is analyzed as a separate unit, unrelated to damage elsewhere,

by comparison of behavioral scores of patients affected in that voxel

to the scores of patients who are not affected there. Unlike univariate

LSM, methods employing multivariate LSM may be better suited to

explore network-mediated functions, due to their ability to account

for inherent dependencies between network hubs for which univari-

ate methods are blind (Mah et al., 2014; Pustina et al., 2018). A grow-

ing number of multivariate LSM methods have been applied in recent

years (Forkert et al., 2015; Ivanova et al., 2021; Pustina et al., 2018;

Smith et al., 2013; Yourganov et al., 2016; Zavaglia et al., 2015; Zhang

et al., 2014). These LSM methods usually require relatively large

cohorts for optimal performance, thus limiting their applicability

(Ivanova et al., 2021; Sperber et al., 2019). Additionally, recent works

which applied synthetic ground-truth simulations have shown that

multivariate LSM methods may exhibit the same drawbacks of univari-

ate LSM methods (Sperber et al., 2019) and surprisingly, may not out-

perform univariate LSM methods in detection of network hubs

(Ivanova et al., 2021).

Most multivariate LSM methods apply machine-learning

(ML) principles in an effort to delineate the importance of each brain

volume (either voxel or region-of-interest [ROI]) to the observed

behavioral score (Sperber et al., 2019). Alternatively, some authors

have suggested a game-theoretical approach to the problem

(Kaufman et al., 2009; Malherbe et al., 2018, 2021; Toba et al., 2017,

2020; Zavaglia et al., 2015, 2016). Multi-perturbation Shapley-value

analysis (MSA or MPA) is a game-theoretical method that treats each

discrete element in a network as a player in a coalitional game and the

network performance when all elements are intact as the game's

worth. The Shapley value (SV; Shapley, 1953) is defined as the unique

fair division of the game worth among the players (Keinan

et al., 2004). MSA was used to analyze primitive biological neural cir-

cuits of the lamprey and Caenorhabditis elegans (Kaufman et al., 2005;

Keinan et al., 2004), genetic biochemical pathways (Kaufman

et al., 2004), behavior of autonomous agents driven by artificial neural

networks (Keinan et al., 2006) and reversible deactivation effects in

cats (Kaufman et al., 2005; Zavaglia & Hilgetag, 2016). MSA was used

also to study the impact of lesion configuration on the expression of

spatial neglect, a symptom complex emerging from damage to the

attention network (Kaufman et al., 2009; Malherbe et al., 2018; Toba

et al., 2017, 2020) and also to study the impact of lesion configuration

on a general measure of neurological impairment (Malherbe

et al., 2021; Zavaglia et al., 2015). One prominent advantage of MSA

over other univariate and multivariate methods was the ability to

detect the importance of regions with a lower rate of lesion involve-

ment (Kaufman et al., 2009). Moreover, due to its theoretical frame-

work, MSA is specifically suited for studying the cerebral organization

of complex functional systems that rely on large-scale neural

networks.

Although MSA was applied for LSM purposes in several studies

so far (Kaufman et al., 2009; Malherbe et al., 2018, 2021; Toba

et al., 2017, 2020; Zavaglia et al., 2015), different authors used differ-

ent approaches to critical data preparation steps and statistical infer-

ence, thus limiting reproducibility of the results. Additionally, the

method was not validated using a ground-truth simulation study, as

was done recently for other univariate and multivariate LSM methods

(Inoue et al., 2014; Ivanova et al., 2021; Mah et al., 2014; Pustina

et al., 2018; Sperber et al., 2019; Sperber & Karnath, 2017; Xu

et al., 2018; Zhang et al., 2014). Ground-truth simulation is probably

the best available tool for determining validity and accuracy of LSM

methods, as well as for finding out their optimal parameters (see,

e.g., Zhang et al., 2014; Pustina et al., 2018; Sperber & Karnath, 2018).

The aim of the current paper is to present in detail a theoretically

revised approach for the application of MSA in lesion studies and to

demonstrate the merits of this approach. First, we discuss methodo-

logical constraints in MSA application for LSM, together with our sug-

gested solutions. Next, we measure the method's performance using

simulated ground-truth data, assessing the accuracy of the method

and choosing the best-performing parameters. We then apply MSA

on a data set derived from a recent VLSM study of our group, which

addressed the neural correlates of upper limb (UL) motor impairment

(Frenkel-Toledo et al., 2019). This data set is used as a test case, to

demonstrate how the application of MSA unravels important

differences in the characteristics of the reorganizing motor network in

the right and left cerebral hemispheres. Finally, we discuss the possi-

ble contribution of MSA to LSM research. The code and the data sup-

porting this article are freely available (https://github.com/

ShayOfir/MSA).

2 | METHODS

2.1 | MSA for LSM—Theoretical background

This section is arranged as follows. First, we provide some basic defi-

nitions of MSA for LSM. Next, the SV and its computation are

described, including a novel formula with improved characteristics.

Then, essential requirements for performance prediction are explained

and a novel predictor is described, which enables use of graded-lesion

data, without the need for dichotomization. Finally, we discuss the

issue of reference central values, the computation of error estimates

via bootstrap and the notion of “calibration.” See Table 1 for a sum-

mary of key issues in research applying MSA and solutions offered.
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2.1.1 | Basic definitions

A brain hemisphere is divided into K regions that may be subject to

clinically identifiable damage Z = (Z1, Z2, … ZK) where 0 ≤ Zi ≤ 1 is the

proportion of damage to region i. Let then Xi = 1 � Zi be the working

state of region i. The subject performs a task and obtains a score

0 ≤ Y ≤ M, where 0 corresponds to total failure and M > 0 is the score

under no damage. The empirical data consist of the vectors (X;

Y) = (X1, X2, …, XK; Y) of n subjects. The question under study is the

assessment of the importance of every region to the performance of

the subjects in the task.

Consider a hypothetical situation in which every Xi is either 0 or

1 and for each such binary working-state pattern, there is a virtual

subject with this pattern as working state and given score v(A), where

A is the set of regions i with Xi = 1. The number of virtual subjects is

thus 2K, the score v(φ) of the vector φ of 0's is 0 and the score of the

vector of 1's is M. As introduced by Keinan et al. (2004) and further

analyzed and developed in Keinan et al. (2006), this formulation lends

itself to a game-theoretic interpretation of a coalition game, where

regions i are players, the list of working regions in a binary pattern is a

coalition A and the score is the value v(A) of this coalition. The players

can be political parties, agents in a production chain, etc. The question

under study is how to assign an importance value to each player. Spe-

cifically, how to share the total revenue M between the players in

something that can be called a fair manner.

Such an allocation xv (adding up to M) is said to be efficient in the

language of game theory. The allocation is symmetric if it assigns the

same share xv ið Þ¼ xv jð Þ to symmetric players (i and j are symmetric if

v S[ if gð Þ¼ v S[ jf gð Þ for every coalition S containing neither), and it is

monotone if whenever w S[ if gð Þ�w Sð Þ≥ v S[ if gð Þ�v Sð Þ for all

coalitions S not containing player i, xw ið Þ≥ xv ið Þ (the player's share is

higher in the game with payoff w).

A fundamental theorem in game theory claims that the SV is

the only allocation that is efficient, symmetric and monotone

(Young, 1985). This is a good case for adopting it in the context of brain

damage, ignoring other allocation values such as Banzhaf

(Banzhaf, 1965) or the nucleolus (Schmeidler, 1969), that satisfy differ-

ent sets of axioms. There have been diverse attempts in game theory to

define a SV for fuzzy coalitions (Butnariu, 1980; Tsurumi et al., 2001),

corresponding quite accurately to graded damage, but these conceptual

methods are beyond numerical implementation or statistical analysis.

As in many real-world problems, the performance of the 2K multi-

perturbed configurations is unknown (Keinan et al., 2004). In this case,

one can train a ML predictor using the available configurations to pre-

dict the performance of the unknown configurations before applying

MSA to yield the so-called predicted SV. Such method was applied suc-

cessfully outside LSM context, where the elements could be either

active or inactive (Kaufman et al., 2005; Keinan et al., 2004; Keinan

et al., 2006). However, the damage in the context of LSM is graded,

requiring some method to predict performance of binary working states

from graded data. As will be described further, this is a fundamental dif-

ference between MSA for LSM and other uses of MSA, as it introduces

nontrivial prediction error to the resultant SVs (Zavaglia et al., 2015).

2.1.2 | Computation of the SV: Three different
formulas

For a player i and a coalition A to which this player belongs, define the

contribution Δi(A) of this player to the coalition as the score v(A) of

TABLE 1 Issues in MSA research and their suggested solutions

Issue Previous solutions

Possible issues with

previous solutions Suggested solution Section

1 Analyzing a network with high

number of regions is

impossible with full-

information MSA

Estimated MSA using random

permutations (Toba

et al., 2020; Zavaglia

et al., 2016)

Increased error and

decreased

reproducibility

Bound-perturbation method

with potentials formula

2.1.2

2 Shapley-value computation

requires binary working states

while lesion-data are graded

Dichotomization of lesion data

(Kaufman et al., 2009);

Dichotomization of behavioral

score (Malherbe et al., 2018;

Toba et al., 2017)

Decreased power due

to data loss

A K-NN-related predictor which

can be applied on binary

working states but is trained

using graded lesion-data

2.1.3

3 Shapley values obtained via

predicted MSA tend to regress

toward the mean

No solutions suggested Setting the reference value for

Shapley values as the average

and not zero; Use calibration

procedure

2.1.4

4 The distribution of Shapley

values is unknown, hence

hypothesis testing regarding

Shapley value is not feasible

Calculate confidence intervals

across different tasks

(Kaufman et al., 2009)

Use leave-one-out (Jackknife)

method (Toba et al., 2017)

Use bootstrap resamples

(Malherbe et al., 2021; Toba

et al., 2020)

Does not allow true

inferential statistics

Increased bias

Apply bootstrap procedure;

Beware of polymodal

distribution: select the “hump”
in which the overall-sample

Shapley-value turn out

2.1.5

Abbreviations: K-NN, K-nearest neighbors; MSA, multi-perturbation Shapley-value analysis.
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the coalition minus the score v(A � {i}) of the resulting reduced coali-

tion when our player is removed from it. Under a natural symmetry

axiom, these contribution values can be compactly summarized by the

K averages C1(i), C2(i), …, CK(i), where Cj(i) is the equal-weights average

of Δi(A) taken over all the
K�1

j�1

� �
¼ K�1ð Þ!

j�1ð Þ! K�jð Þ! coalitions A of size

j containing i. The definition via contributions of the SV γ(i) is the regu-

lar (equal-weights) average of the K contributions Cj(i), for

j = 1, 2, …, K.

