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Deep learning‑based patient 
re‑identification is able to exploit 
the biometric nature of medical 
chest X‑ray data
Kai Packhäuser*, Sebastian Gündel, Nicolas Münster, Christopher Syben, 
Vincent Christlein & Andreas Maier

With the rise and ever-increasing potential of deep learning techniques in recent years, publicly 
available medical datasets became a key factor to enable reproducible development of diagnostic 
algorithms in the medical domain. Medical data contains sensitive patient-related information and is 
therefore usually anonymized by removing patient identifiers, e.g., patient names before publication. 
To the best of our knowledge, we are the first to show that a well-trained deep learning system is 
able to recover the patient identity from chest X-ray data. We demonstrate this using the publicly 
available large-scale ChestX-ray14 dataset, a collection of 112,120 frontal-view chest X-ray images 
from 30,805 unique patients. Our verification system is able to identify whether two frontal chest 
X-ray images are from the same person with an AUC of 0.9940 and a classification accuracy of 95.55%. 
We further highlight that the proposed system is able to reveal the same person even ten and more 
years after the initial scan. When pursuing a retrieval approach, we observe an mAP@R of 0.9748 and 
a precision@1 of 0.9963. Furthermore, we achieve an AUC of up to 0.9870 and a precision@1 of up to 
0.9444 when evaluating our trained networks on external datasets such as CheXpert and the COVID-
19 Image Data Collection. Based on this high identification rate, a potential attacker may leak patient-
related information and additionally cross-reference images to obtain more information. Thus, there is 
a great risk of sensitive content falling into unauthorized hands or being disseminated against the will 
of the concerned patients. Especially during the COVID-19 pandemic, numerous chest X-ray datasets 
have been published to advance research. Therefore, such data may be vulnerable to potential attacks 
by deep learning-based re-identification algorithms.

Chest radiography (X-ray) is a modality that is routinely used for diagnostic procedures around the world1. It 
became the most common medical imaging examination for pulmonary diseases and allows a clear investiga-
tion of the thorax2. Chest X-ray imaging is therefore well-suited for diagnosing several pathologies including 
pulmonary nodules, masses, pleural effusions, pneumonia, COPD, and cardiac abnormalities3. It is also used 
for COVID-194 screening, as abnormalities typical of those infected with the coronavirus can be detected in 
radiographs5. While chest radiography plays a crucial role in clinical care, discovering certain diseases and abnor-
malities in chest radiographs can be a challenging task for radiologists, which potentially results in undesirable 
misdiagnoses6. Therefore, computer-aided detection (CAD) systems based on deep learning (DL)7 techniques 
have been developed in recent years to facilitate radiology workflows. These systems, characterized by their 
enormous benefits, can be utilized for a wide range of applications, e.g., for the automatic recognition of abnor-
malities in chest radiographs3,8 and the detection of tumors in mammography9. Some techniques even show the 
potential to exceed human performance10. However, the CAD systems are only treated as an additional source 
to support the radiologists and to increase certainty in their reading decisions.

On the one hand, the large variety of medical applications allows DL to grow and tackle real-life problems 
that were previously not solvable or improving solutions offered by traditional machine learning methods7. 
On the other hand, DL is a data-driven approach and well-known for its need for big data to train the neural 
networks11,12. For these reasons, a vast amount of medical datasets have been published in recent years that 
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enable researchers to develop diagnostic algorithms in the medical field in a reproducible way13. These include 
several large-scale chest radiography datasets, e.g., the CheXpert14, the PLCO15 and the ChestX-ray1416 datasets. 
But especially during the COVID-19 pandemic17,18, the number of publicly available chest radiography datasets 
increased rapidly. A few selected examples are the COVID-19 Image Data Collection19, the Figure 1 COVID-19 
Chest X-ray Dataset Initiative20, the ActualMed COVID-19 Chest X-ray Dataset Initiative21, and the COVID-19 
Radiography Database22.

Chest radiography datasets typically consist of two parts: first, the image data itself, which provides clinical 
information about the anatomical structure of the thorax. Second, the associated metadata, which contains 
sensitive patient-related information that is either stored in a separate file or embedded directly in the images23. 
Proper data anonymization constitutes an important step when preparing medical data for public usage to ensure 
that a patient’s identity cannot be revealed in publicly available datasets23. In practice, any personally identifiable 
information is attempted to be removed from the data before it is shared. These objectives and requirements are 
specified, e.g., by the Health Insurance Portability and Accountability Act (HIPAA)24 in the United States or the 
General Data Protection Regulation (GDPR)25 in Europe.

In 2017, Google entered into a project with the National Institutes of Health (NIH) to publish a dataset con-
taining 100,000 chest radiographs. However, the release was canceled two days before publication after Google 
was informed by the NIH that the radiographs still contained personal information which indicates that the 
data was incorrectly anonymized26,27. This major incident highlights that many potential pitfalls can arise when 
clinical and technological institutions collect and share large medical datasets to revolutionize health-care.

In the past, various data de-identification techniques have been proposed, including commonly-used meth-
ods like pseudonymization28 and k-anonymity29. Pseudonymization describes a technique that replaces a true 
identifier, e.g., the name or the patient identification number by a pseudonym that is unique to the patient but 
has no relation to the person28. However, pseudonymization is a rather weak anonymization technique as the 
patient’s identity may still be revealed, e.g., by cross-referencing with other publicly available datasets. In con-
trast, k-anonymity modifies the data before sharing in such a way that every sample in the published dataset 
can be associated with at least k different subjects. In this way, the probability of performing identity disclosure 
is limited to at most 1k

29,30. Nevertheless, when background knowledge is available, k-anonymity is susceptible 
to many attacks.

