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The emergence of highly aggressive subtypes of human cutaneous squamous cell carcinoma (SCC) often reflects increased au-
tocrine/paracrine TGF-β synthesis and epidermal growth factor receptor (EGFR) amplification. Cooperative TGF-β/EGFR signal-
ing promotes cell migration and induces expression of both proteases and protease inhibitors that regulate stromal remodeling
resulting in acquisition of an invasive phenotype. TGF-β1+EGF stimulation increases the production of several matrix metal-
loproteinases (MMPs) in human SCC. Among the most prominent is MMP-10 which is known to be elevated in SCC in situ.
Activation of stromal plasminogen appears to be critical in triggering downstream MMP activity. Paradoxically, PAI-1, the major
physiological inhibitor of plasmin generation, is also up-regulated under these conditions and is an early event in progression
of incipient epidermal SCC. A model is proposed in which TGF-β1+EGF-dependent MMP-10 elevation directs focalized matrix
remodeling events that promote epithelial cell plasticity and tissue invasion. Increased PAI-1 expression serves to temporally and
spatially modulate plasmin-initiated pericellular proteolysis, further facilitating epithelial invasive potential. Defining the complex
signaling mechanisms that maintain this elegant balance is critical to developing potential therapeutics for the treatment of human
cutaneous malignancies.

Copyright © 2007 Cynthia E. Wilkins-Port et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. HUMAN EPITHELIAL SKIN CANCER PROGRESSION

Cutaneous cancer is the most common human malignant
disease [1]; in North America alone, >50% of all neoplasms
arise in the skin [2]. The development and progression of ep-
ithelial skin tumors is causally linked to ultraviolet (UV) ra-
diation exposure, with UV-B “signature” base changes (C→T
or CC→TT) frequently mapping to codons 177 (basal cell
carcinoma) and 278 (squamous cell carcinoma (SCC)) in
the tumor suppressor p53 gene [3, 4]. Indeed, UV-associated
p53 mutations regularly occur in the solar radiation-induced
premalignancy actinic keratosis. Approximately 10% of these
precancerous lesions progress to SCC and it has been esti-
mated that 60% of all SCC arise within actinic keratoses [4–
6].

The progression sequence for cutaneous cancers may
vary between the human disease and its corresponding

mouse models, although several genetic events are common
to both [2, 3, 5–7]. Transition of a normal keratinocyte
to an initiated pre- or early malignant phenotype for ex-
ample often involves p53 inactivation, ras gene mutation
and amplified ras expression. These changes frequently ac-
company growth of lesional subsets in both actinic kerato-
sis and SCC [5–7]. Recent findings suggest that the emer-
gence of highly aggressive subtypes of SCC (including the
lethal spindle cell tumor) and the development of metastatic
variants are causally linked to overexpression of transform-
ing growth factor-β1 (TGF-β1) [2, 8–10]. Elevated autocrine
and/or paracrine production of TGF-β1, in fact, typifies ad-
vanced pathologies in both mouse and human SCC [8, 10].
Despite high levels of TGF-β in the immediate tumor mi-
croenvironment, at least some malignant epithelial cells be-
come refractory to the normal program of proliferative ar-
rest initiated by TGF-β which is likely a consequence of
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Figure 1: Genetic events associated with human cutaneous SCC
progression in vivo and in the HaCaT keratinocyte model system
in vitro. Additional similarities are discussed in the text as well as in
[2, 3, 21].

transformation-associated reductions in either TGF-β-RII or
Smad-4 levels, or both [10–12]. In experimental models of
skin carcinogenesis, moreover, resistance to TGF-β1-induced
growth suppression is often coupled with epidermal growth
factor receptor (EGFR) amplification, particularly during the
later stages of tumor progression [13–17]. Indeed, cutaneous
SCCs frequently exhibit constitutive activation of the EGFR
as a result of receptor amplification and/or autocrine ligand
release [18]. The subsequent reprogramming of gene expres-
sion in the transformed keratinocyte initiates and perpetu-
ates the TGF-β1-induced pro-oncogenic switch to a “plastic”
phenotype, resulting in the transition from a relatively indo-
lent to a highly aggressive and invasive epithelial malignancy
[8, 19, 20].

