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Natural killer (NK) cell function is regulated by a balance between the triggering of acti-
vating and inhibitory receptors expressed on their surface. A relevant effort has been
focused so far on the study of KIR carriage/expression setting the basis for NK cell edu-
cation and self-tolerance. Focus on the evolution and regulation of activating NK receptors
has lagged behind so far. Our understanding of activating receptor expression and reg-
ulation has recently improved by evidences derived from in vitro and in vivo studies.
Virus infection – either acute or chronic – determines preferential expansion of NK cells
with specific phenotype, activating receptors, and with recall-like functional activity. Stud-
ies on patients with viral infection (HIV and HCV) and specific diverging clinical courses
confirm that inter-individual differences may exist in baseline expression of natural cyto-
toxicity receptors (NKp46 and NKp30). The findings that patients with divergent clinical
courses have different kinetics of activating receptor density expression upon NK cell
activation in vitro provide an additional, time-dependent, functional parameter. Kinetic
changes in receptor expression thus represent an additional parameter to basal receptor
density expression. Different expression and inducibilities of activating receptors on NK
cells contribute to the high diversity of NK cell populations and may help our understand-
ing of the inter-individual differences in innate responses that underlie divergent disease
courses.

Keywords: natural cytotoxicity receptors, NKp46, NKp30, HIV, HCV, regulation

INTRODUCTION
Natural killer (NK) cells represent a cellular component of the
innate immune system. They circulate in peripheral blood and
peripheral tissues, and may be more abundantly recovered in sec-
ondary lymphoid organs and in some non-lymphoid organs (e.g.,
the liver). They are characterized by considerable cytotoxic activ-
ity, which is due to the constitutive expression of perforin and
granzyme, which may be promptly released upon cell triggering
(1, 2). In addition to this unique feature, which contributes to
the high efficiency with which NK cells are suited to kill virally
infected or tumor cells, their function also includes the produc-
tion of cytokines, such as IFN-γ, tumor necrosis factor (TNFα) and
G-CSF, and the early release of chemokines (MIP-1a/b, RANTES)
(3). NK cell function is finely regulated by the interplay of a wide
array of activating and inhibitory receptors expressed on their
surface (1). The accurate regulation of this signaling system guar-
antees that under baseline conditions their exceptional ability to
rapidly kill is harnessed by inhibitory receptors mostly (but not
exclusively, e.g., Siglec7 and IRP60) specific for “self” MHC class

I molecules (2), which turn NK cells “off” and normally prevent
NK-mediated lysis of HLA class I+ autologous cells.

Natural killer cell activating stimuli are manifold and act
through triggering of different groups of receptors expressed on
their surface (4). Activation of NK cells is determined by trigger-
ing the major activating receptors, which include NKp46, NKp30,
NKp44 (i.e., natural cytotoxicity receptors, NCRs) NKG2D, and
FcγR (CD16) as well as other receptors and co-receptors including,
NKG2C (a lectin-type triggering receptor which dimerizes with
CD94), 2B4 (CD244), NKp80, DNAM-1, and NTB-A (5). Stimuli
delivered through other groups of receptors may also determine
NK cell activation including toll-like receptors (TLRs) as TLR2,
TLR3, TLR7/8, TLR9, and interleukin receptors (IL-2, IL-12, IL-15,
IL-18) and combinations thereof (e.g., IL-2+ IL-15, IL-2+ IL-12,
and IL-12+ IL-18) (5–7).

The NK cell receptors repertoire is germ line-encoded and does
not undergo somatic recombination. This provides the basis for
inclusion of NK cells among innate host defenses as an effective
and apparently basic unsophisticated innate defense system which
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does not need specific recognition of foreign antigens (e.g., from
pathogens or tumors).

INVOLVEMENT OF NK CELLS IN THE TUNING AND CONTROL
OF IMMUNE RESPONSES
The original view of NK cells as a purely “primitive,” muscular,
short-lived, rapid responder cell type has undergone considerable
revision and has been considerably updated over recent years. NK
cells are presently known to represent long-lived innate cells,whose
functional spectrum extends beyond classical search-and-destroy
patrolling activity and/or early recruitment of immune responses.
NK cell function indeed also includes regulation of other innate
and adaptive functions through their direct or indirect recipro-
cal interaction (crosstalk) with macrophages, polymorphonuclear
cells (6, 7), fibroblasts (8), DC (9–11), and T cells.