To date, little attention has been paid to the possibility of re-identifying patients in large medical datasets by 
means of DL techniques. However in theory, medical data disclosure, as illustrated in Fig. 1, could be facilitated 
for potential attackers by using suitable DL approaches. Consider a publicly available dataset that is supposedly 
anonymized but contains further sensitive patient-related information, e.g., diagnosis, treatment history, and 
clinical institution. If a radiograph of known identity is accessible to a potential attacker and a properly working 
verification or re-identification model exists, then the model could be used to compare the given radiograph to 

Figure 1.   General problem scenario: Comparing a given chest radiograph to publicly available dataset images 
by means of DL techniques would either result in discrete labels indicating whether or not the dataset images 
belong to the same patient as the given radiograph (verification scenario) or yield a ranked list of the most 
similar radiographs related to the given scan (retrieval scenario). Images belonging to the same patient are 
highlighted with the same color. The given radiograph is marked with an asterisk. The shown cases would enable 
a potential attacker to link sensitive patient-related information contained in the dataset to the image of interest.
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each image in the dataset which would essentially result in a set of images belonging to the same patient (patient 
verification) or yield a ranked list of the most similar images to the given radiograph (patient re-identification). 
In this way, the patient’s identity may be linked to sensitive data contained in the dataset. As a result, more 
patient-related information may have been leaked, highlighting the enormous data security and data privacy 
issues involved.

In our work, we investigated whether conventional anonymization techniques are secure enough and whether 
it is possible to re-identify and de-anonymize individuals from their medical data using DL-based methods. 
Therefore, we considered the public ChestX-ray14 dataset16, which is one of the most widely used research data-
sets in the field of radiographic problems. Our algorithms are trained to determine whether two arbitrary chest 
radiographs can be recognized to belong to the same patient or not. Moreover, we showed that our proposed 
methods are able to perform a successful linkage attack on publicly available chest radiography datasets. Fur-
thermore, this work aims to draw attention to the massive problem of releasing medical data without considering 
that DL systems can easily be used to reveal a patient’s identity. Therefore, we call for reconsidering conventional 
anonymization techniques and developing more secure methods that resist potential attacks by DL algorithms.

Patient verification
First, we trained a siamese neural network (SNN) architecture on the ChestX-ray14 dataset to determine whether 
two individual chest radiographs correspond to the same patient or not. Our model was designed to process 
the two input images in two identical network branches, which are then combined by a merging layer. The 
fused information is fed through further network layers resulting in a single output score indicating the identity 
similarity.

Table 1 summarizes the outcomes of our evaluation. We analyzed a multitude of different experimental setups 
with varying learning rates η and differing balanced training set sizes Ns . Moreover, we investigated the effect 
of using epoch-wise randomized negative pairs (RNP) versus fixed training sets (FTS) for the entire learning 
procedure. When using RNP as the data handling technique, the negative image pairs were randomly constructed 
in each epoch, meaning that much more negative pairs could be utilized in a complete training run compared to 
FTS where the generated image pairs remain the same for the entire learning procedure. For all experiments on 
the ChestX-ray14 dataset, we used the same balanced validation and testing set with 50,000 and 100,000 image 
pairs, respectively, without patient overlap between any split. To assess the performance of the trained models, 
we performed a receiver operating characteristic (ROC) analysis by computing the AUC value together with the 
95% confidence intervals from 10,000 bootstrap runs. Moreover, we calculated the accuracy, specificity, recall, 
precision, and F1-score.

The results indicate that the amount of training data plays a crucial role in the patient verification task. We 
observe a significant performance increase as the training set size grows. For instance, when using a subset of 
100,000 image pairs for training, we obtain an AUC value of 0.8610. In contrast, by enlarging the training set 
size to 800,000 image pairs (i.e. the total number of 400,000 positive image pairs combined with 400,000 nega-
tive pairs), we receive an AUC score of 0.9896. These findings have been visualized in the ROC curves shown 
in Fig. 2 which illustrates the effect of the training set size on the verification performance when using fixed 
training sets. Note that Table 1 only shows the best experiments per training set size Ns . Additional experiments 
were conducted to investigate the effect of the learning rate (LR). The corresponding results are provided in a 
separate table in the appendix (see Supplementary Table 1).

We also observed that randomly constructing the negative image pairs in each epoch led to further improve-
ments in the final model performance. By using this data handling technique, we achieved our overall best results. 
The respective outcomes are reported in Table 1. When training our network architecture with a total of 800,000 
training samples with epoch-wise randomly constructed negative pairs, the AUC score improved from 0.9896 
to 0.9940. Besides, the other reported evaluation metrics apart from the recall also increased compared to the 
results achieved by the model trained with the fixed set. Figure 3 depicts the confusion matrix resulting from our 
best-trained model listed in Table 1 (last row), thus giving clear insights into the patient verification performance.