2. DETERMINANTS OF CELLULAR PLASTICITY IN
TRANSFORMED HUMAN KERATINOCYTES

The immortalized adult human keratinocyte cell line
HaCaT-II4 is particularly suited for assessment of molecu-
lar mechanisms associated with epithelial tumor cell plastic-
ity (reviewed in [13]). HaCaT-II4 cells harbor mutations that
mirror those associated with cutaneous malignant transfor-
mation. These include UV-specific mutations in both alleles
of the p53 gene (resulting in loss of p53 function [3]), in-
creased levels of an activated Ha-ras gene, and chromosomal
aberrations often typical of SCC (e.g., loss of 3p and 9p, gain
of 3q) [2, 3, 21] (Figure 1).

HaCaT-II4 cell stimulation with a combination of TGF-
β1 and EGF, designed to mimic the elevated TGF-β1 expres-
sion/amplified EGFR signaling that frequently accompanies
SCC progression in vivo, promotes a phenotypic transition
that involves the loss of E-cadherin from cell-cell junctions,
actin microfilament remodeling (Figure 2), increased motil-
ity, and significantly enhanced pericellular proteolytic capa-
bility [22, 23].

Stromal proteolysis by transformed keratinocytes is of-
ten initiated by conversion of epidermal matrix plasmino-
gen to the broad-spectrum protease plasmin via urokinase

Quiescent EGF/TGF-β1

E-cadherin/actin E-cadherin/actin

Figure 2: HaCaT-II4 keratinocytes initiate a prominent “scatter-
ing” response after a 24–48 hour exposure to EGF/TGF-β1. Colony
dispersal (top panels) reflects the early and significant loss of E-
cadherin-positive cell-cell junctions (green) and marked reorgani-
zation in the actin microfilament system (red) (bottom panels).
Such morphologic restructuring is a hallmark of epithelial plasticity
initiated by TGF-β and EGF family members.

plasminogen activator receptor (uPAR)-bound uPA [24–26].
Plasmin generation accompanies cooperative TGF-β/EGFR
signaling during epidermal tumor progression and appears
to be a critical event in the downstream activation of a com-
plex and highly interdependent, matrix metalloproteinase
(MMP) cascade (reviewed in [23]). Microarray profiling
of HaCaT-II4 cells stimulated with both TGF-β1 and EGF
confirmed, in fact, that uPA, uPAR, and MMP expres-
sion levels were significantly upregulated (e.g., Figure 3).
Transcripts encoding plasminogen activator inhibitor type-
1 (PAI-1; SERPINE1), the major physiological regulator of
plasmin-based pericellular proteolysis, were also significantly
increased. Indeed, elevated PAI-1 tumor levels signal a poor
prognosis and reduced disease-free survival in patients with
breast, lung, ovarian, and oral SCC [26, 27]. Mouse modeling
and genetic studies clearly implicate PAI-1 as an important
determinant in cutaneous tumor invasion and the associated
angiogenic response. This serine protease inhibitor main-
tains an angiogenic “scaffold,” stabilizes nascent capillary
vessel structure, and regulates tumor cell invasion through
precise regulation of the peritumor proteolytic microenvi-
ronment [26, 28–30]. PAI-1 upregulation is, in fact, an early
event in the progression of incipient epidermal SCC, where
it often localizes in tumor cells and myofibroblasts at the
invasive front (Figure 4), and most importantly is a tumor
marker with significant prognostic value [27, 31–33]. Fur-
thermore, identification of PAI-1 in SCC-proximal stromal
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myofibroblasts implies a more global involvement in mod-
ulating cellular invasive potential, [34–36] with complex au-
tocrine and paracrine loops dictating the varied effects of this
SERPIN on individual elements (neoplastic, endothelial, and
inflammatory cells) within the tumor microenvironment.

