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Abstract

The structure, evolution, and function of heat shock proteins 90 (Hsp90s) have been investi-

gated in great detail in fungi and animals. However, studies on the Hsp90 genes in plants

are generally limited. Brachypodium distachyon (L.) P. Beauv., as a model plant for cereal

crops, has become a potential biofuel grass. During its long evolution, the Hsp90 gene fam-

ily in Brachypodium has developed some strategies to cope with adverse environments.

How the Hsp90 gene family in Brachypodium evolved in different plant lineages and what its

role is in plant responses to drought and salt stresses remains to be elucidated. We used a

set of different bioinformatics tools to identify 94 Hsp90 genes from 10 species representing

four plant lineages and classified into three subgroups. Eight BdHsp90 genes were detected

from B. distachyon. The number of exon-intron structures differed in each subgroup, and

the motif analysis revealed that these genes were relatively conservative in each group. The

fragments duplication and tandem duplication, which are the prime powers for functional

diversity, generally occurred during the duplication of the whole plant genome. Transcrip-

tional analysis of the BdHsp90 genes under salt and drought stress conditions indicated that

the expression of these genes was delayed or increased at different stress time points; The

expression was more affected in that of Bradi3g39630, Bradi4g06370, and Bradi1g30130.

Our findings suggest the involvement of BdHsp90s in plant abiotic stress response, and fur-

ther consolidate our views on the stress response mechanism of Hsp90 in general.

Introduction

Plants are often exposed to various abiotic stresses, including drought, salinity, light intensity,

heat shock, chilling, and chemical pollutants. These stresses act simultaneously on plants, caus-

ing cell injury and inducing many responses, such as osmotic and oxidative stress responses

[1]. Various land plants have developed specific responses or tolerance mechanisms to cope

with adverse environments. Among them, many stress proteins, such as heat shock protein

(Hsp) chaperones, are induced to guard cells against these harmful stimuli [2].
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The Hsps are classified into five categories based on their molecular weight, Hsp100 (e.g.,

100 kDa), Hsp90, Hsp70, Hsp60, and small Hsp (sHsp). The 90-kDa heat shock protein

(Hsp90) is an ATP-dependent molecular chaperone, with a highly conserved sequence from

bacteria to higher eukaryotes and homologs in different organisms [3]. The core structure of

Hsp90 contains the N-terminal ATP binding domain, the middle domain, and the C-terminal

dimerization domain [3]. There is a notable feature of Hsp90s, which is a long, highly charged

linker domain between the N-terminal and the middle domain in eukaryotic organisms [4].

Hsp90s are involved in regulating and maintaining the conformation of a variety of pro-

teins, as well as in protecting normal cells from stress stimuli [5]. In fungi and in animals,

Hsp90s play extensive roles in stress signal transduction, such as the folding of steroid hor-

mone receptors, protein kinases, and transcription factors, as well as the activation of a sub-

strate to initiate stress signal transduction [6–8]. Recent studies on Hsp90s in plants have

mostly focused on evolutionary analysis and physiological functions [9–11]. A number of

Hsp90 genes have been identified in many plants, and strongly up-regulated by temperature,

drought, salinity, and heavy metal stresses [12–14]. A recent proteomics and phosphoproteo-

mics analysis in plants revealed that a number of Hsp90 proteins are both present under

drought and salinity stress and are probably involved in signal transduction during the

response to stress [15–17].

Although the Hsp90 genes from plants have been known for more than a decade, our

understandings of the stress response mechanisms of plant Hsp90s, their roles as molecular

chaperones, and their molecular interactions with other clients and co-chaperones is limited

[18]. The Hsp90 system in plants differs from that in animals in that it has an additional sub-

cellular compartment, the plastid; Rapid molecular responses are other character subjected to

sudden environmental changes [19]. It is necessary to better understand the proteins that are

involved in signal transduction and other stress processes and how they activated, processed,

and trafficked within plant cells [20]. The study, therefore, focused on the Hsp90 protein fam-

ily in Brachypodium distachyon (L.) P.Beauv. to provide a comprehensive sequence-based

understanding of the different family members in plants and to highlight the stress responses

under drought and salt conditions. The similarities and differences between Hsp90 proteins of

different plant origin were explored. The findings of this study provide a basis for functional

analysis of Hsp90 in plants.