Natural killer cells interact with and respond to either
pathogen-infected or tumor-associated macrophages, and their
response is modulated by macrophage functional polariza-
tion. The functional interaction of NK cells with pro-
inflammatory (M1) or anti-inflammatory (M2) macrophages
relies on DNAM-1, 2B4, and NKp46 receptor signaling, in addition
to membrane-bound macrophage-derived IL-18 (12–14). Consid-
ering macrophages infected with specific pathogens, different sets
of activating receptor–ligand interactions drive NK cell activation
in a more pathogen-dependent pattern (6, 11, 15). A decreased
NK cell response has been described during their interaction with
M2 cells compared to M1 macrophages, or in the tumor environ-
ment where NK cell activating receptors are down-regulated (13,
14). In view of the reported recognition of mycobacteria-infected
macrophages by NK cells via NKp46 (15), decreased signaling via
NKp46 in patients with overt secondary pulmonary TB (16) could
represent for example a possible mechanism participating in the
so far poorly understood mechanism of exit from latent TB (17).

The reciprocal interaction of NK cells and DC is often referred
to as “crosstalk” and involves multiple receptors and cytokines.
NK cells and DC show anatomical and functional co-localization
in T cell areas of lymphnodes (18) and in inflamed tissues (19).
Human DC activate NK cells, via direct interaction and involve-
ment of NKp30 (10, 20) and DNAM-1 (9). NK cells determine
lysis of immature HLA class I−/low DC, while mature DC are pro-
tected from NK-mediated lysis by high density expression of HLA
class I molecules that interact with inhibitory receptors (e.g., KIR)
expressed on activated NK cells (11). In turn, NK cells induce
DC maturation via TNFα and IFNγ production (10). This DC–
NK cell interaction provides a mechanism to edit DC responses
and their repertoire by selecting optimally mature DCs (21) and
inducing DC to express high amounts of membrane-associated
IL-15 (22) with impact on downstream adaptive responses (23).
These observations are further supported by the demonstration,
in vitro with bacterial infection (24) and in vivo during HIV infec-
tion that the presence of reduced NCR expression (25) and NK
cell subset alterations (26) leads to reduced killing of immature
DC (20).

Involvement of NK cells in the shaping of adaptive responses
extends beyond their crosstalk with DC. In fact, NK cells also
directly interact with T cells, favoring antigen-specific CD8+ T
cell responses (22, 23, 27). The reciprocity of this circuit has been

elegantly shown in the macaque model where Ag-specific CD4+

T-central memory lymphocytes support NK cell activation and
function in SIV-controller donors (28).

Therefore, a relevant part of the tuning activity of NK cells
on the function and control of other cells is based on direct
cell-to-cell interactions and involves activating NK cell receptors.
Consequently, different activating NK cell receptor molecule den-
sities may have an impact on their crosstalk with other cells of the
immune system. The purpose of this review is to provide a reading
frame to differences in static and dynamic NCR expression in sub-
jects displaying clinical divergence upon infection with different
viruses.

INNATE OR NOT INNATE, THIS IS THE QUESTION
Until recently, the prevailing expert view attributed to NK cells
a limited degree of variability in response to pathogens, and
basically assumed stereotyped responses. This concept practi-
cally ruled out the possibility of ranges of variability of NK cell
responses either against different pathogens within the same sub-
ject or to the same pathogen within different patients. This view
has been steadily upgraded in recent years. It has been shown for
example in mice that infection with viruses and other pathogens
determines the expansion of specific NK cell subsets (29–31)
which maintain for prolonged periods of time the ability to pro-
duce increased amounts of TNFα and IFNγ. This observation is
reminiscent of memory T cell function thus suggesting a pos-
sible memory-like feature of NK cells. Subsequent observations
in human beings showed that also human CMV infection leads
to expansion of a subset of NKG2C+ NK cells (32, 33) with
memory-like properties. Increased proportions of NKG2C+ NK
cells persist (34) after acute infection into latency, and may be
observed also after bone marrow transplantation (34, 35). Addi-
tional evidences of transient NK cell expansions in human beings
are provided by infection with chikungunya and hantavirus (36,
37), and may persist up to 60–90 days. Also in these instances
the expanded cells are exclusively NKG2C+, and their trigger-
ing results in increased and rapid reactivity with production of
IFNγ upon re-challenge. These observations are clearly different
from T cell memory, which is conventionally defined by (life)long-
lasting antigen-specific recall ability, increased memory T cell
receptor (TCR) density, antigen-specific TCRs, and specific mark-
ers identifying memory cells (CD45RO vs. CD45RA) (31, 38).
In mice, LY49H+-MCMVm157 antigen-specificity and increased
protection to Mouse CMV (MCMV) challenge support a resem-
blance with memory T cell protection (31, 39). In human beings,
on the other hand, the expansions are more time-limited with
the possible exception of HCMV infection and latency. These
human NK cell subset expansions are stereotyped and monomor-
phic since only NKG2C+ cell expansions are reported, irrespec-
tive of the invading pathogen (either HCMV, or hantavirus or
chikungunya).