3. GROWTH FACTOR-INITIATED EPITHELIAL
PLASTICITY ELICITS A PROGRAM OF
MATRIX REMODELING

Treatment of HaCaT-II4 cells with TGF-β1 and EGF pro-
motes a plastic transition typical of late-stage SCC progres-
sion (Figure 2). Part of this response most likely reflects
the transcriptional consequences associated with deregulated
growth factor signaling (e.g., Figure 3) [37–40]. TGF-
β1 stimulates synthesis of stromal components (e.g., fi-
bronectin, collagen, laminin), thereby supporting the main-
tenance of matrix integrity; this growth factor, however,
also increases expression of several extracellular matrix-
degrading MMPs, including MMP-1, -2, -3, -9, -10, -11,
-13, and 21 [41–47]. Unlike the normal epithelium, where
TGF-β1 upregulates collagen synthesis and represses collage-
nase proteolysis, TGF-β1 usually decreases collagen synthe-
sis and induces collagenase activity in malignant cells, sug-
gesting that transformed epithelia exhibit an altered response
to TGF-β1 [48–51]. EGF stimulation similarly induces ex-
pression of several MMPs [52–54]. Consequently, a TGF-
β1-enriched tumor microenvironment coupled with ampli-
fied EGFR levels and/or signaling correlates strongly with
the increased expression of MMP-2, -7, -9, 10, -11, and -13
[17, 55] and is frequently associated with advanced patho-
logical stages in human SCC. The expression of MMP-10
(stromelysin-2) following costimulation of HaCat-II4 cells
with TGF-β1 and EGF is particularly significant [22, 23].
MMP-10 is generally restricted to epithelial cells [46, 56]
and has broad substrate specificity, including as targets the
proMMPs-1, -7, -8, -9, and -13, collagens types III, IV, and V,
gelatin, elastin, fibronectin, proteoglycans, and laminin [25,
57]. MMP-10 is not detectable in normal intact skin [46]. It
is however, expressed during cutaneous injury repair where it
localizes to migrating keratinocytes at the wound edge, sug-
gesting that MMP-10 facilitates invasive behavior [46]. In-
deed, appreciable levels of MMP-10 are evident in SCC of the
head and neck, esophagus, oral cavity, and skin, as well as in
recurrences of nonsmall cell lung cancer where it likely regu-
lates basement membrane degradation and stromal dissem-
ination [55, 58–64]. Notably, TGF-β1/EGF-dependent up-
regulation of MMP-10 in HaCaT-II4 cells is coincident with
enhanced collagen gel invasion (Figure 5) and the develop-
ment of an acute collagenolytic phenotype that is sensitive to
components of the plasminogen activation system, including
PAI-1 [22, 23]. While the actual involvement of MMP-10 in
late-stage tumor progression remains to be clarified, MMP-
10 can “superactivate” collagenase I (MMP-1) resulting in a
10-fold increase in specific activity when compared to MMP-
1 activation by plasmin alone [56]. Collectively, these find-
ings support a model in which TGF-β1/EGF-initiated MMP-
10 upregulation and its plasmin-dependent activation lead to
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Figure 3: Example of a selected cluster of TGF-β1+EGF-induced
genes in HaCaT-II4 human SCC cells. PAI-1 is the highest upregu-
lated transcript in the subset illustrated. (13.4-fold assessed 6 hours
after growth factor stimulation). MMP-1 and MMP-2 are also sig-
nificantly increased in response to TGF-β1+EGF as is the uroki-
nase plasminogen activator receptor (uPAR). The 5-fold induction
of uPA mRNA is not shown. Numbers for the individual upregu-
lated expressed genes indicate the fold increase for TGF-β1+EGF-
stimulated cells compared to unstimulated keratinocytes. The col-
orized platform serves to provide a visual indicator of the microar-
ray data with green signal corresponding to minimal or nonexpress-
ing status while red signal is indicative of high-level transcript in-
duction.