Materials and methods

Sequence retrieval and identification

Hsp90 gene families were identified from 10 species representing four plant lineage from uni-

cellular green algae to multicellular plants. The first search was performed using “Hsp90” as a

keyword in the Phytozome v12.1 (https://phytozome.jgi.doe.gov/pz/portal.html) database.

Seven Arabidopsis thaliana Hsp90 genes were first searched and then used as a query in the

BLAST against phytozome v12.1. E value of candidate sequences was below 1E-10, and redun-

dant parts were excluded manually. Sequences were collected from the following four major

plant lineages: the unicellular green algae Chlamydomonas reinhardtii; the moss Physcomitrella
patens; the monocotyledonous angiosperms B. distachyon, Oryza sativa (rice), Triticum aesti-
vum (wheat) and Zea mays (maize); and the dicotyledonous angiosperms A. thaliana (thale

cress), Glycine max (soybean), Medicago truncatula (legume), and Gossypium raimondii (cot-

ton). Candidate sequences were further confirmed by Pfam (http://pfam.xfam.org/) [20] and

checked by SMART (http://smart.embl-heidelberg.de/) [21,22]. Finally, we obtained all protein

and corresponding coding sequences (CDS) and genomic sequences of the Hsp90 genes.
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Gene chromosomal location and phylogenetic analysis

Locations of 94 Hsp90 genes were mapped by the MapInspect program and further modified

manually. Phylogenetic trees were executed by Bayesian inference using the Markov Chain

Monte Carlo (MCMC) method [23]. Initially, multiple sequence alignments were performed

for full proteins based on the MUSCLE program (http://www.ebi.ac.uk/Tools/msa/muscle/)

[24,25]. Bayesian inference phylogenyetic construction was performed by MrBayes v 3.2 using

General Time Reversible (GTR) model with Γ distributed rates (gamma-distributed rate varia-

tion) [26, 27]. The set conditions of bayesian analysis are mcmc ngen = 8×105 and sample-

freq = 100. As the average standard deviation was below 0.01, the program was terminated.

After discarding the burn-in samples, the remaining data were used to generate a Bayesian

tree, which was shown by using FigTree v1.4.2.

Exon-intron structure, conserved motif, chemical character analysis

The exon-intron structure of Hsp90 genes was obtained by the online Gene Structure Display

Server v2.0 (GSDS: http://gsds.cbi.pku.edu.cn) with CDS and genomic sequence [28]. The

MEME program (Multiple Em for Motif Elicitation v4.10.2, http://meme-suite.org/tools/

meme)[29,30]was used to identify conserved motifs in the candidate Hsp90 protein sequences.

The parameters were as follows: number of repetitions = zero or one, maximum number of

motifs = 10, and optimum motif width constrained = 6–50 residues. The Hsp90 pI/Mw was

determined by the Compute pI/Mw tool (http://web.Expasy.org/compute_pi/) [31].

Dating the duplication events

Tandem duplications were involved in multiple members of this family within the same or

neighboring intergenic regions, and clustered these genes together with a maximum of 10

extra genes [32]. Segmental duplications of each Hsp90 gene were queried in the Plant Genome

Duplication Database (PGDD, http://chibba,agtec.uga.edu/duplication/). To calculate the

occurrence of segmentally duplicated genes, the Ks value was searched in PGDD under the fol-

lowing conditions: Ks > 0, Ks� 1, and anchor number was set to�3 between the same spe-

cies. Based on synonymous substitutions per year (λ), the number of segmentally duplicated

genes was 6.5 × 10−9 for B. distachyon [33], 6.5 × 10−9 for rice [34], 6.1 × 10−9 for soybean [33],

1.5 × 10−8 for A. thaliana [35], and 1.5 × 10−8 for cotton [36]. The approximate age (T) of

duplication events of Hsp90 gene pairs was then calculated using the equation T = Ks/2λ [37].

