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Simple Summary: Successful surgery in robot-assisted partial nephrectomy (RAPN), especially
for highly complex tumors, relies on a detailed understanding of the anatomical relations of the
tumor absolute and relative to the urinary tract and the vascular structures, including the renal
pedicle. Intraoperative navigation with accurate information regarding tumor position relative to
the surrounding urinary vascular structures undoubtedly assists the surgeon during RAPN. In this
report, we performed RAPN with intraoperative navigation using a novel computed tomography
scanner (UHR-CT) and compared its perioperative and short-term functional outcomes to those of
area-detector CT (ADCT). We found that this novel navigation system using UHR-CT provided a
shorter warm ischemia time and lower estimated blood loss than ADCT, and concluded this could be
a useful tool for patients who undergo RAPN. This is the first report to evaluate the feasibility and
usefulness of UHR-CT for intraoperative navigation during RAPN.

Abstract: To assess the perioperative and short-term functional outcomes of robot-assisted partial
nephrectomy (RAPN) with intraoperative navigation using an ultra-high-resolution computed to-
mography (UHR-CT) scanner, we retrospectively analyzed 323 patients who underwent RAPN using
an UHR-CT or area-detector CT (ADCT). Perioperative outcomes and the postoperative preservation
ratio of estimated glomerular filtration rate (eGFR) were compared. After the propensity score match-
ing, we evaluated 99 patients in each group. Although the median warm ischemia time (WIT) was
less than 25 min in both groups, it was significantly shorter in the UHR-CT group than in the ADCT
group (15 min vs. 17 min, p = 0.032). Moreover, the estimated blood loss (EBL) was significantly
lower in the UHR-CT group than in the ADCT group (33 mL vs. 50 mL, p = 0.028). However, there
were no significant intergroup differences in the postoperative preservation ratio of eGFR at 3 or
6 months of follow-up (ADCT 91.8% vs. UHR-CT 93.5%, p = 0.195; and ADCT 91.7% vs. UHR-CT
94.0%, p = 0.160, respectively). Although no differences in short-term renal function were observed in
intraoperative navigation for RAPN in this propensity score–matched cohort, this study is the first to
demonstrate that UHR-CT resulted in a shorter WIT and lower EBL than ADCT.

Keywords: estimated blood loss; robot-assisted partial nephrectomy; ultra-high-resolution computed
tomography; warm ischemia time
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1. Introduction

Partial nephrectomy (PN) for small renal tumors is preferred over radical nephrectomy
with respect to surgery-related mortality, cancer-specific survival, time to recurrence, and
renal function [1,2]. Over the past decade, significant advantages of robot-assisted PN
(RAPN) versus open PN and laparoscopic PN have been reported by large-scale com-
parative studies and meta-analyses [3–5]. Moreover, for highly complex tumors with a
Preoperative Aspects and Dimensions Used for an Anatomical score ≥10, Raheem et al.
recently reported successful long-term oncological and functional outcomes of RAPN [6].

Successful surgery in RAPN, especially for highly complex tumors, relies on a detailed
understanding of the anatomical relations of the tumor absolute and relative to the urinary
tract and the vascular structures, including the renal pedicle. Intraoperative navigation
with accurate information regarding tumor position relative to the surrounding urinary
vascular structures undoubtedly assists the surgeon during RAPN.

Ultra-high-resolution CT (UHR-CT), which constructs 3D images for intraoperative
navigation, was recently clinically implemented and investigated. UHR-CT features three
different scan modes: normal resolution (0.5 mm × 80 rows/896 channels), high-resolution
(HR; 0.5 mm × 80 rows/1792 channels), and super-high-resolution (0.25 mm × 160 rows/
1792 channels); the improved spatial resolutions of UHR-CT have been reported by several
investigators (Supplementary Figure S1) [7–18]. UHR-CT also enables the use of larger ma-
trix sizes (e.g., 1024) in selected CT examinations in routine clinical practice [7,10,13–15,17].

With the increasing clinical application of UHR-CT, image noise reduction and signal-
to-noise ratio improvements have become important in routine clinical practice. Therefore,
Canon Medical Systems has produced hybrid-type iterative reconstruction (Adaptive
Iterative Dose Reduction 3D (AIDR 3D)), model-based iterative reconstruction (Forward-
projected model-based Iterative Reconstruction SoluTion (FIRST)), and deep learning
reconstruction (DLR; Advanced intelligent Clear-IQ Engine (AiCE)) products since 2012
(Figure 1) [10,19–22]. Furthermore, UHR-CT was suggested to have higher potential to
improve image quality and vascular structure evaluations than area-detector CT (ADCT)
when DLR is applied rather than hybrid-type iterative reconstruction (IR) in abdominal
CT [10].
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In this study, we performed RAPN with intraoperative navigation using UHR-CT and
compared its perioperative and short-term functional outcomes to those of ADCT. This
is the first report to evaluate the feasibility and usefulness of UHR-CT for intraoperative
navigation during RAPN.