There is an alternative and more common definition via permuta-

tions of the SV, in terms of all K! permutations of the names of the

K players. The contribution of player i in a permutation is defined as

its contribution to the coalition composed of all names written on or

to the left of player i. The SV γ(i) of player i is the simple average over

all permutations, of the contributions of player i to these permuta-

tions. It is clear that the number of player permutations with player

i in position j is the number (K � 1)! of permutations of the other

players, regardless of j. This explains the equivalence of the two

definitions.

There is yet another equivalent definition via potentials (Hart &

Mas-Colell, 1989) that plays a decisive role in the current report. Let

vj(i) be the regular average of the values v(A) of all the
K�1

j�1

� �
coali-

tions A of size j containing player i, and let Vj be the regular average of

the values v(A) of all
K

j

� �
coalitions of size j. The contributions Cj(i) as

defined earlier, are:

Cj ið Þ¼
K�1
j�1

� �
vj ið Þ� K

j�1

� �
Vj�1� K�1

j�2

� �
vj�1 ið Þ

� �

K�1
j�1

� �

¼ vj ið Þþ j�1
K� jþ1

vj�1 ið ÞþREMj

ð1Þ

where the remainder term REMj does not depend on i (only on pertur-

bation depth j). Recalling the definition via contributions as the regular

average of these contributions, and defining the potential-like

expressions

R ið Þ¼ vK�1 ið Þ
1

þvK�2 ið Þ
2

þvK�3 ið Þ
3

þ…þ v1 ið Þ
K�1

, 1≤ i≤K ð2Þ

it is observed that the Shapley vector differs from the vector R by a

constant. Thus, definition via potentials

γ ið Þ¼M
K
þR ið Þ�mean Rð Þ, 1≤ i≤K ð3Þ

If contributions of players to coalitions of size smaller that K � J

are replaced by zero, the corresponding modified Shapley vector “of
depth J” becomes

γJ ið Þ¼M
K
þRJ ið Þ�mean RJð Þ, 1≤ i≤K, J¼1, 2,… ð4Þ

where

RJ ið Þ¼ vK�1 ið Þ
1

þvK�2 ið Þ
2

þvK�3 ið Þ
3

þ…þvK�J ið Þ
J

�vK�J ið Þ
K

ð5Þ

For small K values, the three methods are equally feasible. For

intermediate K values, the method of contributions requires the evalu-

ation of the values of the 2K coalitions (feasible number of

213 = 8192 computations for K = 13), while the method of permuta-

tions requires working on K! permutations (an impossible

13! = 6 � 109 for the same K = 13). However, for cases in which 2K is

also infeasible to compute, the permutations formula becomes handy,

since it enables one to compute an unbiased estimate of the exact SV:

the average contribution of each player in a random sample of N of

the K! permutations is, loosely speaking, a consistent unbiased esti-

mate of the exact SV (Keinan et al., 2006) (with variance insensitive to

K, inversely proportional to N).

The two methods—contributions and permutation-estimation—

have been applied in the literature, including in LSM studies (Kaufman

et al., 2009; Malherbe et al., 2018, 2021; Toba et al., 2017, 2020;

Zavaglia et al., 2015). The formula of potentials (5), a hybrid of the

two, involving no randomization, is introduced here for the first time.

In the current application, the values v(A) are not exogenously

given as intended in Game Theory but are the result of noisy predic-

tion. We thus favor an algorithm based on the modified SV (5) that

evaluates as many summands of R as feasible and replaces all remain-

ing summands by zero. If J summands are used (the depth J), the Shap-

ley vector is approximated by its modified version (5). The rationale is

that the vK�j(i) terms tend to decrease to zero as j increases but the

standard deviations of coalition value estimates remain stable. Hence,

beyond some depth, summands add more noise than signal: If bγJ�1 is

essentially the same vector as bγJ but the estimated standard errors of

RJ exceed those of RJ�1, depth J � 1 should be preferred to depth J.

Additionally, patients with high lesion load (i.e., with many damaged

brain regions) are assumed to exhibit a substantially different neuro-

logical impairment relative to patients with low lesion load (Keinan

et al., 2006), making the consideration of highly perturbed situations

redundant. This notion is one of the reasons for the popularity of the

correction for total lesion volume in VLSM studies (Sperber &

Karnath, 2017). Another issue related to the permutations-estimation

method is the low reproducibility of results. When large K is consid-

ered, repeated estimated analysis will use a substantially different set

of coalitions each time (see Figure S1 in Supplementary materials).

Thus, both theory and empirical data suggest that using Formula (5)

would yield more accurate and reproducible results.

2.1.3 | Prediction of scores

From this description, it is seen that the graded working state and

score data of the subjects must somehow provide an assessment of

the score of arbitrarily determined binary working patterns (coali-

tions). This is a standard problem in ML: given training data consisting
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of vector features and a scalar label with values in properly fixed inter-

vals, build a predictor of the score of arbitrary feature vectors, to be

evaluated at each of the (binary working pattern) coalitions chosen by

the algorithm. Some studies have pre-dichotomized graded working

patterns into binary working patterns by thresholding (Kaufman

et al., 2009; Zavaglia et al., 2015). Others (Malherbe et al., 2018; Toba

et al., 2017) have kept the graded nature of damage, but pre-

dichotomized performance scores, so as to use standard ML tech-

niques for classification. However, pre-dichotomization may reduce

the amount of information (Zavaglia et al., 2016). Here, we introduce

a third approach, which does not require pre-dichotomization, and is

thus potentially more accurate.

Distance between working-state patterns

The current report concentrates on the original graded working-state

data (normalized so that in each individual brain region, the maximal

damage over all subjects in the sample is 100%) and defines the

(squared) distance d(x, y) between two working-state vectors x = (x1,

x2, …, xK) and y = (y1, y2, …, yK) as

d x, yð Þ¼ x1�y1ð Þ2þ x2�y2ð Þ2þ…þ xK �yKð Þ2 ð6Þ

whether these two are graded or binary. Of course, this particular

choice can be modified, as can the prediction method described in the

next paragraph. As is well known, it is generally difficult to collect clin-

ical (X; Y) data, and sample sizes are necessarily much smaller than the

desirable sizes from Statistics considerations. With this in mind, we

feel reticent to apply standard black-box prediction packages, in favor

of simple, intuitive ideas. Furthermore, in usual ML applications, train-

ing data are representative of real data and predictors serve as inter-

polators. Training on graded data and applying on binary data are

extrapolation, and the predictor should be addressed to this function.

Future applications, with larger data banks, may whet the appetite for

more complex methodology, but the interpolation–extrapolation dif-

ference should be taken into account.

The proposed predictor

As stated above, data consist primarily of the graded working-state

vector x(j) and score y(j) of subjects j = 1, 2, …, n. We add two pseudo-

subjects: the binary working-state vector of all 1's and score M of the

intact pseudo-subject, and that of all 0's and score 0 of the totally

lesioned pseudo-subject. Let nn = n + 2.

Fix a number b > 0. For a binary working-state pattern xx, define

the raw weight w1(j) of subject j as

w1 jð Þ¼ exp �b�d xx, x jð Þð Þf g, 1≤ j ≤ nn ð7Þ

and the normalized weight w2 jð Þ¼w1 jð Þ=Σnn
1 w1 ið Þ adding up to 1 over

the augmented sample. The working-state vectors x(j) are a cloud of

nn points in the K-dimensional unit cube, and these points have

respective masses w2(j). As such, the center of gravity of the cloud is

the point

CG¼w2 1ð Þ� 1ð Þþw2 2ð Þ� 2ð Þþ…þw2 nnð Þ� nnð Þ ð8Þ

Consider the line through CG and the 0-corner of the hypercube.

This line describes all the working-state patterns with subject weights

proportional to w1 (and w2). We single out the point

xxx¼cΣnn
1 w1 jð Þ� jð Þ on this line for which

P
xxx¼P

xx, that is, with

the same total working state as the pattern xx. Clearly,

c¼Σixx ið Þ=ΣiΣjw1 jð Þ� ið Þ jð Þ. Finally, let w3 = cw1. Just as

Σw3(j) � (j) = xxx, we let the predictor of the performance at xx be

PR xxð Þ¼w3 1ð Þy 1ð Þþw3 2ð Þy 2ð Þþ…þw3 nnð Þy nnð Þ ð9Þ

As can be observed, the constant b is the only parameter of the

prediction model (there is also the perturbation depth J). SV evalua-

tion turned out to be quite insensitive to the choice of b, which was

fixed as b = 15 (see Appendix among supplementary materials for

more details on b-value tuning).

2.1.4 | Calibration of SVs

The K coordinates of the Shapley vector add up to M, so the average

SV is fixed at M
K . More (less) important regions have SV exceeding

(below) M
K . The typical brain region has positive Shapley contribution.

It is tempting to claim that regions with positive SV have a beneficial

effect on performance while those with negative SV hinder perfor-

mance (Toba et al., 2019). This claim would be correct if the Shapley

vector had been computed as designed in Game Theory, based on the

true value v(A) of each binary pattern coalition. Not so if these values

are estimated through a ML predictor trained on the noisy data of the

sample of subjects. As all averaging techniques, the Shapley vector

behaves like Regression lines, where the reported slope of the rela-

tionship between dependent and independent variables (or feature

and label) is mellowed by the correlation coefficient. Thus, the order

of the coordinates of the Shapley vector is really what the study

determines, but their magnitude is less informative or unequivocal. If

the estimated Shapley vector is represented as:

Shapley¼M
K þ Shapley�M

K

� �
, the true Shapley vector is

M
K þFACTOR� Shapley�M

K

� �
, where FACTOR is high if the predictor is

weak. The identification of such a factor is the calibration meant by

the title of this section, common practice in Statistics, supported by a

vast literature (Brown, 1993; Dawid, 1982; Hastie & Tibshirani, 1998).

It is reasonable to assume that for each particular task or performance

measure, only a few regions have decisive impact on the task,

whether beneficial or inhibitory. If this is the case, then the coordi-

nates below M
K of the true Shapley vector should display a modal value

at zero. This mode should manifest itself as a local mode in the empiri-

cal distribution of the coordinates of the estimated Shapley vector.

FACTOR could then be determined so as to correct this modal value

to be zero. This is the sense in which calibration is applied in this

study. The full calibration algorithm is available as MATLAB code in
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https://github.com/ShayOfir/MSA. The resultant calibrated SVs

(cSVs) closely approximate ground-truth coefficients, supporting their

use for inference of absolute (not only relative) importance (see

Figure S2; supplementary materials). It should be noted, however, that

calibration is not possible when this localization assumption does not

apply (e.g., when performance is extremely noisy or highly distributed

among the regions), since no clear modal value will emerge below the

average.