Plant materials and stress treatments

The uniform seeds from the diploid inbred line of Bd21 were surface sterilized using 75% alco-

hol and 15% sodium hypochlorite, and then rinsed three times in sterile water. Subsequncely,

the seeds were submerged in water (26˚C) in complete darkness for 3 days. On the fourth day,

seedlings were transferred to plastic pots containing full-strength Hoagland solution. The con-

ditions were set at 16/8h (light/dark) photocycle, 28/26˚C (day/night) and 70% relative humid-

ity. Seedlings with three leaves were set in the following conditions: salinity stress (200 mM

NaCl) and moderate drought stress [20% (w/v)]polyethylene glycol 6000 (PEG 6000). Leaf and

root samples of control seedlings were harvested at 0h. The corresponding samples of treated

seedlings were harvested at 12, 24, and 48h. Each sample was collected from 20 plants, with

three replicates. All samples were immediately stored at -80˚C until used.
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Total mRNA extraction and qRT-PCR analysis

Total RNA was isolated from frozen samples using TRIzol Reagent (Invitrogen) according to

the manufacturer’s instructions. Genomic DNA removal and cDNA synthesis were operated

by using a PrimeScript1RT reagent Kit with gDNA Eraser (TaKaRa). Gene-specific primers

of each Hsp90 gene in B. distachyon were designed using the on-line tool Primer3Plus (www.

bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) [38]. The primers were examined by

blasting primer sequences in the NCBI database (http://www.ncbi.nlm.nih.gov/tools/primer-

blast /index.cgi?LINK_LOC=BlastHome), and all primers were specifically in accordance with

the respective sequence of its targeted gene. The primer sequences for the qRT-PCR assays are

listed in S1 Table. Transcription levels of each Hsp90 gene in B. distachyon were quantified by

a CFX96 Real-Time PCR Detection System (Bio-Rad) using the intercalating dye SYBR-green

and following the 2(-Delta Delta C(T)) method [39]. The B. distachyon constitutively expressed

Ubiquitin gene was used as a reference for normalization [40]. qRT-PCR was performed in a

20 μL volume reaction system containing 10μL 2× SYBR1Premix ExTaq™ (TaKaRa), 2μL

10-fold diluted cDNA, 0.15μL of each gene-specific primer and 7.7μL ddH2O. The PCR condi-

tions were as follows: 95˚C for 3 min, 40 cycles at 95˚C for 20s, 61˚C for 15s and 72˚C for 10s.

Triplicates for each PCR and three biological replicates were performed for each gene. The

results for the qRT-PCR assays are listed in S1 Table. The qRT-PCR efficiency was determined

by five serial ten-fold dilutions of cDNA. Statistical analyses were conducted using indepen-

dent Student’s t tests with SPSS statistics software (version 17.0). The hierarchical clustering

results were performed using Cluster 3.0 and TreeView softwares.

Results

Identification of Hsp90 genes in B. distachyon and in the other nine

representative plant species

To clarify the origin and evolution of the Hsp90 genes in plants, we identified 10 species repre-

senting four major plant lineages. A total of 94 Hsp90 genes were obtained (S2 Table). Each

gene contained conserved HATPase_c and HSP90 domain (S3 Table), and PF02518 and

PF00183 families by Pfam (S3 Table). Among all Hsp90 genes, three were identified in the uni-

cellular green algae, 11 in the moss, 42 in the monocotyledonous angiosperms and 38 in the

dicotyledonous angiosperms (S1 Fig). Furthermore, the Hsp90 genes identified in the 10 plant

species encode proteins ranging from 278 to 1054 amino acids (aa) in length, but the majority

are approximately 695 aa. The predicted isoelectric points range between 4.79 and 6.28, and

Molecular weight range between 40.6 and 123.6 kDa. The detailed information of these identi-

fied Hsp90 genes were listed in S2 Table.

Phylogenetic relationships of the Hsp90 gene family

The Bayesian inference, a standard approach for the estimation of branch support, was exe-

cuted by MrBayes as posterior probabilities within the time run [41]. To deeply explore the

evolutionary relationships of Hsp90 genes within various plant species, the full amino acid

sequences of 94 identified proteins were to execute multiple sequence alignment using the

MUSCLE program. An unrooted phylogenetic tree was constructed using the Markov Chain

Monte Carlo (MCMC) method based on Bayesian inference (Fig 1). Finally, the resulting tree

topology classified these plant genes into three subgroups. Interestingly, the genes in C. rein-
hardtii were lined the first in each group. Moreover, the distribution of Hsp90 genes from dif-

ferent individual species had slight differences and unique patterns in each group (Fig 1). Of

the 94 plant Hsp90 genes, 53 is in Group I, 14 in Group II and 27 in Group III. From an
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evolutionary perspective, the resulting phylogram (S2 Fig) is in agreement with the timeline of

plant evolution: unicellular green alga occurred first and was followed by the moss, monocoty-

ledonous angiosperms, and dicotyledonous angiosperms. Within A. thaliana, four genes were

in Group I, one in Group II, and three in Group III. Almost the same distribution pattern was

observed for the Hsp90 gene family members from A. thaliana (Fig 1). Overall, the distribution

characters of the Hsp90 gene family were similar among the 10 plant species.

