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A B S T R A C T

Background: There is a need for a brain volume measure applicable to the clinical routine scans. Nearly every
multiple sclerosis (MS) protocol includes low-resolution 2D T2-FLAIR imaging.
Objectives: To develop and validate cross-sectional and longitudinal brain atrophy measures on clinical-quality
T2-FLAIR images in MS patients.
Methods: A real-world dataset from 109 MS patients from 62 MRI scanners was used to develop a lateral ven-
tricular volume (LVV) algorithm with a longitudinal Jacobian-based extension, called NeuroSTREAM. Gold-
standard LVV was calculated on high-resolution T1 1 mm, while NeuroSTREAM LVV was obtained on low-
resolution T2-FLAIR 3 mm thick images. Scan-rescan reliability was assessed in 5 subjects. The variability of LVV
measurement at different field strengths was tested in 76 healthy controls and 125 MS patients who obtained
both 1.5T and 3T scans in 72 hours. Clinical validation of algorithm was performed in 176 MS patients who
obtained serial yearly MRI 1.5T scans for 10 years.
Results: Correlation between gold-standard high-resolution T1 LVV and low-resolution T2-FLAIR LVV was
r = 0.99, p < 0.001 and the scan-rescan coefficient of variation was 0.84%. Correlation between low-resolu-
tion T2-FLAIR LVV on 1.5T and 3T was r = 0.99, p < 0.001 and the scan-rescan coefficient of variation was
2.69% cross-sectionally and 2.08% via Jacobian integration. NeuroSTREAM showed comparable effect size
(d = 0.39–0.71) in separating MS patients with and without confirmed disability progression, compared to
SIENA and VIENA.
Conclusions: Brain atrophy measurement on clinical quality T2-FLAIR scans is feasible, accurate, reliable, and
relates to clinical outcomes.

1. Introduction

Brain atrophy in multiple sclerosis (MS) was classically thought of
as a late-stage phenomenon, secondary to the more salient white matter
(WM) lesions (sclerosi) lending the disease its name (Murray, 2005).
Over the past two decades, though, understanding of brain atrophy in
MS has been substantially revised. It is now clear that atrophy begins
very early in the disease process (Uher et al., 2014; Kalkers, 2002), can

progress relatively independently of overt lesions (Fisniku et al., 2008),
affects both gray matter (GM) and WM, and proceeds at up to 5 times
the rate associated with normal aging (Miller et al., 2002). Perhaps
most important of all, quantitative measurements of atrophy have been
shown to be the best correlates and long-term predictors of both cog-
nitive and clinical disability (Benedict et al., 2006; De Stefano et al.,
2014; Summers et al., 2008; Zivadinov et al., 2016b).

This revised understanding of the importance and clinical relevance
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of brain atrophy in MS is largely due to the emergence of quantitative
image-based computational techniques for measuring brain atrophy
more precisely and accurately than is possible by eye. These techniques
include brain parenchymal fraction (BPF), boundary shift integral (BSI),
structural image evaluation, using normalization, of atrophy (SIENA),
voxel-, tensor-, and deformation-based mapping, and many others
(Smith et al., 2002; Avants et al., 2008; Freeborough and Fox, 1997;
Ashburner and Friston, 2000). However, despite their success in re-
search, it has proven difficult to translate these approaches to clinical
routine data.

Unlike the research-quality MRI sequences underpinning many
prior studies, clinical routine images pose many unique challenges.
They often have lower signal-to-noise ratio (SNR) and/or spatial re-
solution due to trade-offs in scanning time. Also due to time constraints,
full head coverage is often neglected. Clinical scans also lack standar-
dization, which in turn is compounded by changes in MRI machine
and/or scanner upgrades. Finally, they are also more susceptible to
artifacts including gradient distortion, wrap-around and patient mo-
tion. For all these reasons, retrospective and/or prospective quantita-
tive atrophy analysis in a clinical setting raises numerous theoretical
and practical challenges.

Previous efforts at routinely-applicable atrophy measures have in-
cluded qualitative metrics like ordinal scales (Simon et al., 2006) and
semi-quantitative linear metrics like third ventricular width (Benedict
et al., 2006). However, they failed to achieve widespread adoption,
potentially due to issues of intra−/inter-rater variability and acquisi-
tion-related variability. Thus, there is a need for a brain atrophy mea-
surement technique complementary to existing techniques: a fully
quantitative method focused on robustness and applicability to clinical
routine scans and large pre-existing datasets, while maintaining as
much as possible the precision and accuracy of more traditional re-
search methods.

Measurement of ventricular volume (VV) provides a potential so-
lution to many of problems listed above, due to a confluence of phy-
siological and technical factors. The potential for lateral VV (LVV) to be
used as an early predictive marker for disability and cognitive impair-
ment, and for use in identifying at-risk patients, was discussed more
than a decade ago (Dalton et al., 2004). More recently, it has been
shown that VV is one of the best predictors of confirmed MS disability
progression and that VV can act as a proxy for more complex brain
atrophy measures, like whole brain atrophy, over the long-term. In 176
MS patients followed with serial MRI over 10 years, the effect size be-
tween stable and disability-progression groups was similar for whole
brain and LVV changes (d = 0.55 for whole brain, d = 0.51 for LVV),
and both measures showed significant separation within the first two
years (Zivadinov et al., 2016b). Change in LVV also correlated sig-
nificantly with changes in GM and cortical atrophy over the 10-year
period. In another longitudinal study of 54 patients, VV change over
two years was found to be even more predictive of 5-year disability
progression than whole brain volume change (Lukas et al., 2010). An
even larger retrospective study of 261 subjects also showed VV change
as one of the most important predictors of 10-year disability progres-
sion (Popescu et al., 2013).