2.1.5 | Statistical inference for SVs

Once the SV γ of each brain region has been estimated (by bγ), some

valid method should provide a standard error of this estimate, for the

purpose of testing hypotheses on whether contributions are different

enough from each other, and providing confidence intervals for the

true, latent SVs. There are two common nonparametric methods to

estimate standard errors, the leave-one-out Jackknife procedure

(Efron, 1981; Quenouille, 1949, 1956) and the Bootstrap procedure

(Efron, 1981; Efron & Tibshirani, 1998).

Although the jackknife leave-one-out resampling procedure was

applied in previous MSA-LSM studies (Toba et al., 2017), it has several

limitations. In essence, Jackknife calls for the evaluation of n Shapley

vector estimates, leaving one subject (i) out at a time. These n vectors

bγ �if g
LOO (leave-one-out missing i) are not typical as-if independent realiza-

tions of the Shapley vector estimation (as is the case to some extent

under the Bootstrap method) but rather small perturbations of the all-

sample Shapley vector estimate bγ. Theory dictates that the standard

error of bγ can be consistently estimated by the standard deviation of

the leave-one-out sample amplified by
ffiffiffiffiffiffiffiffiffiffiffi
n�1

p
, that is, of

ffiffiffiffiffiffiffiffiffiffiffi
n�1

p bγ �if g
LOO .

Theory is known to apply well in clean cases such as sample averages,

but there is experience on some inadequacy of the square-root rule

more generally (Efron & Stein, 1981). The Bootstrap resampling pro-

cedure is based on the observation that the sample of size n is more

or less the best surrogate there is for the infinite population. Sampling

n observations (with replacement) from this surrogate population

yields an as-if sample from the population, from which the parameter

in question may be estimated.

The theory behind Bootstrap has shown that for some purposes

(such as estimating standard errors), the empirical distribution of these

resampling parameter estimates approximates their true distribution.

The current study fixes the Bootstrap sample size as 1,000 and

ignores the two most extreme observations. We follow Tukey's

(1980) advice of doing exploratory data analysis before resorting to

automation. As will be shown in Section 3, we have observed a most

remarkable phenomenon of the Bootstrap SV empirical distributions.

These are bimodal for some of the brain regions, generally the most

important ones, with one hump where the original-sample Shapley

estimate is located, and another hump generally near the location of

the mode applied in the calibration process (see SV distributions for

ROIs corona radiata (CR), primary motor cortex, primary somatosen-

sory cortex, inferior parietal lobule (IPL) and basal ganglia (BG) in the

right-hemispheric damage (RHD) group, and CR, “rest-of-brain” (RoB)

in the left-hemispheric damage (LHD) group, Figures S3 and S4, sup-

plementary materials). It is as if in some Bootstrap samples the SV of

the brain region expresses itself while in others the region comes out

irrelevant.

Ignoring this phenomenon may produce overly conservative

results. We thus incorporated an automatic mechanism that identifies

the "correct" hump (i.e., the one in which the original-sample SV is

located) and computes standard errors using this hump exclusively

(making no difference for unimodal bootstrap distributions). This was

done by fitting a mixture of two logistic distributions with the same

variance and measuring theoretically the valley between the peaks,

where the two densities are equal. The standard error is then esti-

mated as the empirical standard error of the Bootstrap sample on the

relevant half line to one side of the valley, amplified by a theoretical

factor that depends of the Z-score of the valley in the pertinent fitted

distribution. If this Z-score is less than 1.5, the regular empirical stan-

dard deviation of the entire Bootstrap sample is applied. Figure 1 is a

flowchart illustrating an example of MSA application using the revised

approach.

2.2 | MSA in the case of UL paresis poststroke

2.2.1 | Participants and clinical assessment

MSA was applied on a data set extracted from a cohort of 130 first-

event subacute stroke patients for whom we had both normalized

lesion data and a quantitative measure of motor impairment in the

hemiparetic UL. These patients took part in an earlier study, where

VLSM (Bates et al., 2003) was used to determine the impact of lesion

topography on UL function (Frenkel-Toledo et al., 2019). Given the

greater sensitivity of MSA relative to VLSM, to individual patients'

data, we decided to reduce the variance in the cohort that stems from

differences in the time of testing after stroke onset and recruited for

the current study only patients that have been tested in the later

stage of the early subacute period (between 1- and 3-months post-

stroke onset). Following the trimming of subjects outside this time

window, we ended with a cohort of 107 patients—49 with RHD and

58 with LHD. Time after stroke onset was 58 ± 19 days (average

± standard deviation [SD]). Patients were included in the original

(Frenkel-Toledo et al., 2019) study if they did not suffer from previous

neurological or psychiatric disorders and their language and cognitive

status enabled comprehension of the task requirements.

All patients received standard rehabilitation therapy by therapists

unaffiliated with the study who did not have access to the research

data. The study was approved by the Ethics Review Board of the Loe-

wenstein Rehabilitation Medical Center and all patients provided a

signed informed consent prior to recruitment for the study. Patients'

demographic and clinical data are described in Table 2. Twelve

patients with RHD and two patients with LHD had spatial neglect,

according to the Behavioral Inattention Test (Halligan et al., 1991),

and 32 patients with LHD had aphasia, according to the Israeli Loe-

wenstein Aphasia Test (Gil & Goral, 2004). Individual data are
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F IGURE 1 Overview of the Multi-perturbation Shapley-value analysis (MSA) framework. This is a schematic representation of the main stages
in MSA of cerebral structure–function relationships. MSA here is based on the effect of variation in stroke lesion topography on the expression of
functional impairment. The figure depicts the stages of MSA as applied in the current study of lesion impact on the expression of paralysis of the
contralesional upper limb. The steps are marked with capital letters. Blue rectangles represent inputs to the algorithm and grey rectangles
represent the parameters used in the current study, according to their order of application from a to i. (a–c) For each patient, structural damage
was manually delineated on high-resolution CT/MRI brain scans followed by normalization into a standard (Montreal Neurological Institute [MNI])
set of templates. Personal tissue damage expressed as a percent of each affected ROI volume of our 26-ROI anatomical parcellation of the brain
(see Table S2), based on the automated anatomical labeling (AAL) and white matter (WM) atlases. (d) The score obtained on the Fugl-Meyer
Assessment (FMA) scale of the upper extremity represent the level of motor impairment of each patient, thus ending the data preprocessing
stage by adding a performance measure to the corresponding anatomical measure in the sample. Two pseudo-subjects (minimal and maximal
damage) were generated and appended. (e) A set of binary working states is selected according to perturbation depth (in the current example,
only working states with five or less inactive regions). The predictor is used to predict a behavioral score (in this example, FMA score) for each
working-state based on the preprocessed data set. The parameter b is an exponential coefficient (b > 0) that is set beforehand (in the current a
value of 15 was chosen, see supplementary material). (d) Shapley values are computed according to the bound-perturbation formula
(Section 2.1.2) and then (g) are calibrated (Section 2.1.4). (h) A set of bootstrap resamples (1000 in the current work) is used to obtain the
empirical distribution of Shapley values and (i) for computation of confidence intervals hypothesis testing. FDR, false discovery rate; FMA, Fugl-
Meyer Assessment score; ROI, region-of-interest
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presented in Table S1 (among the supplementary materials). The eval-

uation of motor impairment in the hemiparetic UL is based on the

standardized Fugl-Meyer Assessment for the upper extremity (FMA-

UE; Gladstone et al., 2002). The scale, which emphasizes the capacity

to perform isolated proximal and distal UL movements, has proven to

be sensitive, reliable and valid for the assessment of UL motor impair-

ment after stroke (Duncan et al., 1983; Platz et al., 2005).

2.2.2 | Imaging and lesion analysis

Follow-up CT (n = 102) and T1 weighted MRI (n = 5) brain scans

(median, interquartile range [IQR]: 42, 32 days from stroke onset)

were carefully examined by a physician experienced in the analysis of

neuroimaging data (author NS) to ensure that lesion boundaries were

clear and traceable and that the scan presents a stable pattern of tis-

sue damage without a mass effect from residual edema. Lesion ana-

lyses were performed with the analysis of brain lesions (ABLe) module

(Solomon et al., 2007) implemented in MEDx software (Medical-

Numerics, Sterling, VA). Lesion delineation was made manually on the

digitized CTs. ABLe characterizes brain lesions in MRI and CT scans of

the adult human brain by spatially normalizing the lesioned brain into

Talairach space using the Montreal Neurological Institute (MNI) tem-

plate, with 2 mm voxel resolution. Tissue damage was reported

according to the normalized automated anatomical labeling (AAL) atlas

(Tzourio-Mazoyer et al., 2002) and white matter (WM) atlas (Mori

et al., 2008). Quantification of the amount of tissue damage within

each ROI of the atlas was obtained as described earlier (Haramati

et al., 2008). Registration accuracy (Solomon et al., 2007) of the scans

to the MNI template across all subjects ranged from 89.1 to 95.9%

(LHD: 94.1 ± 1.3%; RHD 94.1 ± 1.2%). Overlay lesion maps (stroke

lesion distribution) of LHD and RHD patients are shown in Figure 2.

Individual patients' lesions are displayed on a set of standard tem-

plates in Figure S5 (supplementary materials).

The extent of tissue damage within 90 original ROIs of the AAL

and WM atlases was determined for the 107 participants. This num-

ber of regions could not be handled reliably by MSA given the cohort

size at hand (49 RHD; 58 LHD). Thus, we have created a new parcella-

tion (Table S2; supplementary materials) of the entire brain by group-

ing adjacent regions, to obtain a set of 26 ROIs and computed the

region-wise extent of damage (0–100%) for each ROI. ROIs known to

be relevant to motor control of the UL, according to past studies in

human and nonhuman primates (Buneo & Andersen, 2006; Byblow

et al., 2015; Frenkel-Toledo et al., 2019; Groenewegen, 2003;

Hoffman & Strick, 1995; Nachev et al., 2008; Rodríguez-Herreros

et al., 2015; Sommer, 2003; Vingerhoets, 2014; Wenzelburger

et al., 2005) were included in the new parcellation at a higher resolu-

tion than regions without such known relevance. A comparison of

lesion patterns between the LHD and RHD patient groups was done

in a ROI-wise manner, by calculating for each ROI the proportion of

patients in whom damage to the ROI was noted (any damage, yes/no).

Since lesions involved usually only a small subset of ROIs in each

patient, we calculated the ROI-wise median extent of damage for

lesioned patients. Differences in lesion-pattern (LHD cohort vs. RHD

cohort) were assessed using chi-square test (for proportions of

patients with any damage) and Mann–Whitney test (for median dam-

age). Correction for multiple comparisons was done here using permu-

tations methods (100,000 permutations), implemented by “coin”
package in R language (Hothorn et al., 2008). All data analysis was

done using custom scripting in MATLAB R2020a (The MathWorks,

Natick, MA) and RStudio (RStudio Team, 2015).