Altogether, the description of pathogen-induced recall NK cell
reactivity, even if not fitting with a long-lasting heterogeneous
T cell memory (40, 41), has the merit of further expanding our
understanding of NK cell function advancing our view beyond
the original “first-line of defense” towards a wider horizon of
multifaceted NK cell function.

Frontiers in Immunology | NK Cell Biology July 2014 | Volume 5 | Article 305 | 2

http://www.frontiersin.org/NK_Cell_Biology
http://www.frontiersin.org/NK_Cell_Biology/archive


Marras et al. NK cell receptor dynamic expression

An interesting contribution to the notion of a polymorphism
in NK cell responses has been recently provided by mass cytometry
study of NK cell receptor carriage (42) showing that up to 30,000
different phenotypic NK cell populations may be harbored in one
individual. In addition, environmental factors appear to heavily
influence activating receptor carriage, while inhibitory receptor
diversity seems to be largely genetically determined (42). In line
with this observation, NK cell responses induced by virus(es) are
accompanied, not only by expansion of a subset of peripheral NK
cells which may be NKG2C+ (33), but also by changes in triggering
receptor expression (e.g., NCRs) (34).

NCR EXPRESSION AND HCV INFECTION
Natural killer cell triggering receptors recognize specific ligands
induced by either cell transformation or infection [e.g., B7-H6 (41,
43)]. Although cellular ligands for NCRs are still not yet well char-
acterized (e.g., NKp46-L, NKp44-L, and other NKp30-ligands), a
range of pathogens including influenza virus, parainfluenza virus,
West Nile virus (WNV), dengue virus, and mycobacteria have been
shown to interact with NCRs, either directly or after their infec-
tion of target cells (44). Accordingly, NK cell first-line defenses
against pathogens and regulation of immune responses may be
more intertwined than expected at a first look. Indeed, the same
receptors that are involved in recognition of infected cells may be
also involved in direct pathogen detection and in crosstalk with
other cells of the immune system (e.g., monocytes and dendritic
cells). Hence, individual differences in baseline NCR expression
may underlie and affect divergent host responses to the pathogen.

Natural killer cell triggering is proportional to both the actual
number/density of a given triggering receptor expressed on NK
cells and to the density of the respective ligand(s) expressed on
target cells. At any given level of KIR/HLA interaction and of
NK-ligand expression, changes in activating receptor expression
density determines proportional changes in NK cell cytotoxic
activity(45, 46).

Accordingly, wide inter-individual variations in triggering
receptor expression could contribute, at least in part, to the dif-
ferent clinical courses (e.g., from mild disease to life-threatening
clinical course) that are observed in patients infected by the same
pathogen. When for example considering NKp46 and influenza
hemagglutinin (HA), NKp46 (and NKG2D) is necessary for the
activation of the human response to influenza infection (47, 48).
In mice, induced deletion of the human NKp46 homolog (NCR1)
determines lethal influenza infection (49). In addition, NK cell
function is impaired in aging mice infected with influenza virus,
with reduced production of IFN-γ also upon stimulation with
anti-NKp46 mAbs, in line with the suggestion of reduced receptor
expression (49, 50).