We also analyzed how the model with the best recall (fourth row in Table 1) behaves when comparing images 
of the same patient where the acquisition dates are several years apart. The results are illustrated in Fig. 4a. We 

Table 1.   Overview of the obtained verification results for our experiments using varying training set sizes Ns 
at different learning rates η . Moreover, different data handling techniques were used (FTS Fixed training set, 
RNP Randomized negative pairs). For each experiment, the training sets were balanced with respect to the 
amount of positive and negative image pairs. In this table, we present the AUC (together with the lower and 
upper bounds of the 95% confidence intervals from 10,000 bootstrap runs), the accuracy, the specificity, the 
recall, the precision, and the F1-score. Bold text emphasizes the overall highest AUC value.

Data handling Ns η AUC + 95 % CI
Accuracy 
( TP+TN

P+N
) Specificity ( TN

N
) Recall ( TP

P
)

Precision 
(  TP

TP+FP
) F1-score

FTS

100,000 10−3 0.86100.86320.8588 0.7782( 77,815
100,000

) 0.7710( 38,548
50,000

) 0.7853( 39,267
50,000

) 0.7742( 39,267
50,719

) 0.7797

200,000 10−3 0.94480.94610.9435 0.8743( 87,428
100,000

) 0.8685( 43,426
50,000

) 0.8800( 44,002
50,000

) 0.8700( 44,002
50,576

) 0.8750

400,000 10−4 0.95870.95990.9575 0.8755( 87,546
100,000

) 0.9290( 46,452
50,000

) 0.8219( 41,094
50,000

) 0.9205( 41,094
44,642

) 0.8684

800,000 10−4 0.98960.99010.9891 0.9537( 95,367
100,000

) 0.9541( 47,705
50,000

) 0.9532( 47,662
50,000

) 0.9541( 47,662
49,957

) 0.9536

RNP 800,000 10−4
0.99400.99440.9937 0.9555( 95,545

100,000
) 0.9822( 49,111

50,000
) 0.9287( 46,434

50,000
) 0.9812( 46,434

47,323
) 0.9542
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Figure 2.   ROC curves for different training set sizes Ns and a fixed LR of η = 10−4 . During training, the fixed 
data handling technique was employed.

Figure 3.   Confusion matrix corresponding to the best experiment shown in Table 1 (last row) giving clear 
insights into the performance of our trained model.

Figure 4.   TPR for image pairs with (a) age differences, (b) with changes in the disease pattern, and (c) with 
changes in the projection view. The absolute numbers of true positives and overall positives are given for each 
bin. Note that the number of image pairs with age differences of more than 12 years is comparatively small, 
which is why the corresponding TPRs are neglected in this figure.
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received a true positive rate (TPR) of 0.97 for image pairs that had small age differences of less than one year. As 
the age variation between the follow-up images and the initial scan increases, we observe a slight decrease in the 
TPR values. Nevertheless, our model still shows competitive results even if the patient’s age in two images differs 
by several years. Even for an age difference of twelve years, we can verify that two images belong to the same 
patient by 86%. We only report the TPRs for image pairs with follow-up intervals of up to 12 years in Fig. 4a as 
the number of pairs with larger intervals is relatively small.

Additionally, we investigated the model’s verification capability in the case of new abnormality patterns 
appearing in follow-up scans that did not occur in previously acquired chest radiographs. Figure 4b shows that 
regardless of the abnormality, we nearly observe no decline in the TPR values, emphasizing the robustness of our 
trained SNN architecture. Note that the disease labels in the ChestX-ray14 dataset were extracted using natural 
language processing techniques. This could potentially have caused label noise which could have affected the 
results shown in Fig. 4b. Furthermore, Fig. 4c illustrates that changes in the projection view (e.g., one image 
taken in the anterior–posterior position and the other image acquired using the posterior–anterior view) hardly 
lead to any deterioration in the performance.

Moreover, we perform a qualitative evaluation where we visually inspect some exemplary image pairs evalu-
ated using our best-performing verification model. In Fig. 5, we show four true positive (TP) classifications (a–d), 
one pair that has been classified as a false positive (FP) (e), and one example for a false negative (FN) image pair 
(f). The shown images clearly illustrate the high technical variance present in the ChestX-ray14 dataset. The first 
image pair (a) shows two images belonging to the same patient with a difference of 7 years. Clear differences 
in pixel intensities and lung shape are observed. However, both images belong to the same person, cf. the small 
vascular clips in the area of the upper right lung. Also, image pairs with large difference in scaling (b) or rota-
tion (c) are verified correctly. Our model is also robust to the patients’ pathology: While the upper image of (b) 
shows characteristics of pneumothorax, the patient suffered from cardiomegaly, effusion, and masses in the lower 
image, according to the provided annotations. Similarly in (c), where the upper image indicates the presence of 
infiltration and pneumothorax, whereas the lower scan shows signs of infiltration and nodules. Figure 5e shows 
an exemplary image pair that has falsely been classified as positive. Conversely, (f) depicts a positive image pair 
that has been incorrectly classified as negative. To visually demonstrate which parts of the images are responsible 
for the verification task, we applied a siamese attention mechanism31 to our network architecture which utilizes 
the Grad-CAM algorithm32. The obtained attention maps can be seen in Figs. 6 and 7. They clearly indicate that 
the human anatomy, especially the shape of the lungs and ribs, is the driving factor for the network decisions.