2.2.3 | Application of MSA in this case

As explained earlier, while MSA requires one to know the perfor-

mance of dichotomous brain working states (where each region is

either intact or inactive), patient lesion-loads are graded, theoretically

allowing for a graded activity. Thus, we developed the ML predictor

(related to K-nearest neighbors method) described above to predict

the behavioral scores of the required dichotomous working states,

based upon the graded data set at hand. As explained above, due to

large differences in lesion-load across ROIs, scaling was required to

avoid prediction bias in favor of ROIs with high lesion loads. Hence,

TABLE 2 Patients' demographic and
clinical data

RHD (n = 49) LHD (n = 58) p-Value

Gender (male/female) 31/18 42/16 .42a

Age: mean (SD) 62 (9) 60 (12) .58b

Dominance (R/A/L) 45/1/3 55/0/3 .68c

Lesion type (I/H) 32/17 41/17 .70a

TAO days: mean (SD) 60 (19) 57 (19) .41a

Lesion volume: mean (SD) (ml) 31.3 (39.7) 21.7 (23.8) .76b

Mean FMA-UE: X/66 (SD) 40 (20) 35 (21) .22b

FMA-UE total class (%) ≤25/26–45/>45 42.9/18.4/38.8 29.3/20.7/50.0 .33a

Abbreviations: FMA-UE, Fugl-Meyer Assessment for the upper extremity; R/A/L = right/ambidextrous/

left; I/H, ischemic/hemorrhagic (ischemic lesions with hemorrhagic transformation were considered as

ischemic); RHD, LHD, right and left hemisphere damage; TAO, time after stroke onset.
aChi-square test.
bMann–Whitney test.
cFisher's exact test.
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each lesion load was divided by the maximal lesion load seen for that

region.

Following previous MSA reports (Kaufman et al., 2009; Malherbe

et al., 2018; Toba et al., 2017, 2020; Zavaglia et al., 2015), we

assessed the predictor's accuracy using leave-one-out cross-valida-

tion. The predictor could explain 7.2 and 13.1% of the observed vari-

ance in the LHD and RHD cohorts, respectively. The prediction mean

squared error (MSE) was significantly smaller than chance-level pre-

diction, computed by applying the predictor to 100,000 random per-

mutations of the data (LHD: MSE = 415.1; p = .03; RHD:

MSE = 417.9; p = .011).

Since the number of analyzed brain regions (K = 26) was too large

for full-information MSA computation (as an impossible number of

226 predictions are required) we used bound-perturbation MSA

(Keinan et al., 2006), which involves restricting the analysis to those

coalitions in which no more than J regions are inactive (i.e., bounding

perturbation level to some J, as explained before). Although bound-

perturbation gets closer to the full-information Shapley value as

J increases (Keinan et al., 2006), preliminary analysis showed that

increasing J also increases prediction error (as expressed by

bootstrap-derived standard error; see Figures S6 and S7; supplemen-

tary materials). Moreover, computation time rises exponentially as

J increases: For example, when considering 26 regions, J = 4 requires

the prediction of behavioral score of 17,902 coalitions while J = 5

requires the prediction of 83,682 coalitions. Hence choosing the opti-

mal perturbation depth is crucial for successful application of MSA.

We thus assessed the performance of all perturbation depths from

1 to 6 using ground-truth simulation (see the next section) and used

the best-performing depth in the subsequent analysis of real-

world data.

Statistical inference was done using Bootstrap analysis

(Efron, 1981; Toba et al., 2020), a commonly used nonparametric

resampling technique, with a sample size of 1000. Subsequently, a

region-wise t test was computed using the derived standard errors, to

determine whether the Shapley value of a given region was signifi-

cantly greater than the average Shapley value. The family-wise error

rate was corrected using the false discovery rate (FDR) method

(Benjamini & Hochberg, 1995) with α = .05.

2.3 | Ground-truth simulation

Ground-truth simulation was performed to assess the accuracy of

bound-perturbation MSA using different depths (J = 1–6). In order to

make the simulation more intelligible for clinical inference, it was

based on the FMA-UE data of stroke patients from our cohort. As the

critical brain regions for a given human behavior are known largely

from LSM studies, simulation seems the most feasible way to validate

LSM methods (Ivanova et al., 2021; Xu et al., 2018). However, differ-

ent authors used different ground-truth models (Ivanova et al., 2021;

Mah et al., 2014; Pustina et al., 2018; Y. Zhang et al., 2014). One of

the postulated advantages of multivariate LSM methods like MSA is

their ability to treat more effectively brain networks (Ivanova

et al., 2021; Mah et al., 2014; Pustina et al., 2018; Zhang et al., 2014).

We thus chose a relatively simplistic lesion-behavior model, as previ-

ously done by Zhang et al. (2014), in which activity of a brain region

(activity = 1—damage) is linearly related to its lesion load and the total

behavior score is the sum of its network members' activity:

y¼R1þR2þR3

where y is the simulated behavior and R1, R2, and R3 are the activity

levels of three brain regions, selected from the 26 ROIs in the parcel-

lation (see Section 2.2.2). To avoid spurious results, we used 120 ran-

dom combinations of the three regions (without replacement) out of

15,600 possible options. Each of these 120 different ground-truth

brain-models was applied on the lesion-data of the two clinical subco-

horts (LHD, RHD) to produce a total 240 data sets, each consisting of

a lesion pattern and a simulated behavioral score. Each data set was

submitted to bound-perturbation MSA with six depths (J = 1–6).

Standard deviations for each Shapley value were calculated using

1000 bootstrap resamples of the patients' lesion data, as described

before and used in previous studies (Malherbe et al., 2021; Toba

et al., 2020). Each region-wise SV was then transformed to the corre-

sponding Z-score as follows:

Zi ¼ SVi�mean SVð Þ
SD

F IGURE 2 Lesion overlay maps of LHD and RHD patients (n = 58, n = 49; respectively). Representative normalized slices (out of
90 normalized slices employed) are displayed in radiological convention (right hemisphere on left side and vice versa), with warmer colors
indicating greater lesion overlap (units: number of patients with lesion in this region). LHD, left-hemispheric damage; RHD, right-hemispheric
damage
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2.3.1 | Area under receiver operator characteristic
curves

The area under the curve (AUC; Metz, 1978; Zhang et al., 2014) quan-

tifies overall performance. It was computed for each perturbation

depth, for each MSA run. Each Z-score vector was thresholded

26 times, using each individual Z-score as a threshold. True positive

and false positive rates were calculated for each threshold to yield the

receiver operator characteristic (ROC) curve. ROC curve computation

was followed by evaluation of AUC for each such curve. AUC of 1 rep-

resents a perfect test while AUC of 0.5 represents a test with chance-

level performance. Since the AUC did not conform to a Gaussian dis-

tribution, we applied wild-bootstrap repeated-measures two-way

ANOVA using “RM.MANOVA” R package (Friedrich et al., 2019) for

analysis of the effect of perturbation depth (J = 1–6) and subcohort

(LHD, RHD) on each AUC (two within-subjects factors, ground-truth

model served as indexing factor). When significant effects were

detected, post hoc analysis between different depths and different

cohorts was done using paired bootstrap method with bias-correction

and acceleration with “wBoot” R Package (Weiss, 2016) to test for

any differences between the perturbation depth maximal value and

the rest. Both analyses were based on 100,000 bootstraps resamples,

and the FDR method (Benjamini & Hochberg, 1995) was used to cor-

rect for multiple comparisons.

2.3.2 | Sensitivity and specificity

Average sensitivity and specificity measures were computed for the

best-performing perturbation depth. A region-wise t test was com-

puted using bootstrap-derived standard errors (α = .05) to determine

which regions were significantly higher than the average

SV. Subsequently, the obtained regions were compared to the brain-

model critical regions to obtain sensitivity and specificity measures.

This procedure was repeated for each brain model and cohort, with

and without FDR correction for multiple comparisons. Confidence

intervals for sensitivity and specificity were also computed using wild

bootstrap method, with 100,000 resamples, implemented with “RM.

MANOVA” R package (Friedrich et al., 2019).

Following the ground-truth simulation, bound-perturbation MSA

with best-performing depth was applied to the two cohorts of sub-

acute stroke patients (RHD, LHD), using patients' FMA-UE scores, to

unravel the relative contribution of each brain ROI to overall function-

ing of the hemiparetic UL. As with simulations, brain regions with SVs

significantly higher than the average (FDR-corrected p-value <.05,

26 comparisons) were considered as highly contributing. Confidence

intervals were constructed using 1000 bootstrap resamples.

2.3.3 | Localization index

One useful feature of MSA is the ability to quantify the extent of

function localization. This measure, called “localization Index” L, was

described by Aharonov et al. (2003), and it is calculated as follows:

L¼ std cð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1ð Þ=N2

q

where c is the raw SV (normalized so as to add up to 1), N is the num-

ber of regions, and L is in the range of [0, 1] (where L = 0 denotes a

fully distributed function and L = 1 denotes single-region localization).

The localization index was computed for each Shapley vector.

3 | RESULTS

3.1 | Comparative analysis of demographic, clinical,
and anatomical characteristics of LHD and RHD
patient groups

The demographic and clinical characteristics of RHD and LHD patient

groups were essentially similar (Table 2), with no significant differ-

ences between the groups in either sex, dominance, time after stroke

onset, lesion volume or FMA-UE scores. Overlay lesion maps (stroke

lesion distribution) of LHD and RHD patients are shown in Figure 2.

The proportion of patients having a lesion (yes/no) was similar for all

ROIs except for the posterior limb of the internal capsule (PLIC) and

the CR, which were more frequently damaged in the LHD group (chi-

square independence-test, LHD vs. RHD; PLIC: 91.4 vs. 67.3%,

χ2 = 8.26, permutations-corrected p-value = .003; CR: 94.8

vs. 81.6%, χ2 = 3.41, permutations-corrected p-value = .037). The

median region-wise extent of damage was similar in LHD and RHD

patients, except for the medial temporal lobe (MTL) where RHD

patients had a more extensive damage than LHD patients (median

damage for lesioned patients IQR, LHD vs. RHD: 0.9% [0.3–2.1%]

vs. 6.7% [1.9–11.0%], U= 81, permutations-corrected p-value= .007).

Descriptive statistics of damage within each ROI in the two cohorts

are shown in Figure 3.

Since high co-linearities between ROIs (Xu et al., 2018) might

affect the interpretation of results obtained from MSA, we checked

the extent of lesional dependence for each pair of ROIs, by computing

the pairwise Pearson's correlation coefficient of normalized activity

(1—damage) for all ROIs. After FDR correction, 77% of the pairs in the

LHD and 63% of the pairs in RHD did not show a significant correla-

tion. Although MSA can overcome partial dependencies, resolving the

independence of two perfectly correlated regions is impossible (Toba

et al., 2019). Figure 4 describes ROI pairs with Pearson's R ≥ .8 (per-

fectly or almost-perfectly correlated).