The possibility that different levels of NCR expression may
correlate to different clinical courses emerges also from studies in
patients with HCV infection. A relevant association exists between
outcome of acute HCV infection and germline carriage of KIR
genes and HLA C supertypes (51, 52). Also activating NK cell
receptor expression has been shown to associate with different
disease courses during HCV infection. In the acute phase of HCV
infection, an increase in CD56bright NK cells is observed, and is
accompanied by a reciprocal reduction in CD56dim cells (53). In

patients who spontaneously clear the virus (HCV), the increase in
CD56bright NK cells is transient, with subsequent decline within
1–3 months. This change is however permanent in those who fail
to clear HCV and proceed to chronic infection with virus replica-
tion (53). Interestingly, NKp30 expression is increased in NK cells
from multiply HCV exposed-uninfected intravenous drug users.
In these patients, enhanced IL-2-induced cytolytic activity against
the NK-sensitive cell line K562 has been also reported (54). The
same mechanism of NKp30-associated protection applies to the
control of in vitro hepatocyte infection (54). In a recent and dif-
ferent setting, increased NKp46, NKp44, and NKG2A expression
was detected in NK cells from HCV exposed healthcare work-
ers (HCW), who did not develop disease (55). Interestingly, in
this series, HCV-specific T cell responses to non-structural gene
products were detected in the absence of B cell responses and
of HCV-specific antibody production. This observation is remi-
niscent of a phenomenon occurring in HIV-uninfected children
born to HIV-seropositive mothers. These children lose maternal
antibodies are uninfected and seronegative, but show HIV-specific
cytotoxic activity by CD8+ T cells (56, 57). An analogy is evident
in results obtained 20-years apart in different models of human
infection and raises the possibility that inducibility of NCRs on
NK cells in some patients may be associated with discordant T and
B cell responses and with protection from infection.

Differences in NCR expression are detected also when exposed
patients become acutely infected and display HCV viremia. In this
case, lower frequencies of NKp46- and NKp30-expressing NK cells
are observed compared to healthy donors, and this phenotype cor-
relates with HCV clearance (58). Thus, NCR (NKp46 and NKp30)
expression on peripheral NK cells is different when acutely infected
patients (low NCRs) are compared to exposed-uninfected patients
(high NCRs). The observed difference may be for example due to
inherent, preexisting baseline differences that become evident fol-
lowing patient selection in different series. Alternatively, in patients
who resolve acute infection, the lower expression of NKp46- and
NKp30 molecules on NK cells could be due to increased margina-
tion of NK cells to the site of active HCV replication (i.e., liver)
(59). A further possible explanation for these differences could be
represented by different inductions of NCR expression in differ-
ent patient groups upon challenge with the virus (HCV). In such a
scenario, early responders would rapidly upregulate NCR expres-
sion, avoid establishment of infection, and evolve to the clinical
state of exposed-uninfected subjects.

During chronic HCV infection, imbalances in peripheral NK
cells were originally described, with a deficient ability to activate
DCs due to the interaction of NKG2A with HLA-E expressed on
hepatocytes (60). This interaction is associated to IL-10 produc-
tion (60, 61) and to reduced ability of IFNγ production upon
IL-12 stimulation or with other stimuli (62). With regard to NCR
expression, either increases or decreases in NCR expression are
observed (61, 63) and are related to their ability to respond to IFN-
α-containing treatment regimens. Indeed, patients who clear the
infection upon dual treatment with pegylated-IFN-α+ ribavirin
(PegIFNα–ribavirin) have lower baseline (pre-treatment) expres-
sion of NKp30 and of CD85j, compared to those who subsequently
fail the treatment (null responders, partial responders) (64). The
decreased expression of NKp30 in these patients is not reflecting
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a defect in NK cell function, but rather an individual difference in
the regulation of receptor expression. This is confirmed by the
successful induction in vitro of NKp30 expression on purified
NK cells cultured in the presence of IFN-α, with correspond-
ingly increased receptor-mediated function. These observations
are in line with evidences deriving from the study of intrahep-
atic interferon-stimulated gene (ISG) expression (65, 66). In the
liver, ISG is already upregulated before treatment in patients who
will not respond to IFN-α and ribavirin dual treatment. Patients
who will clear virus upon treatment, on the contrary, have base-
line lower ISG expression which may be induced during treatment
(66). Thus, inherent individual regulation of crucial gene expres-
sion is present during chronic HCV infection and extends from
ISG in hepatocytes to NCRs.