From a technical perspective, LVV measurement may benefit from a
number of factors (Table 1). First, the ventricle/tissue border is high
contrast on T2-FLAIR (Zivadinov et al., 2016b). This means that con-
trast-to-noise ratio is generally high, even on rapidly acquired clinical
routine scans. Second, the ventricles have a relatively simple shape,
resulting in predictable edge positions and considerably less partial-
voluming than the highly gyrified cortex. Because of this, LVV mea-
surement may tolerate low resolution scans better than whole brain
measurement. Finally, the central position of the lateral ventricles in
the head confers two additional advantages: the lateral ventricles are
unlikely to be cut off even in partial-head scans, and gradient distortion
errors are diminished (Caramanos et al., 2010).

Various methods have previously been devised to segment and/or

quantify VV on MRI in both healthy controls and in other diseases.
Template-based techniques have been very successful, and include
ALVIN (Kempton et al., 2011), ANIMAL (Collins et al., 1995), decision
fusion (Heckemann et al., 2006), and multi-atlas selection (Aljabar
et al., 2009). These are based on non-linear alignment to a template (or
templates), and subsequent transfer of template-space labels to the
target image. FIRST (Patenaude et al., 2011) takes an alternative ap-
proach, fitting a priori parametric shape models to the target image,
which produces excellent results for subcortical nuclei, but faces some
difficulties with the ventricles. More-recently, patch-based (Coupé
et al., 2011) and machine learning techniques (Julazadeh et al., 2012)
have also been proposed. Combination techniques fusing various expert
rules and other heuristics with intensity information have seen some
success as well (Barra and Boire, 2001; Xia et al., 2004). A direct
longitudinal technique - VIENA - modifying the popular SIENA ap-
proach to assess edge motion solely along the ventricular border (rather
than the whole brain) has also been described and validated (Vrenken
et al., 2014).

However, none of these approaches have focused specifically on
clinical quality T2-FLAIR scans. Therefore, we set out to develop and
validate an LVV quantification tool for this purpose. Our goal was not to
produce a method more precise or accurate than those described above.
Rather, we sought to produce a highly robust technique capable of
operating on clinical-quality T2-FLAIR images and producing results
similar to more established techniques run on high-resolution scans. To
do this, we extended an earlier idea for whole brain analysis proposed
by (Baillard et al., 2001), and adapted it to LVV measurement on T2-
FLAIR images. The core of our approach is a combination of multi-atlas
segmentation and level-set refinement. We also extended the cross-
sectional method for direct longitudinal analysis by including an op-
tional Jacobian integration step. We called the resulting algorithm
“Neurological Software Tool for Reliable Atrophy Measurement” -
NeuroSTREAM.

2. Methods

2.1. Subjects and datasets

For this study, de-identified, retrospective datasets were used.
Demographic and clinical characteristics are reported in Supplement
Table 1, while the MRI acquisition characteristics are reported in the
Supplement Table 2. The Institutional Review Board of the University
of Buffalo approved the use of all datasets.

2.2. Creation of templates and atlases

To provide the basis for template-driven segmentation, we first
created three atrophy-level-specific templates. Since the major goal of
this work was to produce an algorithm applicable to real-world data, we
compiled a non-biased anonymized development dataset of paired T2-
FLAIR and high-resolution T1 scans from 109 MS patients across 62

Table 1
Summary of common clinical-routine imaging challenges and the properties of LVV that
allow it to provide mitigation for many of these challenges. (LVV = lateral ventricular
volume).

Challenge LVV mitigation

Low-resolution scans Low-complexity border and simple topology allow
better fitting of edges and use of constraints

Imprecise positioning/
gradient distortions

Nearness to the isocentre alleviates warping issues

Incomplete head coverage LVV's centrality makes it unlikely to be cut off
Other artifacts Wrap-around is mitigated by central position, noise

by the strength of the border, motion by the use of
topological constraints and the simple structure
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MRI scanners. This dataset was randomly selected from a number of
published and unpublished datasets (Santos and Weinstock-Guttman,
2006; Uher et al., 2015; Zivadinov et al., 2017; Zivadinov et al., 2016a,
2016c), using a weighted sampling technique to uniformly cover a wide
range of atrophy levels and lesion loads, while simultaneously balan-
cing 1.5T and 3T scans. Scans were converted to NIfTI format, but no
other prior pre-processing was performed. This multi-site, multi-
scanner dataset was representative of MS in general, with 72% females,
and a mean age of 36.4 ± 12.4 years.

On each subject's high-resolution T1 scan, SIENAX (Smith et al.,
2001) was applied, with initial BET parameters of f = 0.3 and with the
head and neck cleanup option enabled. Manual correction of deskulling
was performed as necessary, and the regional option was employed to
produce central CSF masks. Using the resulting normalized brain vo-
lume measurements, subjects were split into low, medium, and high-
atrophy tertiles. From each of the three tertiles, T2-FLAIR images were
combined using non-linear symmetric diffeomorphic image registration
with trilinear interpolation to generate unbiased, multi-scanner, tertile-
specific 1 mm isotropic T2-FLAIR templates (Avants et al., 2008). Re-
flecting the fact that lesion masks might not be available in future au-
tomated analyses, we did not employ cost-function masking. Initial
rigid registrations were performed to create a midspace image within
each tertile. The final three templates are shown in Fig. 1.