3.2 | Ground-truth simulation results

Figure S2 (supplementary materials) depicts one representative exam-

ple of simulation experiment results. In this specific example, the three

critical brain regions were selected to be the IPL, BG, and anterior limb

of internal capsule. Performance was equal to the sum of activities

(1—damage) in these three regions. MSA for LSM (with J = 5) was

applied on the LHD and RHD lesion data with their corresponding
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simulated behavioral scores. Both raw and cSVs are depicted. When

the raw SVs are compared to the ground-truth SVs (by definition,

33% for each critical region and 0% for all of others), the raw SVs

were biased upward, and their amplitude was diminished. Applying a

calibration procedure (as explained in Section 2) obtained values

approximating the ground-truth values. Regions which their SVs were

significantly higher than the average SV (after FDR correction for mul-

tiple comparisons) were marked by asterisks. As could be seen in this

example, all of the critical regions were correctly detected, in addition

to some false positives (posterior white matter in LHD and RHD

cohorts and external capsule in the RHD cohort). This demonstrates

that MSA results are affected to some extent by lesion dimensionality,

as the same ground-truth model was used for both cohorts.

Assessment of MSA performance in LSM was done using the

AUC of the ROC curve method (AUROC). Figure 5 depicts the

AUROC for each MSA approach, together with 95%-confidence inter-

vals. All perturbation depths were significantly better than chance-

level (AUC = 0.5) in detecting the underlying simulated ground-truth.

However, performance differed between depths (main effect for

depth, F(5) = 149.32, p < .001). Moreover, performance was also

influenced by the cohort (LHD vs. RHD) (main effect for cohort, F

(1) = 29.12, p < .001). Post hoc analysis revealed that for the LHD

cohort, perturbation depth of J = 5 was significantly better than

depths J ≤ 4 (bootstrap paired-sample test, FDR-p < .005) and also

than depth of J = 6, but with borderline significance (bootstrap

paired-sample test, FDR-p = .063). For the RHD cohort, both depth

J = 4 and J = 5 were found to be equivalent (AUC, mean, [95%-CI];

J = 4: 0.945 [0.927, 0.964]; J = 5: 0.948 [0.928, 0.967]; bootstrap

paired-sample test, FDR-p = .370) and significantly better than

bound-perturbation MSA with J < 4 and J = 6 (FDR-p < .001). Overall,

since bound-perturbation MSA with J = 5 was the best performing

approach for both RHD and LHD cohorts, we used it for analysis of

the real-world behavioral data.

Since the AUROC is independent of the specific signal detection

properties of a specific threshold, we also calculated the sensitivity

and specificity for detection of critical ground-truth regions with

J = 5. When using alpha of .05 without correction for multiple com-

parisons, as was done in previous MSA studies (Kaufman et al., 2009;

Malherbe et al., 2018; Toba et al., 2017, 2020; Zavaglia et al., 2015),

the false-positive rate [95%-CI] was 15.7% [14.4%, 17%] for the RHD

cohort and 19.5% [18%, 21.1%] for the LHD cohort, while the false-

negative rates were 13.9% [10.4%, 17.3%] for the RHD cohort and

16.9% [13.7%, 20.2%] for the LHD cohort. Applying FDR correction

was associated with significant higher specificity (10.3% [9%, 11.5%]

and 14.7% [13%, 16.3%] for the RHD and LHD cohorts, respectively;

bootstrap paired-sample test, p < .001) and lower sensitivity (25%

[20.8%, 29.2%] and 26.7% [22.4%, 30.9%] for the RHD and LHD

cohorts, respectively; bootstrap paired-sample test, p < .001). Since

FDR correction provided better specificity with reasonable sensitivity,

we used it for analysis of the real-world behavioral data.

F IGURE 3 Descriptive statistics of damage within each ROI. (a) Proportion of patients (%) with any damage (yes/no) in each region. Asterisks
denote significant difference between LHD and RHD (chi-square test, p < .05, corrected for multiple comparisons with permutations). (b) Median
(IQR) ROI involvement by lesion (% of ROI's volume) for patients with any damage to the ROI. Asterisks denote significant difference between
LHD and RHD (Mann–Whitney test, p < .05, corrected for multiple comparisons with permutations method) (see Table S2 for ROIs'
correspondence to AAL and WM atlas' regions). ALIC, PLIC, anterior and posterior limbs of internal capsule; BG, basal ganglia; CR, corona radiata;
DL-Temp, VL-Temp, dorsolateral and ventrolateral parts of the temporal lobe; EC, external capsule; LHD, RHD, left and right hemispheric
damage; M1, primary motor cortex; MTL, medial temporal lobe; ParaCent, paracentral lobule; Post-WM, posterior white matter (superior and
inferior fronto-occipital fasciculi, uncinate fasciculus); RoB, rest of the brain (other brain regions analyzed together); ROI, region of interest; S1,
primary somatosensory cortex; SLF, superior longitudinal fasciculus; SMA, supplementary motor area; SPL, IPL, superior and inferior parietal
lobules; SupFront, MidFront, InfFront, superior, middle and inferior frontal regions; SS, sagittal stratum; VBS, ventral brainstem
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F IGURE 4 Pair-wise ROI dependencies. Pair-wise Pearson's correlation coefficients were computed between each pair of ROIs for the left-
hemispheric damage and right-hemispheric damage cohorts. Correlation coefficients of 0.8 or higher were considered perfectly or almost-
perfectly dependent (shown as two-decimal fraction) (see Table S2 for ROIs' correspondence to AAL and WM atlas' regions). ALIC, PLIC, anterior
and posterior limbs of internal capsule; BG, basal ganglia; CR, corona radiata; DL-Temp, VL-Temp, dorsolateral and ventrolateral parts of the
temporal lobe; EC, external capsule; LHD, RHD, left, right hemispheric damage; M1, primary motor cortex; MTL, medial temporal lobe; ParaCent,
paracentral lobule; Post-WM, posterior white matter (superior and inferior fronto-occipital fasciculi, uncinate fasciculus); RoB, rest of the brain
(other brain regions analyzed together); S1, primary somatosensory cortex; SLF, superior longitudinal fasciculus; SMA, supplementary motor area;
SPL, IPL, superior and inferior parietal lobules; SupFront, MidFront, InfFront, superior, middle and inferior frontal regions; SS, sagittal stratum;
VBS, ventral brainstem

F IGURE 5 Mean area under the receiver-operator characteristic (ROC) curve. Synthetic behavioral scores were simulated 120 times for each
cohort, each time assuming a different brain model (see Section 2 for details). MSA was applied on the obtained data sets using different
perturbation depths (J). The area under the ROC curve was calculated by thresholding the resultant Shapley Z-scores. 95%-confidence intervals
were computed using wild bootstrap method with 100,000 resamples. Each mark represents the mean and area under the ROC curve of

120 different brain models. The same brain models were used for all analyses. CI = confidence interval; LHD and RHD, left- and right-
hemispheric damage; ROC, receiver-operator characteristic
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3.3 | Relative contribution of different network
hubs to UL motor control in the recovering brain

The relative contribution of each brain ROI to residual UL motor func-

tion, as expressed in the FMA-UE score obtained in the subacute

phase of the disease, was evaluated separately for the LHD and RHD

patient groups, by calculating the SVs for all possible region-coalitions

with 5 or fewer inactive regions (perturbation depth J = 5). Standard

errors were obtained from the distribution of SVs, estimated using

1000 bootstrap resamples.

Figure 6 depicts the SVs after calibration together with their cor-

responding bootstrap-derived 95% confidence interval. In the LHD

group, three ROIs had a cSV which passed the FDR-correction for

multiple comparisons: the superior frontal gyrus (SFG), the supple-

mentary motor area (SMA), and the paracentral lobule (PCL) (cSV,

95%-CI; SFG, 7.2 [4.7, 9.7], pFDR = .041; SMA, 7.3 [5.1, 9.4],

pFDR = .016; PCL, 7.0 [5.0, 9.0], pFDR = .016). In the RHD cohort, four

ROIs had a cSV which passed the FDR-correction for multiple

comparisons—the ventral brain stem (VBS), the primary somatosen-

sory cortex (S1), the primary motor cortex (M1), and the BG ((cSV,

95%-CI; VBS, 28.9 [12.4, 45.3], pFDR = .016; S1, 22.2 [16.0, 28.5],

pFDR < .001; M1, 21.0 [10.4, 31.6], pFDR = .014), BG, 13.1 [6.4, 19.9],

pFDR = .026).

These findings point to marked differences between the left and

right hemispheres in the impact of lesion topography on the level of

impairment in the hemiparetic UL (see Figure 7 for summary of main

results). In addition, the interregional variability was consistently lower

for LHD compared to RHD, pointing to a more homogenous role of

most network hubs in the dominant left hemisphere (only few

patients in the cohort were non-right-handers, and repeating the anal-

ysis without their data yielded essentially the same results [see

Figure S8 among the supplementary materials]). The difference

between the hemispheres in this respect was quantified using a “local-
ization index” L (Aharonov et al., 2003), as done previously (Kaufman

F IGURE 6 Calibrated Shapley values of brain ROIs for FMA-UE scores at the subacute phase poststroke. Calibrated Shapely values for UL
motor control in the LHD and RHD cohorts, calculated using MSA for 26 brain ROIs, at the late subacute phase poststroke onset, with FMA-UE
scores normalized to 100 points indicating the level of motor functioning in the hemiparetic upper limb. Whiskers denote 95%-confidence
interval (derived through 1000 bootstrap resamples). The average Shapley value is marked with a dashed line (100/26 ≈ 3.85 in all figures).
Asterisks denote regions with Shapley value significantly higher than this baseline (false discovery rate [FDR]-corrected p < .05) (see Table S2 for

ROIs' correspondence to AAL and WM atlas' regions). ALIC, PLIC, anterior and posterior limbs of internal capsule; BG, basal ganglia, DL-temp, VL-
temp, dorsolateral and ventrolateral parts of the temporal lobe; CR, corona radiata; EC, external capsule; FMA-UE, Fugl-Meyer Assessment Scale
for the upper extremity; LHD, RHD, left, right-hemispheric damage; M1, primary motor cortex; MTL, medial temporal lobe; ParaCent, paracentral
lobule; Post-WM, posterior white matter (superior and inferior fronto-occipital fasciculi, uncinate fasciculus); RoB, rest of the brain (other brain
regions, analyzed together); ROI, region of interest; S1, primary somatosensory cortex; SLF, superior longitudinal fasciculus; SMA, supplementary
motor area; SPL, IPL, superior and inferior parietal lobules; SupFront, MidFront, InfFront, superior, middle and inferior frontal regions; SS, sagittal
stratum; VBS, ventral brainstem
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et al., 2009). The localization index was significantly higher for the

RHD cohort (LRHD vs. LLHD, 0.13 ± 0.01 vs. 0.09 ± 0.01; bootstrap-

based Welch t test, 1000 resamples, t(1996.6) = 59.14, p < .001), sug-

gesting that motor control in the left hemisphere is more distributed

across neural hubs, relative to the right hemisphere. In order to deter-

mine if this finding reflects a real interhemispheric difference in func-

tional neuroanatomy or stems from differences in lesion patterns

between the LHD and RHD cohorts, we computed the localization

index for each brain model in the ground-truth simulation. There was

no effect for the cohort on the localization index (F(1) = 0.093,

p = .761), supporting functional interhemispheric differences as the

origin of the observed hemispheric effects.