The analysis of structural characters of the Hsp90 gene family

To investigate the possible molecular mechanisms underlying the expansion of the Hsp90 gene

family, the exon-intron structure in all chosen plant lineages was investigated using the online

GSDS. The relative length of introns and the corresponding exon sequences within individual

Hsp90 gene paralogs are listed on the neighbor-joining phylogenetic tree (Fig 2). Our results

revealed that in the same group, the gene members had similar exon-intron structures. Although

the number of introns in individual Hsp90 genes ranged from 1 to 21, there were no significant

differences in the number of introns between individual genes within the same group, except for

Fig 1. Phylogenetic relationships of Hsp90 gene family. A total of 94 protein sequences of Hsp90 gene

family identified from ten species vary from unicellular green algae to multicellular plants were aligned with

MUSCLE program, and the phylogenetic tree was constructed based on Bayesian inference using Markov

Chain Monte Carlo (MCMC) methods. The red arcs indicate different subgroups of Hsp90 genes. Hsp90

genes of B. distachyon are indicated by filled purple dots.

https://doi.org/10.1371/journal.pone.0189187.g001

Evolution and expression profiling in Brachypodium distachyon (L.) Hsp90 gene family under abiotic stresses

PLOS ONE | https://doi.org/10.1371/journal.pone.0189187 December 7, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0189187.g001
https://doi.org/10.1371/journal.pone.0189187


those in C. reinhardtii (Fig 2). Group I, the largest family comprising 56% of the genes in the sub-

family, had 1–3 introns. Group II, the smallest family, which contained 16% of the genes in the

subfamily, had 14–16 introns. The number of introns in Group III, which included 28% of the

genes, ranged between 17 and 21. In contrast, the number of introns in genes of the unicellular

green alga (Cr) did not follow these patterns, and were 7, 11, and 8 introns in Group I, Group II,

and Group III, respectively (Fig 2).

To explore the possible function for the structural evolution of the Hsp90 gene family, the

conserved protein motifs were identified in these genes using MEME. Ten conserved motifs

were detected in the 94 Hsp90 genes (Fig 3).The structure of individual Hsp90 gene paralogs is

shown in Fig 3. The number of motifs contained in the individual Hsp90 gene was primarily

7–10. Similarly with the patterns of introns observed in each gene, the number of conserved

Fig 2. Introns and the corresponding exon sequences within individual Hsp90 gene paralog listed in

Neighbor-joining phylogenetic tree. Hsp90 genes of B. distachyon are indicated by filled purple dots.

Hsp90 genes of A. thaliana are indicated by filled purple dots. Colorbar indicates the number of introns

contained in Hsp90 genes.

https://doi.org/10.1371/journal.pone.0189187.g002
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motifs was relatively consistent within individual Hsp90 gene paralogs. Up to 50% of the Hsp90
genes contained 10 motifs, whereas the remaining genes contained 8 motifs (25% of the genes)

and 9 motifs (25% of the genes).

Chromosomal distribution and gene duplication events of the Hsp90

gene family

The locations of Hsp90 genes in B. distachyon, A. thaliana, and Oryza sativa were determined

using MapInspect, and the results are shown in Fig 4. The eight Hsp90 genes from B. distach-
yon were mapped on four chromosomes (chromosome 01, 03, 04, and 05), four of eight genes

were mapped on chromosome 03. Similarly, the Hsp90 genes of A. thaliana and O. sativa were

not distributed in the whole genome (Fig 4). However, the gene numbers on each chromo-

some were directly proportional to the length of the corresponding chromosome, suggesting

that the Hsp90 genes in multiple plant species have no obvious chromosomal preferences. Fur-

thermore, the genes were clustered in certain chromosomal regions or dispersed individually

in other locations, thus corroborating the mapping results reported in other plants [42, 43].