In addition to each template itself, template-specific ventricle at-
lases were created as follows. Central CSF (cCSF) masks derived from
regional SIENAX outputs were manually adjusted by expert operators
(DR/JD) to correct errors and to remove non-LVV CSF (e.g. cisterns and
third ventricle). The corresponding 3D-T1 scans were then registered to
the subjects' T2-FLAIR images using rigid-body registration, and the
resulting transforms were composited with the subjects' T2-FLAIR-to-
template non-linear transforms to bring each manually corrected LVV
mask into template space. Individual subjects' normalized ventricle
maps were then combined into a single ventricle map via voxelwise
majority vote.

Finally, supplementary binary masks were created directly in each
template space for use in later algorithm steps:

• A forced inclusion mask composed of areas within the lateral ven-
tricles that are often automatically misclassified, primarily regions
with a high probability of containing choroid plexus.

• A forced exclusion mask composed of areas outside the lateral
ventricles but easily automatically misclassified, including the third
ventricle and nearby cisterns.

• A template-space sub-AC/PC mask to exclude areas below the

anterior-posterior commissure line. Although the inferior horns of
the lateral ventricles also lie below this plane, they are small and
often lead to misclassification.

Examples of these masks for the middle tertile atlas/template pair
are shown in Fig. 2.

2.3. Algorithm description

The proposed NeuroSTREAM algorithm can be conceptualized in
three phases: pre-processing, template-based segmentation, and level-
set refinement. An overview of all processing steps is shown in Fig. 3.

2.3.1. Pre-processing
First, T2-FLAIR images are preprocessed to improve consistency and

address specific issues. Initial reorientation and robust field of view
selection are performed to ensure that the image is in a roughly stan-
dard position and that areas outside the head are cropped out (i.e., extra

Fig. 1. Individual patients' images encompass a wide range of atrophy levels, making alignment to a single normative template (such as MNI152) problematic. NeuroSTREAM addresses
this problem by providing atrophy-specific templates. These MS-specific T2-FLAIR templates were derived from a multi-scanner, multi-field-strength population. The population was split
into tertiles based on normalized brain volume before creating a nonbiased, nonlinear template for each tertile. During processing, a subject's scan is aligned to all three templates, and
resulting segmentations and maps are derived by a joint-fusion weighting scheme based on how well each alignment performed. Left: low atrophy template; Center: mid-atrophy
template; Right: high-atrophy template.

Fig. 2. 3D rendering of key regions and supplementary maps. To incorporate a-priori
expert information into the NeuroSTREAM pipelines, binary mask volumes are included
with each atrophy-level template. A calculation zone restricts the analysis to a probable-
ventricle zone. An initial ventricle map provides a starting point for subsequent level set
analysis. Forced inclusion and exclusion areas specifically include and exclude often-
misclassified areas like choroid plexus and midline. Finally, an AC/PC plane map is used
to reproducibly restrict measurement to the body, anterior, and posterior horns of the
lateral ventricles. AC = anterior commissure, PC = posterior commissure.

M.G. Dwyer et al. NeuroImage: Clinical 15 (2017) 769–779

771



neck tissue). Next, bias field inhomogeneity is corrected using the N4
algorithm (Tustison and Avants, 2010). After these more generally-
applicable steps, a T2-FLAIR-specific intensity Winsorization (Wilcox
and Wilcox, 2005) routine is employed with an upper cutoff at the
97.5th percentile. This is done to ensure that very bright, subject-spe-
cific lesions do not substantially bias subsequent steps, but are also not
completely ignored in the fitting. Then, for numerical purposes and to
ensure consistency, the image is upsampled to 1 mm cubic voxels using
windowed sinc interpolation. Finally, the isotropic, upsampled image is
smoothed using a nonlinear anisotropic diffusion algorithm to reduce
noise while preserving strong edges (Perona and Malik, 1990).

2.3.2. Multi-atlas segmentation
Non-linear alignment to each of the three previously-described

templates is then performed via a two-stage process. In stage one, a
linear alignment is performed using a 12 degree-of-freedom affine
transformation model with a mutual information cost function (Avants
et al., 2008). For this alignment, the full head is used. In stage two, a
second linear alignment is performed using the same transformation
and cost function, but with a cost function weighting map restricted to
within 2 cm of the ventricles in template space. Finally, in stage three a
non-linear alignment is performed using the SyN transform (Avants
et al., 2008), again with the restricted ventricle-specific weighting
mask. The final nonlinear transformations from each template are then
applied to each of the three ventricular atlases, and the resulting maps
are combined into a single map using the joint label fusion technique
(Wang and Yushkevich, 2013). This joint fusion technique takes into
account the quality of underlying fit of the images, giving more weight
to atlases corresponding to templates that have been more accurately
warped to the target subject's T2-FLAIR image. The same joint fusion
process is applied for each atlas's related supporting maps, using the
warp field determined from the atlas itself.

2.3.3. Level set refinement
The template-based segmentation described above provides a map

of the ventricles that is often of good quality. However, SyN and most
similar non-linear warping techniques are toplogy-preserving. While
generally a positive feature, this can be problematic with low-resolution
scans in which portions of the ventricles may appear effectively dis-
connected even when upsampled (Coupé et al., 2011). The level-set

framework provides an effective complementary approach, since it
naturally handles changes in toplogy (Heimann and Meinzer, 2009).
Therefore, a numerical level-set based evolution is performed on the
initial template-based LVV segmentation. The level-set speed function,
which drives the evolution of the segmentation, is produced via a voxel-
wise combination of factors. First, two groups of voxels are selected:
those within the preliminary LVV and at least 1 mm from the border
(inside voxels) and those outside the preliminary LVV between 1 mm
and 10 mm from the border (outside voxels). A logistic regression
model is then fit between the intensities of these two voxel sets to
produce a function predicting probability of LVV membership from
image intensity. From this function, a voxel-wise LVV probability map
is created, and then refined as follows: all voxels in the forced inclusion
mask are set to have a probability of 1, all voxels in the forced exclusion
mask are set to have a probability of 0, and all voxels in the sub-AC/PC
mask are set to have a probability of 0. Given this speed function and
the initial LVV segmentation from the template-based stage, a level-set
evolution is then performed with 25 iterations and a curvature value of
0.2 (Yushkevich et al., 2006).