4 | DISCUSSION

In this methodological paper, we described in detail a newly revised

multivariate approach to LSM based on the game-theoretical principles

of SVMSA. Using as a test case, a data set of 107 stroke patients,

derived from a larger cohort that participated in a recent VLSM study

of UL paresis (Frenkel-Toledo et al., 2019), we showed the ability of this

revised approach to correctly detect ground-truth brain–behavior rela-

tionship using moderately sized cohorts (50–60 patients), with accept-

able type-I and type-II error rates. The results obtained by this method

can provide useful information regarding the underlying brain network

supporting the behavior of interest. The following sections discuss

issues related to the use of MSA for LSM in general, and findings of

MSA application in the specific case of stroke-related UL paresis.

4.1 | Issues concerning MSA for LSM in general

VLSM and related univariate LSM methods are used extensively for

outlining the neural correlates of impairment following stroke (Bates

et al., 2003; Karnath et al., 2019; Rorden & Karnath, 2004). However,

as pointed out by several authors, these methods are unable to

account properly for the intricate interactions that exist between

brain regions comprising a functional network, and also fail to treat

properly lesion dependencies dictated by the anatomy of vascular

supply (Mah et al., 2014; Xu et al., 2018; Zhang et al., 2014). Multivar-

iate LSM methods were suggested as a possible solution for these

issues (Mah et al., 2014; Pustina et al., 2018; Xu et al., 2018), as they

are better equipped for treating functional dependencies. Nonethe-

less, other authors (Ivanova et al., 2021; Sperber & Karnath, 2017)

pointed out that multivariate LSM might also suffer from similar limi-

tations and may not outperform classical univariate LSM methods.

Moreover, a recent simulation study (Ivanova et al., 2021) has shown

that multivariate LSM methods require a larger sample size to achieve

the accuracy of univariate LSM methods.

MSA for neurological LSM, first introduced by Kaufman et al.

(2009) in a study of the neural substrate of line-bisection performance

in stroke patients with spatial neglect, is a promising multivariate

F IGURE 7 Brain regions-of-interest (ROIs) with significant calibrated Shapley values for FMA-UE scores at the subacute phase poststroke.
Brain ROIs with calibrated Shapley values for FMA-UE score (normalized to 100 points) that were significantly larger than the expected baseline
(false discovery rate [FDR]-corrected p < .05). The significant ROIs from two cohorts (LHD and RHD) are overlaid on a single MRI template (MNI
single-subject, Tzourio-Mazoyer et al., 2002). Brighter colors denote larger calibrated Shapley values. BG, basal ganglia; cSV, calibrated Shapley
value; FMA-UE, Fugl-Meyer Assessment for upper extremity; M1, primary motor cortex; PCL, paracentral lobule; S1, primary somatosensory
cortex; SFG, superior frontal gyrus; SMA, supplementary motor area; VBS, ventral brainstem
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approach due to its enhanced capability to detect the importance of

network elements which exhibit complex interactions with each other

(Keinan et al., 2004, 2006). In contrast to other multivariate methods,

MSA could yield neurologically sound results when applied on rela-

tively small cohorts (Kaufman et al., 2009; Toba et al., 2017, 2020).

Also, MSA could detect the importance of brain structures which are

injured only in a small proportion of stroke patients (Kaufman

et al., 2009; Zavaglia et al., 2015). Nevertheless, as shown in the cur-

rent study, applying MSA for LSM is more complex than applying uni-

variate LSM, since it consists of several steps, each one critical for the

final outcome.

First, computation of the original (so called, “full-information”)
SVs requires the knowledge of the full set of possible binary working

states, while the available data are graded. Previous solutions to this

problem included dichotomization of either the lesion data (Kaufman

et al., 2009; Zavaglia et al., 2015) or the behavioral scores (Malherbe

et al., 2018; Toba et al., 2017) before applying a ML predictor, thus

potentially loosing valuable information. Here, we proposed a predic-

tor which was specially designed to predict binary working-states

scores from graded lesion data, eliminating the need for dichotomiza-

tion. Also, we took into account only the less-perturbed binary work-

ing states, thus decreasing unwanted error attributed to biologically

unrealistic states, as was suggested previously (Keinan et al., 2006).

Second, it seems that the prediction process introduces a bias

which leads to general shrinkage of SVs toward the mean SV (i.e., to

the performance in the intact state, divided by the number of brain

regions, see Figure S2 in the supplementary materials for a visual

example). As explained in Section 2, we addressed this bias by apply-

ing a calibration procedure and by referring only to SVs of regions

which are significantly higher than the average, as indicative of critical

network hubs. Since SVs distribution is unknown, we constructed

confidence intervals using the bootstrap method (Efron, 1981), as was

done recently (Malherbe et al., 2021; Toba et al., 2020). Moreover,

since each region is tested for significance separately, spurious results

were minimized by correcting for multiple comparisons (Inoue

et al., 2014; Ivanova et al., 2021; Mah et al., 2014; Pustina

et al., 2018; Sperber & Karnath, 2017; Y. Zhang et al., 2014).

We have tested our suggested MSA approach to LSM using

ground-truth simulation. Ground-truth simulation was used recently

in several studies which evaluated different LSM methodologies

(Inoue et al., 2014; Ivanova et al., 2021; Mah et al., 2014; Pustina

et al., 2018; Sperber & Karnath, 2017; Zhang et al., 2014), and it is

considered to be the closest to “gold standard” in evaluation of LSM

methods (Xu et al., 2018). The number of variables that could be

assessed in simulation studies of LSM is vast and includes parameters

affecting the ground-truth model (e.g., type of lesion-behavior rela-

tionship at the single region level (Amunts et al., 1996; De Gennaro

et al., 2004; Guye et al., 2003; Hammond et al., 2004; Tretriluxana

et al., 2009)), interregional interactions (Godefroy, 1998; Toba

et al., 2019), number of regions in the functional network, factors

related to lesion dimensionality (the anatomical parcellation in use,

the extent of interdependency between regions, the extent of repre-

sentation of different regions in the cohort), and other factors

(e.g., size of the cohort, extent of behavioral impairment, or smooth-

ness of lesion borders). Beyond all that, there are parameters related

to the LSM method itself (e.g., with or without correction for total

lesion volume, the thresholds set for significance and method-specific

hyper-parameters). Since our aim here was to demonstrate the

method's applicability and validity, assessing all of these parameters

was out of the scope of the current study. We hence focused on three

questions in the simulation study: (1) what is the optimal perturbation

depth (J parameter); (2) what are the differences in performance

between left- and right-hemisphere damaged patients; and (3) what

are the theoretical false-positive and false-negative error-rates associ-

ated with the optimal perturbation depth.

Using ground-truth simulation, we showed that the perturbation-

depth of J = 5 was associated with the best performance for both

LHD and RHD cohorts. This result was also supported by analysis of

the clinical data, which showed that MSA with J > 5 detected almost

the same regions as MSA with J = 5, for both cohorts (Figures S6 and

S7; supplementary materials). Until an automated method for deter-

mining the optimal depth is developed, we suggest trying several

depths and choosing the depth in which results are stable.

Second, we showed that different lesion-behavior data sets are

associated with different patterns of performance. In the current

example, the LHD data set, in spite of its larger size, was associated

with decreased accuracy (as expressed by lower area under the ROC

curve) in comparison to the RHD data set, for all assessed J values.

This result might be related to greater heterogeneity in regional lesion

extent in the RHD cohort compared with the LHD cohort in our data

(standard deviation of regional lesion extent, mean ± SD: 15.3 ± 9.5

vs. 12.1 ± 7.2 in RHD and LHD groups, respectively; Wilcoxon rank

signed test, z = �3.34, p = .0008).

Finally, we were specifically interested in measuring the false-

positive and false-negative rates of the selected perturbation depth

(J = 5) for both data sets. Our results showed that using FDR correc-

tion yielded reasonable false-positive error rates of 10 and 14.7% for

the RHD and LHD cohorts, respectively. As expected, this conserva-

tiveness came with a cost of increased false-negative rate (25 and

26.7% for the RHD and LHD cohorts, respectively). While these error

rates are based on a very specific ground-truth situation which may

not represent the actual brain–behavior relationship, they provide

some insight into accuracy of the method, when considering the

results obtained for real behavioral data.

4.2 | Case study: MSA Of UL paresis poststroke

4.2.1 | Interhemispheric differences shown in
VLSM and MSA

Given the fact that FMA-UE scores were obtained 8 weeks on aver-

age after stroke onset, we should assume that neuroplasticity—the

capacity of the injured brain for reorganization and adaptive remap-

ping of structure–function relationships—affected the emerging pat-

tern of brain ROIs involved in the tested behavior (Carmichael &
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Chesselet, 2002; Cheng et al., 2014; Darling et al., 2011; Grefkes &

Ward, 2014; Page et al., 2013; Puig et al., 2011; Ward et al., 2003). In

a recent VLSM study by our group (Frenkel-Toledo et al., 2019) which

analyzed stroke lesion effects on UL function in the subacute period,

we found that damage to numerous subcortical and cortical regions—

BG, CR, internal capsule, insula, rolandic operculum, and inferior fron-

tal gyrus—affected the level of impairment in the hemiparetic UL fol-

lowing RHD. A different pattern was found in LHD patients, in whom

lesions to only a few subcortical regions—BG, CR, internal capsule,

external capsule, and superior longitudinal fasciculus—exerted a signif-

icant impact on UL function, moreover with a lower signal (Z scores

passed only a lenient criterion for significance). Although some hemi-

spheric asymmetry was expected, based on previous knowledge

(Amunts et al., 1996; De Gennaro et al., 2004; Guye et al., 2003;

Hammond et al., 2004; Tretriluxana et al., 2009), its extent, etas

revealed in this study, was overwhelming and called for verification by

other modes of analysis.

In the current study, we used MSA to analyze LSM in 107 of the

130 subjects who participated in the above VLSM research (Frenkel-

Toledo et al., 2019). The data of 23 subjects from the original cohort

was trimmed in order to reduce variance related to behavioral testing

time after stroke onset. Multivariate analysis by MSA, like the earlier

univariate VLSM analysis in (Frenkel-Toledo et al., 2019), detected

largely different sets of critical regions in the RHD and LHD cohorts,

suggesting a significant interhemispheric difference in the brain net-

works that mediate motor function of the hemiparetic UL at this stage

(i.e., the later part of the early subacute period poststroke, when much

of the expected recovery has already been accomplished (Duncan

et al., 1992; Kwakkel et al., 2006)).