To investigate how foreign material (see Fig. 5a) affects the verification performance, we evaluated our trained 
network on two small manually created subsets of around 200 images. The first one consisted only of images in 
which foreign material is visible, whereas the second one solely contained images without foreign material. When 
constructing the subsets, we selected the patients at random and then assigned the corresponding patient images 
to the respective subset after visual assessment. Furthermore, we ensured that no more than 5 images were used 
per patient. Table 2 summarizes the results indicating that the patient verification works with high performance 
regardless of the occurrence of foreign material. We even observe a slight improvement in performance for the 
subset where no foreign material is visible in the images.

Finally, to analyze whether our trained model is able to generalize to other datasets which have not been used 
during training, we evaluated our network on external datasets such as CheXpert and the COVID-19 Image 
Data Collection. For this, we utilized 16,486 image pairs from the CheXpert dataset and 1548 image pairs from 
the COVID-19 Image Data Collection. The results are summarized in the last two rows of Table 2. It can be seen 
that our network still yields high AUC values of 0.9870 (CheXpert) and 0.9763 (COVID-19) for the verification 
task although the model has not been fine-tuned on the respective datasets. Also the other presented evaluation 
metrics show competitive values without deteriorating too much.

(e) (f)(a) (c) (d)(b)

True Positives False Positive False Negative

Figure 5.   Exemplary image pairs are classified by our best performing verification model. Each column 
represents one image pair. The first four columns (a–d) show true positive classifications. The last two columns 
(e) and (f) depict a false positive and a false negative classification, respectively.
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Patient re‑identification
For our patient re-identification experiments, we trained another SNN architecture on the ChestX-ray14 dataset. 
In contrast to the verification model, we omitted all the layers from the merging layer onwards. The main objec-
tive was to learn appropriate feature representations instead of directly determining whether the inputs belong 
to the same patient or not. After training the network, we used the ResNet-50 backbone as a feature extractor 
for the actual image retrieval task. By computing the Euclidean distance between the embeddings of the query 
image and each other image, we obtained for each query image a ranked list of its most similar images in terms of 
identity. The used training, validation, and testing set consisted of 61,755, 10,815, and 25,596 images, respectively.

The results of the corresponding image retrieval experiments are summarized in Table 3. When using the 
original image size of 1024 × 1024 pixels for evaluation, we obtain a precision@1 of more than 99% showing that 
the closest match nearly always is the same patient. The high mean average precision at R (mAP@R) of about 
97% further depicts that most of the most similar images are correctly identified. We observe a slight decrease 
in performance as the image size was reduced. Nevertheless, when the images were downsampled to a resolution 

(e) (f)(a) (c) (d)(b)

True Positives False Positive False Negative

Figure 6.   Grad-CAM visualizations for the first convolutional layer of the ResNet-50 incorporated in our SNN. 
Each column represents one image pair. The first four columns (a–d) show true positive classifications. The last 
two columns (e) and (f) depict a false positive and a false negative classification, respectively. The shown images 
illustrate that the anatomical structure of, e.g. the breast (cf. (a,b,e)), the lungs (cf. (a,b,c,e)), and the heart (cf. 
(a,b)) have a high impact on the final model prediction. Furthermore, it can be seen that our network focuses 
on the collarbones (cf. (a,c,d,f)) and the ribs (cf. (b,c,e)). The upper images of (a) and (f) also highlight that our 
network pays attention to the contour of the diaphragm.

(e) (f)(a) (c) (d)(b)

True Positives False Positive False Negative

Figure 7.   Grad-CAM visualizations for an intermediate convolutional layer of the ResNet-50 incorporated 
in our SNN. Each column represents one image pair. The first four columns (a–d) show true positive 
classifications. The last two columns (e) and (f) depict a false positive and a false negative classification, 
respectively. The obtained attention maps clearly illustrate that the selected network layer focuses on the ribs and 
the outline of the thorax.
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of 512 × 512 pixels, we still obtain high performance values. When the image size was reduced too aggressively, 
e.g., to 224 × 224 pixels, the mAP@R and the R-Precision rates drop. Yet, we still observed a high Precision@1 
of more than 97%.

Similar to the experiments in the patient verification section, we evaluated our best-trained re-identification 
model on two small subsets, one of which only contained images with visible foreign material and the other 
consisted exclusively of images without the presence of foreign material. The obtained results are presented in 
Table 4. As can be seen, we achieve high performance values for both subsets. Thus, we hypothesize that our 
outcomes are independent of foreign material which may occur only for specific patients.

Lastly, we analyzed the re-identification performance on external datasets such as CheXpert and the COVID-
19 Image Data Collection. For this, we utilized 6454 images from the CheXpert dataset and 781 images from the 
COVID-19 dataset. As can be seen in the last two rows of Table 3, we also obtain high retrieval values although 
we haven’t performed any fine-tuning on both datasets, which demonstrates the feasibility of the trained re-
identification network on previously unseen datasets.