2.3.4. Partial volume estimation
Despite the ventricles' comparatively simple topology, most voxels

along the edges of the LVV still contain portions of both CSF and sur-
rounding tissue. Common approaches to deal with this issue involve the
use of explicit Gaussian mixture models to assign tissue-specific partial
volume estimates (PVE) to each voxel (Avants et al., 2011; Zhang et al.,
2001). However, this method is not reliable on T2-FLAIR images where
unpredictable periventricular lesions substantially skew intensity dis-
tributions. To address this, the proposed algorithm instead uses a sim-
pler but more robust super-resolution technique, relying on the level set
evolution itself to perform implicit edge-based partial volume estima-
tion. Each voxel within the LVV mask and the previously described
speed function is subdivided into 8 subvoxels. An additional level-set
refinement is then performed for 5 iterations in this higher-resolution
space, and the final map is then subsampled back into the original
space. The proportion of subvoxels included within the level set seg-
mentation for each voxel then provides an approximate PVE estimate.
This approach is numerically similar to previous level-set based PVE
techniques (Rifai et al., 2000).

Reorient and 
robust FOV 

Inhomogeneity 
correction (N4) 
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Joint label fusion 
Voxelwise logistic 
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Fig. 3. Schematic overview of the NeuroSTREAM proces-
sing pipeline. LVV = lateral ventricular volume,
FOV = field of view.
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2.3.5. Direct longitudinal analysis via Jacobian integration
Because direct longitudinal approaches can often provide more ac-

curate and precise outcomes (Zivadinov et al., 2016c) by avoiding
compounded measurement errors, we also extended the above algo-
rithm to use a Jacobian integration technique (Nakamura et al., 2014)
to evaluate longitudinal T2-FLAIR changes. In this case, the full cross-
sectional algorithm is run on both baseline and follow-up images to
produce independent LVV maps. Then, the two images are warped to-
gether using nonlinear warping into a non-biased halfway space
(Avants et al., 2012). Subsequently, the two ventricular masks are also
brought into the halfway space and combined to produce a halfway
LVV map. At the same time, the warp field is differentiated to produce a
Jacobian determinant map. Finally, the Jacobian determinant field is
integrated within the joint LVV map to produce a final estimate of
percent volumetric change in LVV from baseline to follow-up. An
overview of this processing is shown in Fig. 4.

2.3.6. Implementation details
The proposed method was implemented in Python and made use of

the NiPype Neuroimaging Python framework (Gorgolewski et al.,
2011). Experiments were carried out on a 32-core system with 192GB of

RAM. Template alignment and longitudinal warping were performed
using the ANTs toolkit (Avants et al., 2008), and logistic speed function
prediction was performed with the scikit-learn machine learning
toolbox (Pedregosa et al., 2011).

2.4. Validation

To validate the proposed NeuroSTREAM algorithm, we employed a
number of complementary approaches in order to assess overall accu-
racy, precision, inter-scanner stability, and relevance to clinical out-
comes. All NeuroSTREAM analyses described below were conducted
fully automatically, with manual review of automatically generated
segmentation images (and warp images in the case of longitudinal
pairs). As the approach is intended to be fully automated, cases were
not manually corrected - they were either accepted or rejected outright.
Due to the exploratory nature of these validation analyses and the high
interdependence between the various observations, correction for
multiple comparisons between tests was not employed in this study.

2.4.1. Accuracy and agreement with manual gold standard (cross sectional)
To address accuracy, a manual gold standard dataset was created.

Unbiased pairwise 
deformation 

Jacobian 
determinant 
calculation 

Integration within 
joint LVV 

Baseline 
LVV map 

Baseline 
T2-FLAIR MRI 

Follow-up 
LVV map 

Follow-up 
T2-FLAIR MRI 

Unbiased pairwise 
deformation 

Joint LVV map Percent LVV change 

Fig. 4. Schematic overview of the longitudinal Jacobian-based ex-
tension to NeuroSTREAM. Shaded area indicates that pairwise de-
formation results are also used to bring a joint LVV map into a
halfway space. LVV = lateral ventricular volume.

Fig. 5. Sample NeuroSTREAM LVV segmentations demonstrating the range of scan types, intensity profiles, resolutions, ventricular anatomy, and atrophy levels capable of being
successfully segmented and quantified. Each sub-image shows an axial (upper left), coronal (upper right), and sagittal (lower-right) view, along with a 3D render of the extracted LVV
(lower-left). LVV = lateral ventricular volume.
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An additional 30 independent MRI exams were selected randomly from
the same pool as the dataset used for creation of templates and atlases,
stratified to include 10 scans each of 3 mm, 5 mm, and 7 mm slice
thickness T2-FLAIRs. Each exam also contained a high-resolution T1-
weighted image. Lateral ventricles were delineated manually in JIM 6.0
(Xinapse Systems, UK) on the T1-weighted images, beginning at the
slice best corresponding to the AC/PC line as determined on orthogonal
views. Volumes were computed at a subvoxel level and summed across
ROIs.