4.2.2 | Insight obtained from use of a “localization
index”

Analysis of the localization index provided an important viewpoint on

the hemispheric differences revealed by MSA. The “localization index”
is a measure of the extent in the function of interest that can be

attributed to a single brain region (Aharonov et al., 2003). The localiza-

tion index was significantly lower in the LHD cohort, pointing to a

more homogenous contribution of the different hubs in the left motor

network compared to the right motor network. This finding is likely to

indicate that the hubs of the left motor network are more versatile in

their capabilities, and possess a greater capacity to compensate for

the loss incurred by damage to other hubs in the network. Previous

research has demonstrated increased connectivity between motor

hubs in the dominant left hemisphere of healthy right-handed subjects

(Guye et al., 2003). Increased redundancy of a functional network

makes the contribution of specific network hubs less salient and more

difficult to characterize by LSM methods, especially univariate ones

(Ivanova et al., 2021). This may explain why no voxels in the LHD

cohort were detected after correction for multiple comparisons in our

original VLSM study (Lo et al., 2010; Meyer et al., 2016).

4.2.3 | Possible sources of hemispheric differences

The hemispheric differences revealed in the current study could be

contributed by the larger variance in regional lesion extent and the

greater accuracy (area under the ROC curve) in the RHD group. How-

ever, when simulated synthetic behavioral scores were used instead

of the actual ones, the difference in the localization index between

the RHD and LHD cohorts disappeared (LLHD vs. LRHD, mean ± SD:

0.0231 ± 0.0103 vs. 0.0227 ± 0.0093, paired t(119) = �0.57,

p = .57), pointing to brain–behavior relationships rather than lesion

characteristics themselves as the main source of the observed hemi-

spheric effects. Moreover, the average lesion extent, and also the

rate of lesion involvement in most of the “critical” regions (i.e., brain

regions pointed by MSA to have a high contribution to UL function),

did not differ significantly when the two hemispheric groups were

compared (the few regions which did differ were not found to be of

high importance by MSA, see Figure 3). Thus, it is unlikely that differ-

ences in accuracy yielded the two non-overlapping sets of high-

impact regions (SFG, SMA, and PCL in the LHD cohort; primary

motor cortex, primary somatosensory cortex, BG, and ventral brain-

stem in the RHD cohort). Significant contribution to the hemispheric

differences by demographic and clinical factors is even less probable,

as subjects in both groups were recruited using the same strict inclu-

sion criteria and no significant difference in either demographic or

behavioral variables was found when comparing the two groups

(Table 2). It should be noted that various lesion studies in the past

treated the left and right motor systems as parallels, applying flipping

techniques in order to increase the statistical power of analyses

(e.g., Lo et al., 2010; Meyer et al., 2016). Obviously, this practice

ignores the fact that persons do not show the same level of dexterity

when doing things with the dominant and nondominant hands

(Bagesteiro & Sainburg, 2002, 2003). Our earlier VLSM study

(Frenkel-Toledo et al., 2019), in which LHD and RHD cohorts were

analyzed as separate groups, was one of the first LSM studies that

clearly demonstrated a salient group effect with respect to the impact

of lesion configuration on FMA-UE scores. We propose that the

hemispheric effects demonstrated in the earlier VLSM study and in

the current MSA research, stem from differences in the functional

neuroanatomy of the motor network in the (dominant) left hemi-

sphere and in the right hemisphere. Calculation of the cSVs after

extraction of seven patients (three LHD, four RHD) who were not

right-handers, revealed essentially the same pattern as for the entire

cohort (see Figure S8; supplementary materials) with some minor dif-

ferences. Past studies have demonstrated different hemispheric con-

tributions to motor control (Amunts et al., 1996; De Gennaro

et al., 2004; Guye et al., 2003; Hammond et al., 2004; Serrien

et al., 2006; Tretriluxana et al., 2009; Wu et al., 2015). Thus, although

lesion-dimensionality factors might have influenced the MSA results,

the findings most probably reflect a profound difference between the

dominant and nondominant hemispheres in the organization of the

motor networks that support UL functioning at this stage poststroke

onset.
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4.2.4 | Differences between MSA and VLSM results

The current MSA study points to a set of high-impact brain regions

which is different from the set of regions in which the existence of

damage exerted a significant effect on the FMA-UE scores in our ear-

lier VLSM study (Frenkel-Toledo et al., 2019). Thus, in the LHD group,

damage to just a few subcortical regions passed a lenient criterion of

significance in the VLSM study, whereas MSA pointed to three corti-

cal regions as highly contributing to performance (SMA, PCL, and

SFG). In the RHD group, out of the regions which were significant

according to VLSM (BG, CR, internal capsule, insula, rolandic opercu-

lum, and inferior frontal gyrus—all at the core of MCA supply zone),

only the BG region was pointed also by MSA as highly contributing

(MSA pointed also to three other regions—primary motor and primary

somatosensory cortices and the ventral brainstem). Note that all the

regions pointed by MSA (and not by VLSM) to be highly important for

the functioning of the hemiparetic UL, are distant from the core MCA

supply zone. This is certainly true for the trajectory of the corticosp-

inal tract in the ventral brainstem, the dorsally located hand area in

primary motor and primary somatosensory cortices, the SMA, the

PCL, and the SFG. All these regions are involved relatively infre-

quently in stroke patients. As a consequence, the importance of dam-

age there was less likely to emerge (and survive the needed correction

for multiple comparisons) in our previous VLSM study (Frenkel-Toledo

et al., 2019), where analysis was employed on voxel clusters involved

in at least 10–20% of the studied cohort. Unlike VLSM, studies

employing MSA for LSM were shown to detect important hubs of

functional networks even when these are represented in low num-

bers. For example, in the MSA study of Kaufman et al. (2009) the

superior parietal lobule, despite being involved infrequently in stroke,

emerged as an important hub in the network mediating spatial atten-

tion. This finding, which emerged from MSA of LSM in a cohort of

stroke patients with spatial neglect (Kaufman et al., 2009), is in accor-

dance with theorizing based largely on fMRI research (Corbetta &

Shulman, 2011).

4.2.5 | Relevance of MSA high-impact regions to
motor behavior in the recovering brain

All the regions, both in RHD and LHD groups, that were pointed by

MSA to be highly contributing to UL functioning (except for the PCL),

were found in past research to affect UL motor behavior. Three of the

high-impact regions in the RHD cohort (primary motor cortex, primary

somatosensory cortex, VBS) are related to the corticospinal tract

(CST), which is the major pathway mediating cortical control of spinal

motor activity, with cells of origin residing largely within the bound-

aries of the sensory-motor cortex. Previous studies delineated the

importance of CST integrity for recovery from UL hemiparesis follow-

ing stroke (Byblow et al., 2015; Feng et al., 2015; Stinear et al., 2007;

J. Xu et al., 2017), with specific reference to the primary motor cortex

(Kaya et al., 2015), the primary somatosensory cortex (Abela

et al., 2012; Payabvash et al., 2012), and the CST itself in its passage

through the CR (Lo et al., 2010), the PLIC (Schiemanck et al., 2008;

Stinear et al., 2012; Wenzelburger et al., 2005; Zhu et al., 2010), and

the ventral brainstem (Oh et al., 2012). The BG, though not involved

directly in movement execution, play an important role in motor learn-

ing and selective activation of motor engrams appropriate for the task

in question, probably by specification of a cost-function related to a

learned movement gain (Turner & Desmurget, 2010). Past fMRI stud-

ies demonstrated hemispheric differences in BG activity

(e.g., Molochnikov & Cohen, 2014; Zhang et al., 2017).

Several ROIs were found to contribute significantly to UL motor

function in the LHD cohort. The “SMA” ROI in our parcellation

included also the adjacent medial part of the SFG (FSMG). These two

regions were grouped together based on their anatomical continuity

and common blood supply (from the anterior cerebral artery). Since

the combined ROI was found to contribute significantly to motor

function in LHD cohort, the analysis was repeated with the SMA and

FSMG separated to explore their individual contributions. Indeed, in

both regions the SVs indicated high contribution to UL motor function

in the LHD cohort (Figure S9). The SMA is known to possess vast con-

nectivity with other motor areas (Luppino et al., 1993; Potgieser

et al., 2014) and is implicated specifically in volitional, goal-directed or

“top-down” movement planning (Chen et al., 2010; Tanji &

Shima, 1994). The FSMG was shown in past research to be involved

in skilled action anticipation (Xu et al., 2016). Thus, the high SVs of

these brain regions in the LHD cohort reflect their important role in

movement preparation in the dominant left hemisphere. Another

high-impact region in the LHD group—the SFG—contains part of the

lateral premotor cortex which, like the SMA, plays an important role in

the motor planning stage preceding the execution of movement

(Chouinard & Paus, 2006; Dum & Strick, 2002; Wise, 1985). The

PCL—another high-impact cortical region in the LHD group—which is

located more posteriorly than the former regions, controls, in the

intact brain, voluntary movement of the lower limb. Yet, it is not

unlikely that following damage to the brain, this region (among other

perilesional cortical regions) may take part in a process of adaptive

remapping and assume UL control functions. The prominence of

medial and dorsolateral premotor cortices (SMA and SFG) in the Shap-

ley analysis of the LHD cohort (but not the RHD cohort) points to a

more salient involvement of these regions in motor control processes

of the dominant left hemisphere. Indeed, differential effects of the left

and right premotor areas were demonstrated in past studies, for

example, in the control of memory-guided saccades (Gaymard

et al., 1993) or the planning of object prehension (Martin et al., 2011).

Increased premotor activity poststroke (Seitz et al., 1998) is thought

to play a role in recovery processes, either through adaptive remap-

ping (Plow et al., 2015) or as an alternative sources for mediation of

cortical control over spinal motor activity when the CST is severely

compromised (Li et al., 2022).

4.2.6 | Concluding remarks and interpretation

We propose that the differences between the hemispheric groups

revealed by MSA—the prominence of network hubs related to motor

execution in the RHD group and of network hubs related to motor
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planning in the LHD group, and the more even contribution of net-

work hubs in the LHD group—are connected to the different func-

tional neuroanatomy of the dominant and nondominant hemispheres.