Therefore, differences in baseline NCR expression and in NK
cell phenotype can be accurately detected (42) and are associ-
ated with diverging clinical courses in subjects exposed to HCV.
Lower NCR expression, albeit inducible, represents an advantage
and appears to be inherently regulated in a subset of chronically
infected patients. In this context, the increased NCR expression
observed on NK cells in exposed-uninfected patients may be the
result of repeated HCV challenge in patients with lower baseline
NCR expression.

NCR EXPRESSION AND DIVERGING CLINICAL COURSES IN
HIV INFECTION
During HIV infection, the virus targets NK cell-mediated
responses with similar or possibly higher intensity compared to
other arms of innate or adaptive immunity. NK cells are part of
the early response that controls acute viremia during primary HIV
infection. Similar to HCV exposed-uninfected patients (54, 55),
increased NK cell activity has been detected also in HIV exposed-
uninfected patients (67). Activating receptor expression was not
addressed in this work, and materials for monitoring (anti-NCR
mAbs) were not yet available at the time. Although the mechanisms
leading to increased NK cell function in those HIV exposed-
uninfected remain still not defined, increases in the expression
of triggering receptors on NK cells could have been possible, sim-
ilar to what has been observed after exposure to HCV (54, 55). If
so, this would fit in a broad concept of an advantage against infec-
tion in subjects whose NK cells achieve rapid dynamic increases in
NCR expression after virus challenge.

Once HIV viremia is established, NK cell derangement can
be detected in infected patients soon thereafter (68–70) and
includes imbalances in activating and inhibitory receptor expres-
sion, altered circulation of NK cell subsets, and impairment of
NK cell function (25, 26, 71, 72). Viremic HIV-patients have dra-
matic decreases in activating receptor expression (NKp46 and
NKp30) on NK cells in vivo (25), up to one-third of circulating
NK cells display activation markers (HLA-DR and CD69) (72) and
an apparently poorly functional subset of CD56−CD16+ appears,
which displays expression of low levels of NCRs (26, 72). The
impairment of NK cell function has a relevant impact on DC
editing. In addition to the reduced activating receptor expression
on NK cells and appearance of poorly functional CD56−CD16+

NK cells in peripheral blood, HIV infection reduces the expres-
sion on CD4+ T and other target cells of ligands of activating NK

cell receptors which are important in triggering NK cell cytotoxic-
ity and cytokine production (e.g., PVR, NKp46-L, and NKp30-L)
(73–76). Thus, while HIV adopts multiple strategies to evade NK
cell surveillance, conserved (or restoration of) activating receptor
function may represent a fundamental barrier to virus spread.

From a clinical standpoint, during the first years of the epi-
demic, it became soon clear that consistent clinical variability
could be observed among patients even in the absence of successful
treatment. A benign disease course in otherwise untreated patients
was identified through the observation of HIV-infected patients
with long-term non-progressing disease (i.e., high CD4+ T cells
>450/µl and low level viremia, LTNP) and of patients with high
CD4+ T-lymphocytes and undetectable viremia (elite controller,
EC) (77, 78). In addition, upon progressive disease with decreas-
ing CD4+ cell counts, diverging courses are observed. At any given
CD4− count, opportunistic infections or cancers may appear in
some – but not all – patients (79–81) and AIDS-defining disease
including Kaposi Sarcoma, non-Hodgkin Lymphoma, or Tuber-
culosis may occur before CD4+ counts fall below 200–350/µl
(82–85). On the other hand, in the pre-highly active antiretroviral
treatment (HAART) era, some untreated patients could reach very
low CD4+ T cell counts without progressing to AIDS and showed
surprisingly preserved NK cell numbers and function (86). Follow-
ing HAART, NK cells fail to fully recover IFN-γ production and
phenotype (87, 88) and surprisingly maintain high levels of acti-
vation, as defined by HLA-DR expression (46, 89). This extensive
list of examples shows the profound impact of personal clinical
divergence in everyday HIV clinical practice.