There are the three dominant evolutionary events in gene duplication, including segmental

duplication, tandem duplication, and transposition (retroposition and replicative transposi-

tion) [44], among which segmental duplication and tandem duplication commonly occur in

plants based on polyploidy and unequal crossing-over, respectively[40]. To gain some insights

into the expansion pattern of the Hsp90 genes, we identified tandem duplicates and segmental

duplication clusters based on the gene locus and searched the PGDD [45, 46] to locate

Fig 3. The schematic diagram of Hsp90 protein motifs of all Hsp90 genes and each species from

MEME.

https://doi.org/10.1371/journal.pone.0189187.g003
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duplicated pairs. The results showed that 13 out of the 94 genes (13.8%) in this family were tan-

dem repeats, indicating that tandem duplications have contributed to the expansion of the

Hsp90 gene family. A total of 22 genes (23.4%) showed segmental repeats (S4 Table), suggest-

ing that segmental duplication events played an important role in the evolution of the Hsp90
superfamily in those species. The details were as follows: one pair of genes were identified as

segmental duplications (Bd3g38897 and Bd4g32941) in B. distachyon, two pairs of segmentally

duplicated genes were identified in rice (Os08g38086 and Os09g29840,Os08g39140 and

Os09g30412), and nine pairs of segmental duplications were found in soybean. The precise

information of gene duplication events in these species are listed in Table 1.

Subcellular localization and evolution relationships of the Hsp90 gene

family

Subcellular localization is a key characteristic of protein functional research. It can take part in the

cell activity and function efficiently in correct subcellular location [47]. In our study, based on

three bioinformatics tools, including TargetP1.1 [48], WoLF PSORT and Predotar v. 1.03[49],

subcellular localization was conducted in 94 Hsp90 proteins (Fig 5 and S5 Table). Interestingly,

based on the above analysis, the results showed that these Hsp90s in Group I are largely distrib-

uted in the nuleus (20%) and cytoplasm (80%). Moreover, all of their ends contained the con-

served MEEVD sequence. The Hsp90s in Group II were mostly districted in the ER (78%), and all

of their ends contained KDEL sequence, which is a specific retention sequence in the endoplasmic

reticulum [49]. The Hsp90s in GroupIII were mostly districted to the chloroplasts (40%) and

mitochondria (45%), and all of their ends contained extra sequences differed from Group I and

Group II. The results were in accordance with previous results [19].

Expression profiles of Hsp90 genes in root and leaf tissues under

osmotic stress

We tested the response mechanism in two different stress conditions by firstly constructing

eight B. distachyon genes primers using the on-line tool Primer3Plus [37]. Unfortunately,

Fig 4. Chromosome distribution of Hsp90 genes in B. distachyon, A. thaliana and O. sativa. (A). The

chromosome distribution of Hsp90 genes in B. distachyon. (B). The chromosome distribution of Hsp90 genes

in A. thaliana. (C) The chromosome distribution of Hsp90 genes in Oryza sativa. The chromosome numbers

are indicated at the top of each bar and size of a chromosome is indicated by its relative length.

https://doi.org/10.1371/journal.pone.0189187.g004
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seven of eight genes were constructed of their primers and standard curve (S1 Table, S3 Fig).

The expression profiles of the seven Hsp90 genes in the root and leaf tissues of B. distachyon
were analyzed using real time PCR (Fig 6, Fig 7). Under normal conditions, the expression

level of Hsp90 genes in the root is no higher than that in the leaf, except for Bradi1g30130
(3.5-fold) and Bradi3g3889700 (3-fold) (Fig 6). In addition, it is worth noting that the expres-

sion level of Bradi3g3889700 in the root is lower than the expression level of the other six

genes, while the expression level of Bradi1g30130 was higher than that of the other six genes

(Fig 6). These results indicate that the transcriptional profiles of the Hsp90 genes in the B. dis-
tachyon have specific tissue expression.

Drought and salt stresses were two common types of abiotic stresses. The common

response that they induced was that of osmotic stress, the same as heat stress. In our study, the

expression pattern of four Hsp90 genes in the leaf tissue showed first down-regulation and

then up-regulation under salt stresses, when compared with the control condition, while Bra-
di1g39590,Bradi5g02307 and Bradi3g39620generally showed down-regulation in most stress

time points (Fig 6). Moreover, under drought stress, the expression pattern of three Hsp90
genes, including Bradi5g02307, Bradi3g39620, and Bradi3g39590 totally showed significant

down-regulation, while the other four genes showed significant up-regulation in comparison

to the control condition, especially in 24h or 48h points (Fig 6).