NeuroSTREAM was then run independently on the corresponding
T2-FLAIR images, and the resulting automated volumes were compared
to the manual gold standard volumes. Association with NeuroSTREAM
was assessed by pairwise correlation, intra-class correlation (ICC),
Bland-Altman (BA) plot, and casewise coefficient of variation (CoV).
The same analyses were carried out on 3 mm, 5 mm, and 7 mm subsets,
as well as acquisition-direction subsets, to determine the effects of these
parameters.

2.4.2. Precision via scan-rescan (cross sectional and longitudinal)
To assess precision, we used a previously collected dataset of scan

and re-scan sessions on the same 3.0 T GE Signa Excite HD 12.0 Twin
Speed 8-channel scanner. A cohort of 6 volunteers (2 HC, 4 MS) with
mean age was 28.7 ± 18.7 years, was scanned twice within one week,
and protocols included identical 3 mm T2-FLAIR acquisitions.

For this scan-rescan dataset, NeuroSTREAM was run on each scan
for each subject, and the Jacobian extension was run on each pair.
Cross-sectional association was assessed by pairwise correlation, ICC,
Bland-Altman plot, and casewise CoV. Longitudinal error was calcu-
lated as the median absolute Jacobian-derived percent change, with the
true change assumed to be 0%.

2.4.3. Inter-scanner stability (cross sectional and longitudinal)
To assess stability across scanners, a previously collected dataset

consisting of 125 MS patients and 76 healthy controls scanned at both

1.5T and 3T was used. Subjects were 72% female, with a mean age of
42.5 ± 11.1 years. All subjects were examined on both scanners
within 72 h, and the order in which subjects were scanned was ran-
domized. The scanners used were a 1.5T GE Signa Excite HD 12.0 8-
channel scanner and a 3T GE Signa Excite HD 12.0 Twin Speed 8-
channel scanner (General Electric Milwaukee, WI). 2D 3 mm T2-FLAIR
acquisitions were included in each scanning session. Sequences were
not identical between the two scanners, but rather reflected optimiza-
tions for the specific field strengths as would be seen in clinical practice.

As with the scan-rescan dataset, NeuroSTREAM was run on both
scans for each subject, and association was again assessed by pairwise
correlation, ICC, Bland-Altman plot, and casewise CoV. As above,
longitudinal error was calculated as the median absolute Jacobian-de-
rived percent change, with the true change assumed to be 0%.

2.4.4. Clinical relevance (cross sectional and longitudinal)
To assess clinical relevance, we used a 10-year serial validation

dataset (Zivadinov et al., 2016b). Serial yearly MRI data were obtained
from 176 early RRMS patients who were initially enrolled into the 2-
year, double-blind, placebo-controlled Avonex-Steroid-Azathioprine
(ASA) study (Havrdova et al., 2009). MRI scans with 1 mm thick 3D-T1s
and 3 mm thick 2D T2-FLAIRs were acquired on a 1.5 T scanner at
baseline and at yearly intervals, and confirmed disability progression
(CDP) status was assessed at the 10-year follow-up. Full details of the
design, demographic and clinical characteristics, and results of the
study were previously reported (Zivadinov et al., 2016b). 100 patients
developed CDP and 76 remained stable.

NeuroSTREAM was run on each scan for each subject. Additionally,
the longitudinal Jacobian integration component was used to evaluate
pairwise, within-subject changes. SIENAX and SIENA were previously
applied to this dataset, and processing included lesion in-painting,
manual skull stripping correction, and manual acceptance of results.
Prospectively, we also applied the VIENA longitudinal ventricular
change measurement tool (Vrenken et al., 2014) on these corrected

Fig. 6. Representative image of NeuroSTREAM algorithm perfor-
mance on a scan with substantial RF artifact. The high-contrast of
the ventricles, the multi-atlas approach, and the spatial regulariza-
tion of the level-set refinement allow the algorithm to be very robust
to artifacts like this that are common in clinical routine imaging.
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images. We compared NeuroSTREAM to conventional VV measures -
SIENAX ventricular CSF (VCSF) for cross-sectional and VIENA percent
ventricular CSF volume change (PVCSFVC) for longitudinal - by in-
vestigating the correlations between the various measures. We also
evaluated the direct relationship between NeuroSTREAM LVV and
whole-brain measures - SIENAX normalized brain volume (NBV) and
SIENA percent brain volume change (PBVC). To determine the clinical
relevance of NeuroSTREAM, we compared each measure with respect to
development of CDP at 10 years, as previously reported for SIENA/

SIENAX (Zivadinov et al., 2016b).

3. Results

3.1. Development dataset

The NeuroSTREAM algorithm successfully delineated the LVV on a
wide variety of cases (Fig. 5), and was visually assessed as failed in only
1 case (~1%) from the template/atlas creation dataset. The algorithm

Fig. 7. Correlation scatterplots (left column) and Bland-Altman plots (right column) demonstrating accuracy and precision for the NeuroSTREAM algorithm. These results demonstrate
accuracy in relation to manual gold standard measurements (upper row), scan-rescan precision (middle row), and inter-scanner (1.5 vs. 3 T) reliability (bottom row). Bland-Altman plot
ranges are set to the scale of the domain, centered on 0. ICC = intra-class correlation (absolute agreement), CoV = coefficient of variation. Jacobian represents the mean absolute
Jacobian change between scans, assessed with the longitudinal pipeline.
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performed well even in cases with extreme lesion load or corruption by
MRI artifacts (Fig. 6).