the degradation of extracellular matrix components directly,
as well as indirectly by its ability to trigger MMPs-1, -7, -8,
-9, and -13 activities (Figure 6). Subsequently, these down-
stream proteases target stromal substrates, particularly colla-
gens and additional pro-MMPs in the tumor microenviron-
ment. The resultant feedback loop generated through eleva-
tion of MMP-10 levels therefore supports focalized extracel-
lular matrix remodeling which promotes the acquisition of
cellular plasticity and tumor cell invasion. Most importantly,
this highly interactive plasmin-initiated, pericellular prote-
olytic cascade is finely “titrated” both temporally and spa-
tially by PAI-1, highlighting the potential therapeutic value
of manipulating PAI-1 expression in the treatment of human
cutaneous malignancies [13, 22, 23, 29, 30, 65].
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Figure 4: Sections of an early invasive human squamous cell car-
cinoma (SCC) were stained for PAI-1 (red) and α-smooth muscle
actin (green). (a) Demonstrates the localization of PAI-1 at the in-
vasive front of the tumor (arrows). (b) (PAI-1), (c) (α-smooth mus-
cle actin), and (d) (merged) illustrate the colocalization of PAI-1
with cells stained positive for α-smooth muscle actin, a marker for
myofibroblasts. Barbed arrows indicate PAI-1/α-SMA at the tumor
perimeter, while arrow heads depict PAI-1/α-SMA in the stroma.

4. TGF-β1/EGFR PATHWAY INTEGRATION IN PAI-1
EXPRESSION CONTROL

Recent studies revealed a more complicated, cooperative in-
teraction between intracellular events orchestrated by TGF-
β1-activated pathways and the EGFR, which specifically lead
to epithelial tumor plasticity. PAI-1 induction in response to
TGF-β1 involves a complex network of signaling intermedi-
ates and requires the activities of the mitogen-activated ex-
tracellular kinase (MEK), p21ras, and pp60c-src in addition
to the EGFR [66]. pp60c-src is, in fact, a critical interme-
diate in a TGF-β1-initiated transduction cascade leading to
MEK signaling, PAI-1 transcription, and subsequent pheno-
typic responses [66–70] (Figure 7). The src family kinase in-
hibitor PP1 and dominant-negative pp60c-src constructs ef-
fectively attenuate TGF-β1-induced PAI-1 expression in Ha-
CaT cells [66], confirming the generality of src kinase in-
volvement in PAI-1 gene regulation. While the actual mech-
anism underlying TGF-β1-associated pp60c-src kinase stim-
ulation remains to be determined, the TGF-β1-dependent
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Figure 5: HaCaT-II4 cells invade collagen gels following costimula-
tion with TGF-β1 and EGF. HaCaT-II4 or SCC-25 cells were seeded
in serum-free advanced DMEM (GIBCO) onto collagen gels that
had been polymerized in OptiCell tissue culture chambers. Twenty
four hours later, cells were stimulated with a combination of TGF-
β1 (1 ng/mL) and EGF (10 ng/mL) under serum-free conditions
and allowed to incubate for 48 hours. Pictures were taken at X10
magnification using an IX70 Olympus microscope and ImagePro-
Plus software.