Discussion and conclusion
In this paper, we investigated the patient verification and re-identification capabilities of DL techniques on chest 
radiographs. We have shown that well-trained SNN architectures are able to compare two individual frontal 
chest radiographs and reliably predict whether these images belong to the same patient or not. Moreover, we 
have shown that DL models have the potential to accurately retrieve relevant images in a ranked list. Our mod-
els have been evaluated on the publicly available ChestX-ray14 dataset and showed competitive results with an 
AUC of up to 0.9940 and classification accuracy of more than 95% in the verification scenario and an mAP@R 
of 97% and a precision@1 of about 99% in the image retrieval scenario. Especially the fact that basic SNNs have 
the capability to re-identify patients despite potential age differences, disease changes or differing projection 

Table 2.   Comparison of the verification performance on two different subsets of the ChestX-ray14 dataset that 
either contain foreign material or not (first two rows). Furthermore, we show the verification results for the 
CheXpert dataset and the COVID-19 Image Data Collection (last two rows). We present the AUC (together 
with the lower and upper bounds of the 95% confidence intervals from 10,000 bootstrap runs), the accuracy, 
the specificity, the recall, the precision, and the F1-score.

Dataset Subset AUC + 95 % CI
Accuracy 
( TP+TN

P+N
) Specificity ( TN

N
) Recall ( TP

P
)

Precision 
(  TP

TP+FP
) F1-score

ChestX-ray14

w/ foreign 
material 0.99700.99930.9938 0.9796( 672

686
) 0.9854( 338

343
) 0.9738( 334

343
) 0.9853( 334

339
) 0.9795

w/o foreign 
material 0.99720.99990.9909 0.9862( 430

436
) 0.9908( 216

218
) 0.9817( 214

218
) 0.9907( 214

216
) 0.9862

CheXpert – 0.98700.98840.9855 0.9440( 15,562
16,486

) 0.9629( 7,937
8,243

) 0.9250( 7,625
8,243

) 0.9614( 7,625
7,931

) 0.9429

COVID-19 – 0.97630.98250.9696 0.9180( 1,421
1,548

) 0.9780( 757
774

) 0.8579( 664
774

) 0.9750( 664
681

) 0.9127

Table 3.   Overview of the obtained results for our image retrieval experiments. In this table, we report the 
mAP@R, the R-Precision, and the Precision@1. The first 4 rows show the results on the ChestX-ray14 dataset 
for different image resolutions used for evaluation. The fifth row shows the outcomes on the CheXpert dataset. 
The last row indicates the results on the COVID-19 Image Data Collection. Bold text represents the overall 
highest performance metrics.

Dataset Input dimensions mAP@R R-Precision Precision@1

ChestX-ray14

1024 × 1024 0.9748 0.9763 0.9963

800 × 800 0.9709 0.9726 0.9958

512 × 512 0.9572 0.9601 0.9945

224 × 224 0.7730 0.7979 0.9756

CheXpert Original 0.8001 0.8148 0.9444

COVID-19 Original 0.8569 0.8707 0.8821

Table 4.   Comparison of the re-identification performance on two different subsets (ChestX-ray14) that either 
contain foreign material or not. We report the mAP@R, the R-Precision, and the Precision@1.

Subset mAP@R R-Precision Precision@1

w/foreign material 0.9925 0.9925 > 0.9999

w/o foreign material > 0.9999 > 0.9999 > 0.9999



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:14851  | https://doi.org/10.1038/s41598-022-19045-3

www.nature.com/scientificreports/

views demonstrated the effectiveness of DL techniques for this task. However, note that the shown results were 
obtained empirically, i.e. they do not necessarily reflect true measures of certainty.

As shown in Fig. 5, the used dataset suffers from a high technical variance which may occur due to various 
windowing techniques applied to the images. In a real-life scenario, the resulting variations in image contrast 
and brightness could be significantly mitigated by using dynamic normalization approaches33. Furthermore, we 
believe that variations in rotation and scaling can be counteracted by appropriate alignment algorithms. Never-
theless, even without such pre-processing steps, we were able to show that patient matching for chest radiographs 
is possible with a high performance by using DL techniques.

Moreover, we hypothesize that special noise patterns characteristic for unique patients appear in the images 
which might unintentionally improve the re-identification performance. For example, the initial anonymization 
strategy may be biased towards the clinical institution and, therefore, also towards follow-up images. To get a 
better impression of the re-identification capability of our SNN architecture, we also intend to investigate other 
datasets which show less or ideally no correlation between potential noise patterns and the patient identity. 
Therefore, further research on multiple datasets should ideally be considered. For our experiments, we already 
evaluated our models on two completely different datasets, the CheXpert dataset and the COVID-19 Image Data 
Collection. While the evaluation metrics are lower (possibly due to a domain shift or the severity of diseases), 
we still obtain AUC scores of over 97% (COVID-19) and 98% (CheXpert) and precision@1 values of more than 
88% (COVID-19) and 94% (CheXpert) without fine-tuning on these datasets. This indicates that patient veri-
fication and re-identification is also applicable for data that was acquired in various hospitals around the world 
where other pre-processing steps may be taken before data publication compared to the ChestX-ray14 dataset.

The COVID-19 Image Data Collection is very heterogeneous, containing, e.g., images of different sizes, both 
gray-scale and color images, and images with visible markers, arrows or date displays. For our experiments, only 
those images in the COVID-19 Image Data Collection were used that were acquired using the anterior–pos-
terior or the posterior–anterior view, while images taken in the lateral position and CT scans were discarded. 
Apart from this, no further steps were taken to ensure the quality of the dataset. Although some of the factors 
mentioned above (e.g., brandings such as markers, arrows or dates) may facilitate the patient re-identification, 
we hypothesize that the COVID-19 Image Data Collection poses a realistic example of a public medical dataset 
and we therefore consider the conducted experiment as an authentic real-life application scenario.