Divergent clinical courses during HIV infection cannot be
fully accounted for by CD4+ cell numbers alone. Data from
NK cell function and receptor expression may be used in this
context to help understand existing differences. When antiretrovi-
ral treatment is interrupted in chronically infected patients, viral
replication invariably resumes even after thorough and extensive
treatment (90). Trials of CD4+-guided treatment interruptions
(CD4GTI) in patients with high CD4+ T cell showed that the rate
of CD4+-cell loss after discontinuation of antiretroviral treatment
is dishomogeneous with ample divergence and inter-individual
differences (91, 92). Factors associated with different rates of
CD4+ T cell loss upon CD4GTI include not only proviral DNA
changes (93), increased proportion of CD4+CD127+ cells (94,
95), but also a different baseline NK cell expression and function
(96). At baseline (i.e., before treatment interruption), patients with
long treatment interruptions (i.e., without the need of resuming
HAART) due to persistently high CD4+ cell counts had lower
proportions of CD56brightCD16± NK cells, and also expressed
lower levels of NKp30 and NKp46 activating receptors on NK
cells (96). Interestingly, this observation is in agreement with the
findings from chronically HCV-infected patients, where those who
will clear the virus after PegIFNα–ribavirin treatment have low –
and inducible – NCR (NKp30) expression on their NK cells at
baseline (64).

In addition, inherent differences in NK cell receptor expres-
sion are observed also in HIV-patients with low CD4+ cell
counts (<220/µl) but divergent clinical course. Those who
have AIDS-defining opportunistic infections (i.e., PCP and
neurotoxoplasmosis) have lower NKp46 expression and low
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DNAM-1/NKG2D/NCR:ligand ratios compared to patients who
reach similarly low CD4+ cell counts but do not develop AIDS
(46). These results therefore indicate that similar to HCV patients,
differences in NK cell regulation underlie divergent clinical courses
also in HIV-patients, irrespective of their CD4+ T cell count, of
HAART or virus replication. Importantly, this view is not lim-
ited to chronic infections. Support to the general view of inherent
specific NK cell signatures underlying divergent disease course is
provided also from analyses in cancer patients with recurrent dis-
ease, either gastrointestinal stromal tumor (GIST) (97) or breast
cancer (98).

INDUCIBLE NCR EXPRESSION AND CLINICAL DIVERGENT
DISEASE COURSES
Although analysis of NCR expression on peripheral NK cells may
reflect baseline regulations in NK cell subsets, it represents only
a “frozen” view and does not provide insights on their inducibil-
ity or “dynamic” regulation. In this regard, in vitro study of NCR
expression in purified NK cells recently revealed that different
induction kinetics over time may be detected in HIV-patients (99).
Indeed, when patients with non-progressive disease course (EC
and LTNP) were compared to HAART-treated aviremic patients,
relevant differences were detected. In EC/LTNP patients, puri-
fied NK cells display increased NKp46 expression 2 days after
in vitro activation with IL-2, with subsequent return to baseline
expression 4 days thereafter. Also NKp30 expression is induced

in EC/LTNP upon in vitro activation with progressive increased
densities until 4 days after activation. On the contrary, HAART-
treated progressor patients with undetectable HIV-RNA do not
show any induction of NKp46 or NKp30 (99). The conserved
induction of NCRs in non-progressor patients provides the basis
for an intact NK cell function, conserved crosstalk with DCs and
downstream specific CD8+ CTL responses (20, 100, 101). Inter-
estingly, also in HCV-infected patients inducibility of NKp30 is
associated with a different (improved) disease course compared to
patients lacking this regulation (64). An additional observation of
considerable interest in this context was the lack of inducibility of
NKp44 in EC/LTNP patients compared to progressor patients (99).
This apparent “fault” with failure to rapidly upregulate NKp44
molecule expression upon activation, might actually be highly
protective once HIV infection has established. Indeed, HIVgp41

S3 peptide shedding in infected patients (102) induces expres-
sion of NKp44-ligands in uninfected CD4+ T cells. The apparent
“faulty” induction of NKp44 thus would avoid innocent bystander
killing of CD4+ NKp44-L+ cells by activated NK cells in vivo.
Support to this hypothesis is directly provided by the demon-
stration that HIVgp41 vaccination prevents from shedding of the
S3 peptide and from NKp44-L expression thus protecting CD4+

TCM-lymphocytes in SHIV-infected non-human primates (103).
A limitation to interpretation of NCR expression/induction

is represented by the lack of molecular and genetic proof so far
in the regulation of NCR responses and inducibility, with only