Motor dominance is presumably based upon higher computational

reserves, leading to an improved ability of intact regions of the dam-

aged left hemisphere to take over the roles of inactive regions. The

neural/computational reserve of the dominant left hemisphere seems

to be more prone to adaptive remapping and activity-dependent neu-

roplastic processes taking place in the subacute phase after stroke

(Gauthier et al., 2008) and during active rehabilitation (Sawaki

et al., 2008). This may be the reason why LHD patients tend to use

their contralesional hemiparetic hand more than patients with RHD,

for the same level of impairment (Yadav et al., 2019) and may explain

the tendency of LHD patients to show somewhat greater improve-

ment in the hemiparetic UL compared to RHD patients (Frenkel-

Toledo et al., 2019). In the case of UL paresis poststroke, MSA pro-

vided theoretically sound results which could not be obtained using

univariate (VLSM) analysis, due to the seemingly improved ability of

MSA to extract useful information regarding infrequently involved

brain regions and its more efficient statistical framework.

4.3 | Methodological limitations

4.3.1 | Issues related to lesion dimensionality

Lesion dimensionality is a major concern for all LSM methods, includ-

ing multivariate ones (Pustina et al., 2018), and MSA is not exempt.

Three potential sources of error, disclosed in the current case study,

should be emphasized: (1) Relatively lower variance in regional lesion

extent in the LHD group compared to the RHD cohort, possibly con-

tributing to the observed difference in accuracy between the cohorts.

(2) High interregional correlation in the rate of involvement for some

region pairs, based on similarity of vascular supply (e.g., SMA and

PCL, both supplied by the anterior cerebral artery). In such cases, if

the two regions emerge as highly contributing to the tested behavior

(as found here in the LHD cohort for the two regions in the above

example), the contribution attributed to one of the regions may reflect

a type-I error. (3) When applying MSA on moderate-size cohorts (as in

the current study), the spatial resolution (number of ROIs) of the ana-

tomical parcellation is limited. As explained in Section 2, for the cur-

rent case study, we reduced significantly the number of atlas ROIs, by

pooling together regions that were not found in past research to be

involved in mediation of UL motor function. Thus, different such

regions were grouped in one ROI under the designation “RoB,” as

was done previously (Malherbe et al., 2018; Toba et al., 2017, 2020).

This ROI, in both hemispheres, exhibited near-average SVs, suggest-

ing a low probability that high-impact structures were included there.

However, failed appreciation of regional importance is still a possibil-

ity in such a case, as pooling together different regions might mask

the importance of one of them, as its contribution is diluted in the

overall impact of the much larger aggregate region. Moreover, even

without grouping of brain regions, any single ROI may contain more

than one distinct functional neural hub. For example, the precentral

gyrus as defined in the AAL atlas (Tzourio-Mazoyer et al., 2002)

includes the primary motor representations of all body parts without

discrimination. Thus, a certain lesion load might produce variable

behaviors, depending on the exact locus of involvement within the

precentral gyrus. This conjecture is supported by the fact that some

bootstrap-based distribution of SVs was bimodal for some ROIs (see

Figures S3 and S4). On the other hand, keeping spatial resolution low

allowed the representation of sufficient number of cases with damage

to each brain region (in the current case study, the minimal involve-

ment rate was 10% of the LHD cohort [for the superior parietal lob-

ule] and 14% of the RHD cohort [for the SMA]), which is similar to

minimal regional involvement rate used in previous studies (Zhang

et al., 2014).

Altogether, these lesion dimensionality issues might be responsi-

ble for the modest false negative (25 and 26.7%) and false positive

(10.3 and 14.7%) rates (for simulated RHD and LHD, respectively).

Measurement of these metrics at the voxel level by Inoue et al. (2014)

yielded a false-negative rate of 48% and a false-positive rate of 5%

(averages across sample sizes from 25 to 150). Another extensive sim-

ulation study (Ivanova et al., 2021), which assessed several sample

sizes, reported a voxel-level false-negative rate of �1 to �12.5%, but

this was associated with a false-positive rate of 70–95% (for a sample

size of 48 patients). Although these voxel-level measures cannot be

directly compared to our region-level error-rates, they provide some

reference suggesting that MSA do not underperform commonly used

LSM methods in this respect. A comprehensive simulation study, using

the same brain-model, is warranted to determine if MSA can outper-

form VLSM, and in which scenarios.

4.3.2 | Issues related to functional dimensionality

The SV assigned to a brain region on the basis of LSM analysis points

to its relative contribution to task performance. However, this knowl-

edge is not enough for decoding the exact role played by the region in

the examined functional network, as the overall state of the network

at the time of testing deviates from the normal state, as a conse-

quence of a poorly understood, multifactorial, recovery process. In the

current case study, FMA scores were obtained in the later stage of

the early subacute period (later than a month post-onset). At this time,

most of the functional amelioration which is attributable to true

behavioral recovery (improvement obtained in measures of basic

impairments, e.g., in the capacity to execute isolated, out of synergy,

movements, as examined by the FMA) already occurred (Duncan

et al., 1992). Thus, patients' FMA scores at this time reflect two dis-

tinct processes—(a) spared activity in the undamaged parts of the

motor network, and (b) the outcome of biologically driven and

treatment-related adaptive and maladaptive plasticity, that took place

from the onset of stroke until then, within and outside the original

extent of the motor network (Gauthier et al., 2008). There is no direct

way to clearly delineate one effect from the other (i.e., whether a high

SV of a given structure reflects an important contribution to perfor-

mance conveyed by the activity of intact elements in the structure, or

by plastic changes within that structure).
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It is of interest that MSA did not point to some regions where

damage was shown in past VLSM studies, including our own study

(Frenkel-Toledo et al., 2019) to have a significant impact on residual

UL motor function, notably, the PLIC (Fries et al., 1993; Puig

et al., 2011), CR (Lo et al., 2010; Shelton & Reding, 2001), insula, oper-

cular regions, and association tracts (Payabvash et al., 2012; Wu

et al., 2015). As in other lesion-behavior inference methods, it is

impossible to draw clear conclusions regarding regions that do not

pass the significance threshold (Qian et al., 2020). For example, in the

LHD group, the PLIC and the ventral brainstem (both traversed by the

CST, thus certainly important), were assigned high cSVs (Figure 6),

which, however, (due to large variability in SVs across subjects) did

not differ significantly from the computed reference value—that is,

the SV a region would receive if all regions contribute equally to task

performance. It is possible that the above regions might have been

detected using larger cohorts, enabling use of higher spatial resolution

in anatomical description.

The interpretation of SVs (whether high or low) without taking

into account the network (coalitional game) context might be oversim-

plistic. In as much as the goal of a functional network (or of a subunit

of a network) is achievable via alternative tracks, the network is more

likely to resist well the impact of focal damage. This will be reflected

by a lower correlation between regional damage and performance, as

the functional impact of focal damage may be rapidly restituted, at

least partially, by execution via alternative routes, or by the creation

of new routes in other regions through adaptive plasticity. On the

other hand, the hallmark of a network hub that plays a role based on a

unique obligatory connectivity pattern, is noneffective restitution fol-

lowing its damage. Anatomical structures playing such a role will be

associated with higher SVs (Keinan et al., 2006). In the current case

study, the set of regions with high SVs should be viewed as neural

hubs of the motor network whose role in UL function could not be

compensated effectively by other regions, and not as sole determi-

nants of motor function in the hemiparetic UL.

An SV not surviving the threshold set for significance may reflect

several lesion-behavior relationships: a hub which is highly contribut-

ing in the intact brain, but replaceable through adaptive remapping in

the recovering brain; a hub which was not damaged enough in the

studied cohort to express its actual contribution; or a hub which is

truly not concerned with the function of interest. One should bear in

mind that SVs are assigned to brain regions that in most cases are

damaged in a partial manner. For example, in the current case study,

the precentral gyrus (subjected here to MSA as a single anatomical

ROI) did not emerge as a significant network hub in the LHD group.

This could stem from the high degree of discrete somatotopism in the

primary motor cortex, making the effect of damage to the dorsally

located (and relatively infrequently involved) “hand area” in the motor

homunculus less salient. Most of the patients suffer from lesions to

ventral parts of the precentral gyrus, which are considered irrelevant

to UL motor control in the intact brain. Also, since perilesional regions

usually possess connectivity patterns closer to those lost by the

stroke, and as a consequence are better candidates for adaptive

remapping than distant regions (Nudo & Milliken, 1996), perilesional

regions could be assigned low SVs due to plasticity (blurring the effect

of damage to the region). Uncovering this effect requires longitudinal

assessment along the first weeks and months poststroke onset.

Finally, the interpretation of negative SVs deserves caution, as

such values may reflect an inhibitory role of brain structures (Toba

et al., 2017, 2019; Zavaglia & Hilgetag, 2016), as in the case of recip-

rocal inhibition between homologous collicular nuclei, in the midbrain

system supporting bottom-up allocation of attention (Sprague &

Meikle, 1965).

4.3.3 | Issues related to external validity

Beyond the above general methodological limitations of MSA for neu-

rological LSM, one should note that LSM studies, regardless of the

method of analysis employed, are prone to several kinds of sample

biases. In the current study, stroke patients with severe language

and/or cognitive disturbances precluding full compliance with task

requirements, were not included. On the other hand, stroke patients

with very mild impairment are unlikely to be represented in our

cohort, which was comprised of patients referred to our hospital for

in-patient rehabilitation. Thus, the sample used here to test the appli-

cation of MSA for neurological LSM does not represent the very

severe nor the very mild cases one sees in the general stroke popula-

tion. In addition, we recruited here only subjects who were in the later

stage of the early subacute period poststroke (1–3 months post

onset), as the process of recovery was shown in previous studies to

reach a relatively stationary level at this stage (Duncan et al., 1992;

Kwakkel et al., 2006). Yet, other studies (e.g., Ward et al., 2019)

showed that some dynamics in the level of impairment can be shown

even at later stages, thus the picture of the relative contribution of

different brain structures to the residual motor function of the hemi-

paretic UL is incomplete and lacks such late contributions.

4.4 | Summary

We described a revised approach to MSA, addressing various theoret-

ical and methodological issues in application of the method for LSM.

First, we demonstrated the method's ability to detect lesion-behavior

relationships in ground-truth simulation. This enabled validation of

the approach and determination of the optimal perturbation depth to

be used in a real-life sample, comprised of stroke patients for whom

we had both normalized lesion data and a quantitative measure of

impairment in the hemiparetic UL. With this sample serving as a test

case, MSA disclosed important differences between the motor net-

work mediating UL function in the left hemisphere and in the right

hemisphere. The left (dominant) motor network was found to possess

a lower “localization index” (i.e., a more homogenous distribution of

valence among the network hubs) compared to the right motor net-

work. MSA also pointed to marked differences in the more prominent

network hubs in each hemisphere. Thus, brain regions involved in

motor planning had a more salient load on UL function in the LHD
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group and brain regions involved in motor execution had a more

salient load on UL function in the RHD group. The results of our test

case demonstrate that the current approach to MSA can provide a

unique insight into the relative importance of different hubs in neural

networks, which is difficult to obtain using standard univariate

methods.
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