Furthermore, we want to accentuate that our trained network architectures are able to handle non-rigid 
transformations that may appear between two images of the same person in the ChestX-ray14 dataset. Such 
deformations can occur due to various breath states in follow-up scans or due to different positioning during 
X-ray acquisition. Hence, the shape of the heart and lungs, or the contours of the ribs may appear deformed 
compared to an initial scan. The obtained results lead to the assumption that our trained SNN architectures can 
withstand such deformations and can therefore be used for reliable patient re-identification on chest radiographs.

We conclude that DL techniques render medical chest radiographs biometric for everyone and allow a re-
identification similar to a fingerprint. Therefore, publicly available medical chest X-ray data is not entirely anony-
mous. Using a DL-based re-identification network enables an attacker to compare a given radiograph with public 
datasets and to associate accessible metadata with the image of interest. The strength of our proposed method is 
that patients can be re-identified in a fully automated way without the need of expert knowledge. Thus, sensitive 
patient data is exposed to a high risk of falling into the unauthorized hands of an attacker who may disseminate 
the gained information against the will of the concerned patient. At this point, we want to emphasize that data 
leakage of this kind requires that the attacker has previously gained access to an image of a known person. This 
could happen, for example, through a stolen CD containing raw medical data of a specific patient, or through 
accidental data release by a radiological facility. Furthermore, data breaches due to inadequate data security 
measures at, e.g., healthcare institutions or health insurance companies, represent a possibility for attackers to 
obtain images of known patients, which could subsequently be utilized for a linkage attack as presented in our 
work. However, even if the attacker owns an image of an unknown identity, a re-identification model can be 
used to find the same patient across various datasets. Assuming multiple datasets contain the same patient but 
different metadata, an attacker would be able to obtain a more complete picture of the respective patient. We 
hypothesize that collecting patient information by this means could significantly help an attacker infer the true 
identity of the patient. We therefore urge that conventional anonymization techniques be reconsidered and that 
more secure methods be developed to resist the potential attacks by DL-based algorithms.

At this point, we would like to draw attention to the analogy of our work to the field of automatic speaker 
verification (ASV). Speech signals contain a large amount of private data, e.g., age, gender, health and emotional 
state, ethnic origin, and more34. As such information is embedded in speech data itself, it can be exploited to 
reveal the speaker’s identity by applying attack models in the form of ASV systems34. Therefore, in the speech 
community, raw speech signals are not considered anonymous. Instead, privacy challenges, such as the VoiceP-
rivacy Challenge35, were formed to develop solutions for the preservation of privacy in this field. With our work, 
we were able to demonstrate that the privacy issue with speech data is 1-to-1 transferable to the privacy issue 
with chest radiographs.

While the proposed algorithms may be used maliciously to produce harm in terms of patient privacy and 
data anonymity, we also want to draw attention to a potentially positive application area. Often, different data-
sets are used for training and evaluation of an algorithm. However, since in most cases these datasets have been 
anonymized using conventional techniques, it is not clear whether certain patients appear in more than one 
dataset. Therefore, in this context, our trained networks could be applied to check for mutual exclusiveness with 
respect to included patients between multiple datasets.

The publication of medical image datasets is an area of conflict. While, on the one hand, many patients may 
benefit from recent advances (e.g., the development of diagnostic algorithms), there are, on the other hand, 
patients who may be seriously harmed by the fact that their data is publicly available. With our work, we focus 
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on providing empirical evidence for this issue and draw attention to the risks. The legal situation for the publica-
tion of medical data is currently regulated by the HIPAA (in the United States) and the GDPR (in Europe). We 
therefore contend that the corresponding ethics committees are responsible for weighing the benefits and the 
risks as well as for assessing the appropriateness of current regulations.

Potential solutions to the problems addressed in our work may be found in privacy-preserving approaches 
such as differential privacy (DP)36,37 which guarantees that the global statistical distribution of a dataset is retained 
while individually recognizable information is reduced38. This means that an outside observer is unable to draw 
any conclusions about the presence or absence of a particular individual. Consequently, algorithms trained with 
DP are able to withstand linkage attacks attempting to reveal the identities of patients in the dataset used to 
train the algorithm. One commonly-used technique to achieve DP is to modify the input by adding noise to the 
dataset (local DP)38,39. Furthermore, DP can be applied to the computation results (global DP) or to algorithm 
updates38. However, training models with DP degrades the quality of the model (privacy-utility trade-off) which 
is problematic in medicine where high diagnostic utility is required. Therefore, further exploration on these topics 
is necessary before general conclusions can be made.

Aside from perturbation-based privacy approaches, we want to mention that the use of collaborative decen-
tralized learning protocols such as federated learning (FL)40 can significantly contribute to a safer use of medical 
data. By training a machine learning model collaboratively without centralizing the data, the need of raw data 
sharing or dataset release is eliminated41. Thus, the medical data is able to reside with its owner, e.g., the healthcare 
institution where the data was acquired, which resolves data governance and ownership issues38,42. However, 
FL itself does not provide full data security and privacy, meaning that some risks remain unless combined with 
other privacy-preserving methods.

Methods
The research was carried out in accordance with the relevant guidelines and regulations of the institution con-
ducting the experiments.