FIGURE 1 | Different levels and modulation of natural cytotoxicity
receptors on NK cells may lead to different outcomes in the fight
against invading intracellular pathogens. The figure indicates possible
alternate patterns of NK cell NCR expression/induction upon infection with
a pathogen. In the upper row, the case for high basal expression is shown,

leading to receptor inactivation and progressive infection. In the lower row,
the case of a low/inducible NCR expression is shown, with inducibility
upon strong challenge with successful control of the pathogen. The
hypothesis considers a spectrum of intermediate conditions (not shown
here).
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limited information being available (104). Also, there is poor
understanding of the mechanism(s) underlying “protection” from
adverse disease in the presence of low-inducible activating receptor
expression. It has been suggested that low-inducible NCR expres-
sion may provide advantage in the case of overwhelming stimula-
tion of NK cells due to a relative preservation from their excessive
activation with detrimental activation of other innate and adaptive
immune mechanism(s) (44). In this regard, it has been shown that
homo-oligomerization of NKp30 in the plasma membrane of NK
cells is favored by IL-2-dependent up-regulation of NKp30 expres-
sion and improves recognition and lysis of target cells by NK cells
(105). Interestingly, independent studies showed that viruses may
address NKp30 receptors inactivating their function, as shown for
NKp30 signaling by vaccinia virus HA (106). Thus, low expression
of NKp30 with maintained inducibility, as in the case of HCV and
HIV (64, 96, 99), could represent an advantageous inherent indi-
vidual trait. Subjects carrying this characteristic would evade NK
cell-targeting by virus(es) due to lower exposure of a given NCR
(e.g., NKp30) to hyperactivation and inactivation (107). At the
same time, they would still be able to upregulate molecule density
upon activation (e.g., IL-2 and IFNα) thus reaching critical recep-
tor homo-oligomerization with binding to its ligand (e.g., infected
cells and DCs).

Evidences supporting memory-like NK cell responses and those
showing inducibility of NCR receptor expression on NK cells
are derived from clearly distinct settings and should be con-
sidered unrelated unless differently proven. Indeed, changes in
cytokine production and in activating receptor expression have

been reported during memory-like NK cell responses follow-
ing CMV, hantavirus, or chikungunya virus infection (34, 36,
37), while NKp30 inducibility has been observed in some HCV
or HIV infected patients (16, 96, 99). In addition, memory-like
NK cell responses have been so far attributed only to NKG2C+

NK cells, while NCR inducible NK cell responses are largely
NKG2C unrelated, and show a considerably shorter kinetic (2–4
vs. 30–60 days).

The concept of host antiviral NK cell-associated defenses may
however be expanded to encompass both rapid inducibility of
NK cell responses after virus infection and memory-like NK cell
responses within the frame of NK cell diversity modulated by
environmental factors (42). Diverging NCR inducibility, similar
to memory-like NKG2C expansion both contribute to host pro-
tection and may represent different perspectives of a multifaceted
ability of NK cells to adapt to tackle different invading pathogens.

CONCLUSION
Manifold inter-individual differences in the regulation of
innate defenses have been described until very recently. The
immunogenotype of several components of innate immunity
strongly influences the risk to contract infections and also the out-
come of their treatment. Genome-wide association studies showed
that polymorphisms of innate components are associated to indi-
vidual variable response to treatment and to disease progression.
Nucleotide polymorphisms of TLRs [TLR-4 (108, 109), TLR-1 and
6 (110)] and of pentraxin-3 (111) are associated to increased risk
of invasive aspergillosis or mycosis in bone marrow transplant

FIGURE 2 | Organization of evidences supporting clinical
divergence in HIV-1 or HCV-infected patients according to
NKp30 expression/regulation on peripheral NK cells. The left
column lists evidences showing favourable disease course in the

presence of receptor inducibility. The left column lists evidences for
unfavourable disease course in the presence of high basal
expression without inducibility or no inducibility regardless of
expression.
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patients (110, 111). Similarly, TLR3 polymorphisms have been
associated to pneumonia development in children with influenza
virus infection (112). In addition, IL-28B single nucleotide poly-
morphisms are associated to prognosis of treatment in HCV
infection using IFN-α-containing regimens (113–116).

The presently discussed modulation of NCR expression
(NKp30, NKp46, and NKp44) has been described also in chim-
panzees (117), and thus appears to represent an innate mechanism
of protection against chronic infections that is conserved in evolu-
tion and that provides inherent individual diversity in chronically
infected (HIV and HCV) patients where it contributes to explain
clinical divergence (Figures 1 and 2).
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