3.2. Validation

3.2.1. Accuracy and agreement with manual gold standard (cross sectional)
On the independent testing dataset, no cases failed visual quality

control. R2 correlation coefficient between high-resolution, manually-
delineated gold standard 3D-T1 volumes and automated volumes (from
low-resolution T2-FLAIR) was 0.99 (p < 0.001), ICC was 0.99, and
CoV was 3.82%, as shown in Fig. 6. The BA plot did not show any
evidence of bias as a function of LVV (Fig. 7). When evaluated as a
function of slice thickness, R2 remained 0.99 in all subsets, and ICC was
also consistently 0.99 (to 2 significant digits). However, CoV was 3.15%
for 3 mm scans, 4.09% for 5 mm scans, and 4.22% for 7 mm scans.
Seven scans were sagittally acquired, and the remaining scans were
axially acquired. When evaluated as a function of orientation, R2 and
ICC were again 0.99 for both axial and sagittal scans. CoV was 3.84%
for axial scans and 3.73% for sagittal scans.

3.2.2. Precision via scan-rescan (cross sectional and longitudinal)
The algorithm did not fail in any cases. R2 correlation coefficient

was 0.99, ICC was 0.99, and CoV was 0.84%. The BA plot did not show
any evidence of bias as a function of LVV (Fig. 7). Mean absolute Ja-
cobian-derived percent change between scans was 0.68%.

3.2.3. Inter-scanner stability (cross sectional and longitudinal)
Out of 402 total scans, 4 analyses failed (< 1%). R2 correlation

coefficient was 0.99, ICC was 0.99, and CoV was 2.69%. The BA plot
did not show any evidence of bias as a function of LVV (Fig. 7). Mean
absolute Jacobian-derived percent change from 1.5 to 3T was 2.08%.

3.2.4. Clinical relevance (cross sectional and longitudinal)
NeuroSTREAM was visually assessed as failed in 27 out of 1931

individual cross-sectional exams (~1.4%). Longitudinal Jacobian

analysis was assessed as failed in 46 out of 1767 longitudinal scan pairs
(~2.6%).

During the 10 year time period, PBVC changed by −6.5%, corre-
sponding to an annualized PBVC of −0.67%. In contrast, ventricular
volume change as measured by VIENA on high-resolution T1 increased
by 41.97%, corresponding to an annualized change rate of 3.57% -
a> 5-fold greater rate than PBVC. NeuroSTREAM LVV measures on
low-resolution T2-FLAIR corresponded with VIENA, with PLVVC in-
creasing by 38.64% over the same period (resulting in an annualized
PLVVC of 3.32%).

Correlations between NeuroSTREAM and high-resolution T1-de-
rived SIENAX VCSF and VIENA are reported in Table 2. Cross-sectional
correlations were at or above r = 0.9, and 10-year change showed a
correlation of 0.88. All p-values were below 0.01. Agreement was very
high in all cases. NeuroSTREAM LVV was also significantly correlated
with whole brain volumes and volume changes from SIENAX and
SIENA, with longitudinal changes showing a correlation of r = −0.581
(p < 0.001). For comparison, the analogous correlation between high-
resolution 3D T1 derived VIENA change with PBVC was r = −0.635
(p < 0.0001).

Table 3 reproduces the relationship between evolution of brain
atrophy and CDP group for whole brain measures previously published
(Zivadinov et al., 2016b). Previously, high-resolution-T1-derived PBVC
showed significant group separation of confirmed disability progression
(48 weeks) vs. stable MS within the first year of follow-up (54.0% dif-
ference, p = 0.053), and this difference remained significant at all time
points of the study (effect sizes 0.27–0.70). VIENA (Table 4) showed
similar results, with a significant difference after the first year (46.58%
difference, p < 0.03) and effect sizes ranging from 0.31 to 0.62. This
pattern remained the case with T2-FLAIR-derived NeuroSTREAM LVV,
which showed separation after one year (60.0% difference,
p < 0.009). The differences in NeuroSTREAM LVV also remained
significant at all subsequent time points (effect sizes 0.39–0.71,
Table 5), with the exception of a trend (p = 0.052) at 24 months.
Graphical plots of SIENA PBVC, VIENA PVCSFVC, and NeuroSTREAM
PLVVC are shown in Fig. 8.

4. Discussion

In this study, we developed and validated a new algorithm for
measuring brain atrophy via LVV. LVV reflects both GM and whole
brain atrophy (Zivadinov et al., 2016b), has clear borders even on low-
quality scans, and is minimally susceptible to common MRI artifacts.
Throughout development, we paid specific attention to the issues that
arise when measuring brain atrophy on clinical-quality T2-FLAIR
images, an MRI sequence performed as part of nearly all diagnostic and
monitoring examinations for MS.

Our results show that NeuroSTREAM metrics are comparable to
manual gold-standard, and to sophisticated SIENAX and VIENA LVV

Table 2
Correlations between NeuroSTREAM LVV and previously established brain atrophy
measures on the clinical 10-year serial dataset (Zivadinov et al., 2016a, 2016b, 2016c).
NeuroSTREAM was assessed on conventional T2-FLAIR, and all other target measures
were assessed on high-resolution 3D T1 images. Baseline and follow-up values are based
on cross-sectional NeuroSTREAM, and change values are based on the Jacobian de-
terminant extension. LVV = lateral ventricular volume, vCSF = ventricular CSF,
NBV = normalized brain volume.

SIENAX vCSF VIENA SIENAX NBV SIENA

Baseline 0.93⁎⁎ – −0.498⁎⁎ –
Follow-up 0.94⁎⁎ – −0.521⁎⁎ –
Change – 0.88⁎⁎ −0.581⁎⁎

⁎⁎ p < 0.01.

Table 3
Reproduced with permission from (Zivadinov et al., 2016b). SIENA percent brain volume change from baseline to follow-up at each time point, derived form high-resolution 3D T1
images. All p-values are age and sex corrected. Between group p-values are derived from ANCOVA analysis. PBVC = percent brain volume change, CDP = confirmed disability pro-
gression over 10 years. CDP group shows atrophy differentiation after only 1 year.