Siamese neural networks.  To re-identify patients from their chest radiographs, we employ SNN architec-
tures for both the classification and the retrieval tasks. A SNN receives two input images which are processed by 
two identical feature extraction blocks sharing the same set of network parameters. The resulting feature repre-
sentations can then be used to compare the inputs. The concept of a SNN was initially introduced by Bromley 
et al.43 for handwritten signature verification. Taigman et al.44 applied this idea in the field of face verification 
and proposed the DeepFace system. Moreover, Koch et al.45 presented an approach for one-shot learning on the 
Omniglot46 and MNIST47 datasets.

NIH ChestX‑ray14 dataset.  With a total of 112,120 frontal-view chest radiographs from 30,805 unique 
patients, the NIH ChestX-ray1416 dataset counts to one of the largest publicly available chest radiography data-
sets in the scientific community. Due to follow-up scans, the image collection provides an average of 3–4 images 
per patient. The originally acquired radiographs were published as 8-bit gray-scale PNG images with a size of 
1024 × 1024 pixels. Associated metadata is available for all images in the dataset. The additional data comprises 
information about the underlying disease patterns (either no finding or a combination of up to 14 common 
thoracic pathologies), the number of follow-up images taken, the patients’ age and gender, and the projection 
view (anterior–posterior or posterior–anterior) used for radiography acquisition. According to the publisher, the 
dataset was carefully screened to remove all personally identifiable information before release48. Therefore, the 
patient names were replaced by integer IDs. Moreover, personal data in the image domain itself has been made 
unrecognizable by placing black boxes over the corresponding image areas.

CheXpert dataset.  The CheXpert14 dataset contains 224,316 frontal and lateral chest radiographs of 65,240 
patients, who underwent a radiographic examination from Standford University Medical Center between Octo-
ber 2002 and July 2017. The originally acquired radiographs were published as 8-bit gray-scale JPG images 
with varying image resolutions. Note that only frontal chest radiographs were used in our work, whereas lateral 
images were excluded.

COVID‑19 image data collection.  The COVID-19 image data collection19 is a dataset that was created 
and published as an initiative to provide COVID-19 related chest radiographs and CT scans for machine learn-
ing tasks. It comprises data of 448 unique patients and a total of around 950 images with different image resolu-
tions. In this work, only the available frontal radiographs were utilized, whereas the lateral images and CT scans 
were discarded.

Data preparation.  Since SNN architectures require pairs of images for training and evaluation, we con-
struct both positive and negative image pairs from the images contained in the ChestX-ray14 dataset. In this 
context, a positive pair consists of two images belonging to the same patient, whereas a negative pair comprises 
two images that belong to different patients. Mathematically, the constructed dataset can be described according 
to

where the triplet (xm1, xm2, ym) represents one sample consisting of two images xm1 and xm2 , and the corre-
sponding label ym . M refers to the total number of samples and m denotes an iterator variable in the range of 

(1)S = {(x11, x12, y1), . . . , (xm1, xm2, ym), . . . , (xM1, xM2, yM)}, with ym ∈ {0, 1},
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m ∈ [1,M] . The class label ym symbolizes a binary variable that takes the value 0 for negative image pairs and 1 
for positive image pairs.

To ensure that images from one patient only appear either in the training, validation, or testing set, we use 
the patient-wise splitting strategy. According to the official split provided with the ChestX-ray14 dataset, the 
data is randomly divided into 70% training, 10% validation, and 20% testing. Based on this split, we construct 
the actual image pairs for each subset.

Offline mining.  For patient verification, we follow an offline mining approach, meaning that the positive and 
negative image pairs are generated once before conducting the experiments. First, the positive pairs are gener-
ated by only considering the patients for whom multiple images exist in the respective subset. For each patient 
with follow-up images, we produce all possible tuple combinations assuming the images to be unique. By fol-
lowing this approach, we are able to construct a total of around 400,000 positive image pairs for our training set. 
The negative pairs in each subset are randomly generated and concatenated with the respective positive pairs 
afterwards.

Online mining.  For the patient re-identification experiments, we choose an online mining approach, meaning 
that image pairs are formed in each batch during the training procedure. This means that the embeddings of all 
batch images are first computed and then subsequently used in all possible combinations as input for the loss 
function. Moreover, all patients with only one available image were discarded from the training set.

Patient verification.  Deep learning architecture.  For patient verification, the used SNN architecture (see 
Fig. 8) receives two images x1 and x2 of size 3 × 256 × 256. Both inputs are processed by a pre-trained ResNet-50 
incorporated in each network branch. In its original version, the ResNet-50 was designed to classify images into 
1000 object categories trained on the ImageNet49 dataset. To adapt the ResNet-50 to our specific needs, we re-
place its classification layer with a layer consisting of 128 output neurons producing the feature representations 
z1 and z2 , respectively. To merge both network branches, the absolute difference of the sigmoid activations of 
the two feature vectors is computed. We add a fully-connected (FC) layer to reduce the dimensionality to one 
neuron, followed by another sigmoid activation function σ which yields the final output score ŷ ∈ [0, 1].

Training strategy.  The verification model is trained using the binary cross-entropy (BCE) loss. The network 
parameters are optimized by combining mini-batch stochastic gradient descent (SGD)50,51 with the adaptive 
moment estimation (Adam)52 method. The batch size Nb is set to 32 in all our experiments. We use different LRs 
to investigate their effect on the model’s performance. Furthermore, we include an early stopping criterion with 
a patience p = 5 , which means that the training procedure stops as soon as the network does not improve for 5 
epochs. We train the architecture using input dimensions of 3 × 256 × 256.