In root tissue, compared with control condition, Bradi3g3889700 showed almost no expres-

sion changes, and Bradi1g30130 showed significant up-regulation under salt stress, while the

other five Hsp90 genes showed a down-regulation pattern (Fig 6). Furthermore, under drought

stress, Bradi3g39620, Bradi3g39630 and Bradi3g3889700 showed no expression changes, com-

pared with the control. The other four genes showed obvious up-regulation pattern, especially

in Bradi5g02307, Bradi1g30130 and Bradi4g06370, which might be involved in stress responses.

From the clustering analysis, and in contrast to the express pattern of other genes, Bra-
di1g30130 showed significant up-regulation pattern under two stresses, especially in the 48h

stress point (Fig 7), suggesting that it might participate in stress tolerance. Bradi3g3889700, as

Table 1. Segmental duplication events of some plant species.

Gene pairs Anchor Numbers Ks Time GWD (mya) References

(means ± s.d.) (mya)

Bd3g38897 Bd4g32941 5 0.804 ± 0.149 61.8 50–70 Kellogg et al., 2001[52]; Gaut et al., 2002[53]

Os08g39140 Os09g30412 3 0.683 ± 0.200 57.1 53–94 Yu et al., 2005[34]

Os08g38086 Os09g29840 4 0.850 ± 0.162 65.4

Gm02G302500 Gm08G332900 7 0.611±0.186 50.8 5–13,59 Schmutz et al., 2010[54]

Gm08G332900 Gm14G011600 7 0.584 ± 0.146 47.9

Gm08G332900 Gm18G074100 13 0.128 ± 0.039 10.5

Gm02G302500 Gm14G011600 24 0.117 ± 0.043 9.6

Gm14G011600 Gm18G074100 6 0.608 ± 0.190 49.8

Gm02G302500 Gm18G074100 6 0.613 ± 0.193 50.8

Gm14G219700 Gm17G258700 15 0.158 ± 0.139 12.9

Gm01G068000 Gm02G124500 4 0.220 ± 0.167 18.2

Gm02G305600 Gm14G007700 19 0.098 ± 0.025 8.1

Gr003G155600 Gr004G138600 3 0.660 ± 0.147 19.6 13–20 Wang et al., 2012[55]

Gr002G103000 Gr013G150300 3 0.512 ± 0.230 17.1

Gr002G122800 Gr010G003000 3 0.605 ± 0.168 20.1

MYA: million years ago

https://doi.org/10.1371/journal.pone.0189187.t001
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Fig 5. Subcellular localization of each subgroup and species by TargetP1.1, WoLF PSORT and Predotar v. 1.03 on-line tools.

https://doi.org/10.1371/journal.pone.0189187.g005
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the leaf-specific stress response gene, showed no change in root tissue under the two stresses,

which is consistent with its subcellular localization (chloroplast).

Discussion

The Hsp90 genes family, is large and has been identified in almost studied eukaryotic species.

To date, the necessary roles of the Hsp90 genes in higher plants have been investigated in

response to biotic and abiotic stresses [10, 50]. In the current study, we explored the phyloge-

netic relationships and characters of the 94 Hsp90 genes from 10 species using a variety of bio-

informatics tools. To study the drought response profiles of the plant Hsp90 genes, the eight

Hsp90 genes in B. distachyon were all checked for the expression analysis under drought and

salt stresses using the real-time PCR method combined with the multiple sequence alignment.

The results showed that the evolution of plant Hsp90 genes is relatively conserved from unicel-

lular green algae to dicotyledonous, while the expression profile of the Hsp90 genes in different

tissues of B.distachyon is divergent in response to drought and salt stresses.

Evolution profile and duplication events of the Hsp90 gene family

In this study, 94 Hsp90 genes were selected from 10 species representing the four major plant

lineages. From these results, we can see that Hsp90 gene members in 10 plants species are dif-

ferent, while the number of the Hsp90 genes in higher plants is more than that of lower plants.

Using MCMC method based on Bayesian inference, phylogenetic trees were supported by

high bootstrap values, and showed that these Hsp90 genes belong to three major subgroups.