release of EGFR ligands HB-EGF and/or TGF-α appears to
involve MMP-directed cleavage of EGF-like precursors re-
sulting in EGFR activation [71–73]. Alternatively, forma-
tion of integrin/FAK/p130cas/EGFR complexes in response
to TGF-β1 may result in ligand-independent EGFR mobi-
lization and β increased pp60c-src activity [74–76]. Subse-
quent changes in gene programming likely reflect the par-
ticular src-dependent MAP kinase pathways impacted. src ki-
nases, for example, can phosphorylate the raf -1 kinase ei-
ther directly or as part of a CNK1 scaffold complex, result-
ing in src-dependent ERK activation [77–79]. Indeed, the ef-
fective blockade of TGF-β1-stimulated ERK1/2 phosphory-
lation and PAI-1 transcription by PP1 as well as the EGFR
inhibitor AG1478 (Figure 7) and the requirement for MEK-
ERK signaling for the full inductive effect of TGF-β1, suggests
that pp60c-src may regulate MEK-ERK-dependent PAI-1 ex-
pression via EGFR activation at the Y845 site [66, 67, 75].

The continued definition of specific molecular mecha-
nisms underlying control of tumor progression genes is an
essential element in the ultimate design of targeted, clinically
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relevant, options for treatment of human cutaneous SCC.
Indeed, the emerging appreciation that cooperative EGFR
signaling is an essential aspect of TGF-β1-stimulated PAI-
1 expression provides novel insights to the impact of TGF-
β1 in late-stage human tumor progression and underscores
the potential diversity of new molecular targets that can be
exploited for therapeutic benefit. Refining the current un-
derstanding of PAI-1 gene regulation, as well as its signal-
ing pathways, may lead to the design of transcription-focused
“therapeutics” to manage human cutaneous malignancies.
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[63] E. Kerkelä, R. Ala-aho, L. Jeskanen, et al., “Differential pat-
terns of stromelysin-2 (MMP-10) and MT1-MMP (MMP-14)
expression in epithelial skin cancers,” British Journal of Cancer,
vol. 84, no. 5, pp. 659–669, 2001.

[64] R. Mathew, R. Khanna, R. Kumar, M. Mathur, N. K. Shukla,
and R. Ralhan, “Stromelysin-2 overexpression in human
esophageal squamous cell carcinoma: potential clinical impli-
cations,” Cancer Detection and Prevention, vol. 26, no. 3, pp.
222–228, 2002.

[65] P. J. Higgins, “TGF-β1-stimulated p21ras-ERK signaling regu-
lates expression of the angiogenic SERPIN PAI-1,” Recent Re-
search Developments in Biochemistry, vol. 7, pp. 31–45, 2006.

[66] S. M. Kutz, C. E. Higgins, R. Samarakoon, et al., “TGF-β1-
induced PAI-1 expression is E box/USF-dependent and re-
quires EGFR signaling,” Experimental Cell Research, vol. 312,
no. 7, pp. 1093–1105, 2006.

[67] R. Samarakoon, C. E. Higgins, S. P. Higgins, S. M. Kutz,
and P. J. Higgins, “Plasminogen activator inhibitor type-1
gene expression and induced migration in TGF-β1-stimulated
smooth muscle cells is pp60c−src/MEK-dependent,” Journal of
Cellular Physiology, vol. 204, no. 1, pp. 236–246, 2005.

[68] P. P.-C. Hu, X. Shen, D. Huang, Y. Liu, C. Counter, and X.-
F. Wang, “The MEK pathway is required for stimulation of

p21(WAF1/CIP1) by transforming growth factor-β,” Journal of
Biological Chemistry, vol. 274, no. 50, pp. 35381–35387, 1999.

[69] M. Sato, K. Kawai-Kowase, H. Sato, et al., “c-Src and hydro-
gen peroxide mediate transforming growth factor-β1-induced
smooth muscle cell-gene expression in 10T1/2 cells,” Arte-
riosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 2, pp.
341–347, 2005.

[70] H. Sato, M. Sato, H. Kanai, et al., “Mitochondrial reactive
oxygen species and c-Src play a critical role in hypoxic re-
sponse in vascular smooth muscle cells,” Cardiovascular Re-
search, vol. 67, no. 4, pp. 714–722, 2005.
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