Months from baseline to Stable group PBVC n CDP group PBVC n % Difference Cohen's d p-value

6 −0.2 (0.8) 74 −0.3 (1) 94 47.8 0.11 0.326
12 −0.5 (0.9) 76 −0.8 (1.3) 95 54 0.27 0.053
24 −1 (1.1) 68 −1.5 (1.6) 85 50.5 0.36 0.01
36 −1.7 (1.7) 67 −2.5 (2.4) 89 46.8 0.38 0.003
48 −2.2 (1.8) 68 −3.5 (3.1) 87 55.8 0.51 < 0.001
60 −2.6 (2.1) 67 −4.5 (3.8) 91 69.6 0.62 < 0.001
72 −3.1 (2.3) 66 −5 (3.2) 87 58.2 0.68 < 0.001
84 −3.9 (2.6) 68 −6 (3.6) 85 53.3 0.67 < 0.001
96 −4.5 (2.8) 66 −6.3 (3.4) 87 40.3 0.58 < 0.001
108 −4.6 (2.9) 68 −6.9 (3.6) 84 49.8 0.7 < 0.001
120 −5.2 (3) 68 −7.5 (3.8) 85 43.8 0.55 < 0.001
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measures. This is despite the fact that NeuroSTREAM is applied to low-
resolution images with 300% coarser voxels (3 mm vs. 1 mm).
Furthermore, the resulting LVV measures have a similar predictive
profile to SIENAX- and VIENA-derived LVV. The algorithm was also
extremely robust, failing in only 1 of the development cases (which
included very extreme cases), and failing in< 2% of the cross-sectional
cases and< 3% of the longitudinal case pairs in the large clinical da-
taset (despite clear artifacts on many scans and many cases with ex-
tensive lesion load).

The inter-scanner reproducibility between 1.5T and 3.0T, at 2.69%
cross-sectionally and 2.08% via direct Jacobian, also compares

favorably to whole-brain measures performed on high-resolution
images. In a recent study, Chu et al. evaluated paired 1.5T and 3.0T
scans repeated on the same subjects within 1 month (Chu et al., 2016).
They performed SIENAX on each scan, and compared the resulting
whole brain volume measurements. Their data showed a 3.37% average
absolute difference between scans. The improved results from LVV
likely reflect both the distortion protection afforded by closeness to the
isocenter and the simpler geometry of the ventricles compared to cor-
tical gyri. When comparing error rates to whole brain measures, it is
also important to consider that ventricular volume expands at a higher
relative rate of up to 3–5 times that of whole brain volume (Popescu

Table 4
VIENA percent ventricular CSF change from baseline to follow-up at each time-point, derived form high-resolution 3D T1 images. All p-values are age and sex corrected. Between group p-
values are derived from ANCOVA analysis. CDP = confirmed disability progression, PVCSFVC = percent ventricular CSF volume change.

Months from Baseline to Stable group
PVCSFVC

n CDP group
PVCSFVC

N % Difference Cohen's d p-value

6 4.6 (6.4) 74 5.9 (6.1) 94 29.3 0.21 0.123
12 6.4 (8.5) 76 9.4 (10.9) 95 46.6 0.31 0.032
24 9.5 (9.4) 68 14.4 (15.5) 85 50.9 0.38 0.018
36 13.4 (13.3) 67 22.6 (23.5) 89 68.5 0.41 0.005
48 17.1 (15.6) 68 26.7 (25.1) 87 55.8 0.46 0.005
60 19.0 (18.8) 67 33.5 (30.3) 90 59.4 0.58 0.001
72 21.9 (20.7) 66 35.1 (31.1) 88 60.2 0.5 0.002
84 24.8 (23.5) 68 43.5 (36.0) 85 75.4 0.62 < 0.001
96 29.0 (25.8) 67 44.3 (33.1) 87 53.0 0.52 0.003
108 28.5 (26.8) 68 48.3 (36.2) 84 69.3 0.62 < 0.001
120 32.4 (28.1) 67 49.7 (39.5) 85 53.4 0.5 0.003

Table 5
Percent NeuroSTREAM change from baseline to follow-up at each time-point, derived from T2-FLAIR images. All p-values are age and sex corrected. Between group p-values are derived
from ANCOVA analysis. Note that results are comparable to both SIENA PBVC and CDP = confirmed disability progression, PLVVC = percent lateral ventricular volume change.

Months from baseline to Stable group
PLVVC

n CDP group
PLVVC

n % Difference Cohen's d p-value

6 8.8 (8.5) 74 10.8 (10.2) 94 22.8 0.20 0.205
12 9.9 (10.2) 76 15.8 (15.6) 95 60.0 0.45 0.009
24 13.4 (12.4) 68 19.5 (18.6) 85 42.5 0.36 0.052
36 14.8 (14.5) 67 27.2 (23.9) 89 84.3 0.63 0.001
48 18.2 (16.9) 68 30.1 (25.7) 87 65.4 0.55 0.003
60 17.7 (18.8) 67 32.3 (22.2) 90 82.3 0.71 < 0.001
72 18.8 (17.6) 66 32.8 (27.2) 88 74.2 0.61 0.001
84 19.3 (20.9) 68 38.1 (31.2) 85 97.6 0.71 < 0.001
96 24.3 (23.5) 67 40.6 (30.4) 87 67.1 0.60 0.002
108 24.3 (22.4) 68 41.8 (30.1) 84 72.2 0.66 0.001
120 31.2 (23.9) 67 45.7 (37.4) 85 46.6 0.46 0.007