Fig 6. The relative expression profiling of seven B. distachyon Hsp90 genes in root and leaf under

drought and salt stresses (12h, 24h, 48h). L0: Leaf under untreated conditions. R0: Root under untreated

conditions. NL: NaCl stress Leaf. PL: PEG6000 stress Leaf. NR: NaCl stress Root. PR: PEG6000 stress

Root. Note: “*”for significant difference (P<0.05); “**”for highly significant difference (P<0.01).

https://doi.org/10.1371/journal.pone.0189187.g006
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These findings are in accordance with those of previous studies [9, 11]. Interestingly, three Cr

occurred first in each group, suggesting that the characters of the Hsp90 gene family were con-

served throughout the evolutionary history. The development of the intron was an important

process in genomic evolution, and an adaptive measure for speciation evolution [51]. Interest-

ingly, our results showed that genes in each subgroup possess similar exon-intron structures

with similar numbers of introns, while the genes in different subgroups manifested slightly dif-

ferent exon-intron structures. In addition, the pattern also can be found in the individual spe-

cies. Using subcellular location analysis, Hsp90 genes were almost all distributed in nuleus/

cytoplasm in Group I. For Group II, the Hsp90 genes were almost all located in the ER. Com-

pared with above two groups, Hsp90 genes in Group III were almost all located in the chloro-

plasts/mitochondria. Based on the exon-intron structure and subcellular location, we speculate

that our evolution classification in plant Hsp90s is creditable.

Gene duplication events play critical roles in the gene evolution, and have developed

into a major mechanism for the establishment of new functions [51]. In this study, 23.4%

(22 of 94) Hsp90 genes were considered to be derived from segmental duplication events,

and these segmental duplication gene pairs occurred in the same subfamilies, suggesting

that they can show new evolutionary functions after duplication. The estimated time of

segmental duplication events ranged from 8.1 to 61.8 Mya, demonstrating that these

Hsp90 duplicated genes may experience the split in whole genome duplication for each

species. For B. distachyon, there was only one pair segmental genes found (BdGF14e/
BdGF14b), and it was estimated to be originated at about 61.8 Mya. As Table 1 was seen

[52–55], the divergence time of Poaceae was approximately 50–70 Mya. The whole

genome duplication of cotton, soybean and rice was approximately 13–20, 5–13(59) and

53–94Mya, respectively, suggesting that the duplication of B. distachyon Hsp90 gene fam-

ily occurred before the divergence of the genome from cotton, and approached to point of

genome its divergence from rice and soybean.

Fig 7. The hierarchical cluster (HCA) analysis of seven B. distachyon Hsp90 genes in root and leaf

tissues under drought and salt stresses (12h, 24h, 48h). Colorbar indicates the amounts of Hsp90 gene

expression.

https://doi.org/10.1371/journal.pone.0189187.g007

Evolution and expression profiling in Brachypodium distachyon (L.) Hsp90 gene family under abiotic stresses

PLOS ONE | https://doi.org/10.1371/journal.pone.0189187 December 7, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0189187.g007
https://doi.org/10.1371/journal.pone.0189187


The expression profiling and possible response mechanism of the B.

distachyon Hsp90 genes in response to osmotic stresses

It is clear that the plant Hsp90 gene family has divergent functions, and that they participate in

a wide range of biological processes, especially occurring in response to abiotic stresses [56]. In

addition, previous investigations suggest that plant Hsp90 genes have different response mech-

anisms in response to different stresses. Most of the Hsp90 genes perform their functions

through participating in biological signaling pathways, such as the abscisic acid (ABA) signal-

ing pathway and the ER stress signaling pathway [56, 57].

The B.distachyon cytoplasm Hsp90 genes in response to osmotic

stresses through the ABA signaling pathway

The hormone ABA is a very important phytohormone that play important roles not only in seed

germination and development, but also in response to a wide range of abiotic stresses, such as exog-

enous ABA, salinity, drought, temperature stresses [58]. The response mechanism of plants against

many abiotic environmental stresses is through the ABA-dependent signaling pathway. [59–61].

Based on previous experiment results, Jacob P. et al, (2017)[62] provides a possible stress

response mechanism of Hsp90 mediated with ABA signaling. In normal conditions, HsfA1s

are bound by Hsp90/70 and their co-chaperones ABI5 (ABA insensitive five) and DREB2A

(dehydration responsive element binding protein 2A) were linked through the E3 ligase

DRIP1/2, and degraded by 26 proteasomes [63, 64]. Upon stress application, the high number

of misfolded and denatured proteins triggers the recruitment of Hsp90/70 to its client and

releases the HSFA1s [62]. Especially, heat and drought stresses will lead to phosphorylated E3

ligase degradation due to SnRK2 activation, and DREB2A and ABI5 accumulation [64–66],

which can then enter the nucleus, cooperatively or separately bind their target DNA, and

activate the expression of the target genes [62]. In our study, based on cellular location and

evolution classification, four Hsp90 genes in the B. distachyon, including Bradi3g39590, Bra-
di3g39620,Bradi3g39630, and Bradi5g02307, were distributed in the cytoplasm (Fig 1, Fig 4).