Evaluation techniques.  We utilize ROC curves to visualize the trained verification models based on their 
performance. A ROC curve represents a two-dimensional graph in which the TPR is plotted against the false 
positive rate (FPR) at various threshold settings53, thus indicating how many true positive classifications can be 
gained as an increasing number of false positive classifications is allowed. Additionally, we calculate the AUC 
which reflects a proportion of the area of the unit square and will always range from 0 to 153. The higher the 
AUC score, the better the model’s average performance. Nevertheless, it has to be mentioned that a classifier 
with a high AUC might perform worse in a specific region of ROC space than a classifier with a low AUC value. 

Figure 8.   SNN architecture used for patient verification on the ChestX-ray1416 dataset. The feature extraction 
blocks (light blue) share the same set of network parameters and produce the feature representations z1 and z2 
(yellow). After merging (orange) and an additional FC and sigmoid layer σ (light blue), the network yields the 
final output score ŷ (green). For our patient re-identification experiments, we used the same architecture but 
ejected all the layers from the merging layer onwards.
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Moreover, we evaluate the performance by computing the accuracy, specificity, recall, precision and F1-score. 
Therefore, the threshold at the output neuron is set to t = 0.5.

Patient re‑identification.  Deep learning architecture.  For patient re-identification, we train a SNN archi-
tecture which receives two images x1 and x2 of size 3 × 1024 × 1024. Both inputs are processed by a pre-trained 
ResNet-50 incorporated in each network branch. However, the network head of the used ResNet-50 is slightly 
modified. The average pooling layer is replaced by an adaptive average pooling layer producing feature maps of 
size 5 × 5. In addition to the adaptive average pooling layer, an adaptive max-pooling layer is applied which also 
yields feature maps of size 5 × 5. The outputs of the pooling layers are concatenated and processed by a 1 × 1 
convolutional layer reducing the number of feature maps from 2048 to 100. The feature maps are then flattened, 
followed by two successive FC layers resulting in 128-dimensional feature representations z1 and z2 for the first 
and the second network branch.

Training strategy.  The re-identification model is trained using the contrastive loss function54 which is typically 
utilized to achieve a meaningful mapping F from high to low dimensional space. By using the contrastive loss, 
the network learns to map similar inputs to nearby points on the output manifold while dissimilar inputs are 
mapped to distant points. Negative pairs contribute to the loss only if their distance is smaller than a certain 
margin m. In this work, the margin is set to m = 1.

For our image retrieval experiments, the SNN architecture is optimized using the SGD algorithm in combina-
tion with the 1cycle learning policy55,56. When using the 1cycle LR schedule, the LR η steadily increases until it 
reaches a chosen maximum value and gradually decreases again thereafter. This schedule changes the LR after 
every single batch and is pursued a pre-defined number of epochs. The upper bound is chosen at 0.1584 with 
the help of a LR finder. The lower bound is set to 0.0063. The L2 regularization technique is used with a decay 
factor of 10−5 . Moreover, the batch size is adjusted to 32. We optimize the SNN architecture by first training the 
adapted network head of the incorporated ResNet-50 for 30 epochs with all other parameters being frozen. Then, 
the complete architecture is trained for another cycle, this time consisting of 50 epochs.

Since the batch size limits the task of constructing informative positive and negative pairs in the online mining 
strategy, the concept of cross-batch memory57 is utilized to generate sufficient pairs across multiple mini-batches. 
This concept is based upon the observation that the embedding features generally tend to change slowly over 
time. This “slow drift” phenomenon allows the use of embeddings of previous iterations that would normally 
be considered out-dated and discarded. For our experiments, a memory size of 128 is chosen, meaning that the 
last 4 batches are considered for mining.

Evaluation techniques.  To evaluate the re-identification performance of our trained model, several metrics are 
computed. R-Precision represents the precision at R, where R denotes the number of relevant images for a given 
query image. In other words, if the top-R retrieved images show r relevant images, then R-Precision can be calcu-
lated from Eq. (2). Note that this value is then averaged over all query samples. Precision@1 constitutes a special 
case and evaluates how many times the top-1 images in the retrieved lists are relevant.

To further consider the order of the relevant images within the retrieved list, the mean average precision at 
R (mAP@R) is computed according to Eq. (3). The mAP@R denotes the mean of the average precision scores 
at R (AP@R) over all Q query images. The AP@R (see Eq. (4)) is the average of the precision values over all R 
relevant samples, where P@i refers to the precision at rank i and rel@i is an indicator function which equals 1 if 
the sample is relevant at rank i and 0 if it is not relevant.

Data availability
The NIH ChestX-ray14 dataset used throughout the current study is available via Box at https://​nihcc.​app.​box.​
com/v/​Chest​Xray-​NIHCC. The COVID-19 Image Data Collection is available on GitHub at https://​github.​com/​
ieee8​023/​covid-​chest​xray-​datas​et. The CheXpert dataset can be requested at https://​stanf​ordml​group.​github.​io/​
compe​titio​ns/​chexp​ert.

Code availability
The code used to train and evaluate both the patient verification and the patient re-identification models is avail-
able at https://​github.​com/​kaipa​ckhae​user/​CXR-​Patie​nt-​ReID.
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