PBVC: SIENA PVCSFVC: VIENA PLVVC: NeuroSTREAM

Mean CDP vs. non-CDP difference (year 1 and later) 51.8% 56.5% 65.3%

Effect size range (year 1 and later) 0.27–0.70 0.31 – 0.62 0.39–0.71

Patients with CDP 

Patients without CDP Patients with CDP 

Patients without CDP 

Patients with CDP 

Patients without CDP 

Fig. 8. Evolution of brain atrophy measures in patients with and without confirmed disability progression (CDP) over a 10-year period. Left: whole brain SIENA percent brain volume
change (PBVC). Middle: VIENA-derived percent ventricular CSF volume change (PVCSFVC). Right: NeuroSTREAM-derived percent lateral ventricular volume change (PLVVC). SIENA and
VIENA are performed on high-resolution 3D-T1 images. Despite being applied to low-resolution T2-FLAIR images, NeuroSTREAM shows comparable separation between CDP and non-
CDP groups.
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et al., 2013; Zivadinov et al., 2016b).
Although NeuroSTREAM metrics are in line with other methods,

their precision, accuracy, and predictive value generally do not exceed
these prior methods. This is as expected, since the goal of
NeuroSTREAM is not to improve upon well-validated methods like
VIENA in a research setting, but rather to expand the potential reach of
automated atrophy quantification to a broader range of clinical exams.
The findings of this study indicate that clinical-quality T2-FLAIR can
indeed be used for meaningful and reliable brain atrophy measure-
ments.

In addition to prospective clinical-quality scan analysis, there is
potentially an important place for a method like that proposed here in
the analysis of retrospective datasets. Many previous studies in MS have
been performed with lesions as an MRI endpoint, and these studies have
not always included high resolution T1-weighted images or used con-
sistent full-head head coverage. Similarly, many latent clinical scans
have not been used at all in a research setting. The ability to perform
LVV measurement on all these datasets and to pool them together may
eventually allow for large-scale data mining and informatics techniques
to be brought to bear in providing more individually meaningful pre-
dictions in a clinical setting. For example, k nearest neighbor and kernel
density techniques are simple and powerful non-parametric techniques
that can match individuals for many variables simultaneously.
However, these powerful techniques suffer from the “curse of di-
mensionality” and usually require far more data points than traditional
MRI studies can provide.

While designing the NeuroSTREAM algorithm, many trade-offs were
made between performance and robustness. For example, intensity
Winsorization to minimize the influence of lesions is a relatively sim-
plistic approach, whereas many automated lesion detection/classifica-
tion algorithms have been devised and even used routinely in practice
(Lladó et al., 2011). However, these approaches generally require
multiple input images (e.g. T2-FLAIR and T1) and complex statistical
models that must be tuned to specific scanners and imaging protocols.
Therefore, incorporating these approaches would have limited the
generalizability of the LVV algorithm and potentially increased the
number of failed cases. Similarly, logistic regression is a basic technique
for classification, potentially improved upon by more modern machine
learning methods like SVD, decision trees, and others. However, logistic
regression is a very robust technique, and the proposed method of ap-
plying it on a case-by-case basis allows for a fast and widely applicable
means of assigning probabilities to individual image voxels.

An advantage of the proposed method is that it is fully automated.
In theory, other methods for atrophy measurement like SIENAX and
SPM are also fully automated. However, on scans with imperfect
quality, manual corrections to de-skulling procedures are often required
to avoid failed cases or erroneous data. By limiting itself to a more
easily segmentable region, the proposed NeuroSTREAM technique can
be more fully automated.

5. Limitations and future work

We have shown both here and previously that LVV is significantly
correlated with both whole brain atrophy and clinical outcomes.
However, it remains a proxy, with all the attendant caveats of any
proxy measure. In particular, mild enlargement of the ventricles with
unknown etiology is a relatively common incidental finding that may
not reflect overall brain atrophy. This may therefore limit the applic-
ability of single, cross-sectional LVV measurements to individual sub-
jects in general, even outside the scope of the currently proposed al-
gorithm.

Another potential issue is that of normalization. Normalizing brain
volume measures to intracranial volume has improved inter-subject
data comparison with other techniques, by correcting for non-patho-
logical natural variations in brain size (Sanfilipo et al., 2004). For the
current algorithm, we found more variability and introduction of

analysis failures in estimating intracranial volume on low-quality T2-
FLAIR scans than was gained by including it (once sex is taken into
account as a factor). Therefore, we did not include it in the present
work. However, future approaches may be able to provide a more ac-
curate estimate of intracranial volume without sacrificing accuracy or
robustness.

The method at present is also only applicable to T2-FLAIR scans. We
chose this because it is the “lowest common denominator” of clinical
MS MRI imaging protocols. Although this makes it generally and widely
applicable, many individual researchers may have other scans avail-
able. With high-resolution research quality images, alternate ap-
proaches like SIENA/X, VIENA, and SPM are likely the best option.
However, there may be a middle ground where low-resolution T1-
weighted images, T2 images, or PD images may be present, and might
provide valuable additional information for LVV segmentation. We are
therefore working to extend the method to these additional image
weightings. Indeed, there is also a potential value for even high-re-
solution T1 data, in providing a more accurate control for
NeuroSTREAM measures taken in practice.

6. Conclusions

NeuroSTREAM is able to measure LVV accurately, precisely, and
reliably on clinical-quality T2-FLAIR images, and changes in
NeuroSTREAM-derived LVV relate to clinical outcomes. This provides
an important complementary approach for performing meaningful
atrophy analysis of real-world imaging datasets and clinical routine
scans where no high-resolution T1-weighted images are available.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.06.022.
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