Of the four genes, the expression pattern of Bradi3g39620 and Bradi5g02307 generally showed

an up-regulated trend in response to osmotic stress, while the other two genes showed down-

regulated trends, which might be involved in plant development under stress conditions.

Moreover, the evolution distribution of Bradi3g39620 was similar with that of At5g56100
(AtHsp90.2) and relatively homologous (72%), and the evolution distribution of Bradi5g02307
was similar to that of At5g52640 (AtHsp90.1), suggesting that the up-regulation of the two

cytoplasm Hsp90 genes may participate in the osmotic stress response of ABA signaling

through freeing of the relative transcript factors, which activate downstream gene expression

in stress response and tolerance. Moreover, OsHSP90-2 and OsHSP90-4 were also found up-

regulated to be drought, cold, heat and salt stresses [67], which is consistent with our results.

However, in a report that constitutively reduced cytosolic Hsp90 by using siRNA method, the

expression of genes generally responsible for stress responses such as ABA stimulus, drought

stress, and jasmonic acid response were enhanced [68]. These results showed that some cyto-

plasm Hsp90 genes might be the stress response “monitor”, by positively and passively fining

and regulating to take part in cell protection and control against adverse environments.

The ER B.distachyon Hsp90 genes response to osmotic stresses

through the ubiquitin proteasome system (UPS)

Abiotic stresses usually cause protein function disorder in the ER, including protein aggrega-

tion, misfolding, and denatureation, and activate the unfolded protein response (UPR) [69].
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Under normal conditions, ER organelle is the origin of initial protein synthesis. Hsp90 is

required to play important roles in correct protein folding. When ER was subjected to diverse

environments, such as drought, salt, and heat, the UPR was triggered. In higher eukaryotes,

IRE-1(a approximately 100kDa type I transmembrane protein) contains Kinase and endoribo-

nuclease domains, and is generally considered to be the most important signaling pathway

from the ER [69]. Hsp90/IRE1 interaction might potentially cause the IRE1 response and affect

the death of the cell during ER stress [69]. In our study, based on cellular location and evolu-

tion classification, Bradi1g30130 in the B. distachyon was distributed in the ER (Figs 1 and 4).

The evolutionary distribution of Bradi1g30130 was similar to that of At4g24190 (AtHsp90.7)

and homologous (73%). The expression pattern of Bradi1g30130 generally showed a significant

up-regulated trend in response to drought and salt stresses, especially at 48h time points in the

leaf tissue. AtHsp90.7 was previously shown to be more sensitive than AtHsp90.2 in response

to drought and salt stresses [56]. Excessive Hsp90 in ER may reduce the shift and targeting of

plasma membrane or vacuole membrane ion transporters to cope with salt stress by relieving

cytosolic Na+[70]. Additionally, excessive Hsp90, especially in the chloroplast or ER, might

trigger a general homeostasis itself, either by changing the organelle import/export system or

the native protein homeostasis to enhance normal salt and osmotic stress tolerances [56].

These results suggest that the Hsp90 level in plant is critical for homeostasis of stress response

and/or tolerance proteins.

Conclusions

Based on the evolution analysis and molecular structure from 10 species representing four

major plant lineages, the Hsp90 gene family was found to be relatively conservative, and

showed function diversity in the cellular location, gene duplication and evolution distribution

between each group. Under drought and salt stresses, BdHsp90 gene family in root and leaf tis-

sue showed different expression pattern in each group, especially in Bradi1g30130 and Bra-
di3g3889700, suggesting that they might be involved in different stress responses. Given the

above mentioned findings and those published in the literatures, we suggest that Hsp90 gene

family plays roles in cytoplasm ABA signaling, ER stress protection and plant development

under stress. Despite the detailed mechanism of BdHsp90 involvement in stress not being

clearly understood, their function characterization will provide new insights into stress-

responsive pathways.
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