2. Materials and Methods
2.1. Patient Population

We retrospectively reviewed the clinical data of 323 patients who underwent RAPN
at Fujita Health University between July 2010 and July After excluding those for whom
incomplete data were available or who required conversion to radical nephrectomy, a total
of 321 patients (ADCT: 221; UHR-CT: 100) were enrolled. In the present study, ADCT was
used for the initial 221 cases (July 2010~September 2018) and UHR-CT was used for the
latter 100 cases (October 2018~July 2020). A 1:1 propensity score–matched analysis was
performed, and 99 patients from each group were evaluated (Figure 2).
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Figure 2. Flowchart of the patients enrolled in the study.

2.2. CT Examination

For the construction of 3D images for intraoperative navigation, all patients underwent
unenhanced abdominal CT as well as four-phase dynamic contrast-enhanced (CE) CT
examinations using an UHR-CT machine (Aquilion Precision, Canon Medical Systems,
Otawara, Japan) or an ADCT (Aquilion ONE, Canon Medical Systems) machine. First, an
unenhanced CT image was obtained from the diaphragm to the pelvis during suspended
respiration at the end of inhalation. This was followed by a four-phase dynamic CE-CT
examination of each CT system.

All patients underwent the placement of an 18–20 G cannula in the antecubital vein
before the injection. Preheated iodinated contrast (Iopamiron 370, Bayer Schering Pharma,
Osaka, Japan; Iomeprol 350, Eisai Co., Ltd., Tokyo, Japan) was administered by a power
injector (Dual Shot GX 7; Nemoto Kyorindo, Tokyo, Japan). The injection dose was 600 mg
of iodine per kg of body weight, and the duration was fixed at 18 s, followed by 25 mL
of saline solution at the same rate. A bolus tracking program was used to optimize the
scanning delay for the renal arterial and venous phases of the dynamic scans. The trigger
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point was placed at the abdominal aorta at the level of the celiac axis, and the trigger
threshold was set at an increase in CT number of more than 100 Hounsfield units over the
baseline value. The scan delays were set at 8 s after the trigger, and the renal arterial and
venous phases of the dynamic images were obtained serially during a single breath hold.
Renal arterial and venous phases of the dynamic scans as the first and second phases were
performed from the diaphragm to the lower kidney. The equilibrium phase, as the third
phase, was obtained from the diaphragm to the pelvis 90 s after the bolus injection of the
contrast media. The excretion phase was scanned as the fourth phase for CT urography
from the kidney to the pelvis using CT urography at 300 s after the bolus injection of
contrast media.

All unenhanced UHR-CT scans were performed with the following parameters: HR
mode, 80 × 0.5 mm collimation, 120 kVp, auto mA with an image noise level of 4, 0.6 s
gantry rotation time, 0.813 beam pitch, 512 × 512 matrix, and 320-mm field of view. On the
other hand, all unenhanced ADCT scans were performed with the following parameters:
256–320 × 0.5 mm collimation, 120 kVp, auto mA with an image noise level of 11, 0.6 s
gantry rotation time, 0.813 beam pitch, 512 × 512 matrix, and 320-mm field of view.

On dynamic CE-UHR-CT, the renal arterial and venous phase scans were performed
in HR mode with the following parameters: 80 × 0.5 mm collimation, 120 kVp, auto mA
with image noise level of 4, 0.6 s gantry rotation time, 512 × 512 matrix, and 320-mm field of
view. The equilibrium and excretion phase scans were performed in the normal resolution
mode with the following parameters: 80 × 0.5 mm collimation, 120 kVp, auto mA with an
image noise level of 13, 0.6 s gantry rotation time, 0.813 beam pitch, 512 × 512 matrix, and
320-mm field of view.

On dynamic CE-ADCT, the renal arterial and venous, equilibrium and excretion phase
scans were performed using the following parameters: 80 × 0.5 mm collimation, 120 kVp,
auto mA with an image noise level of 11, 0.6 s gantry rotation time, 0.813 beam pitch,
512 × 512 matrix, and 320-mm field of view.

In this study, the UHR-CT data were reconstructed using filtered back projection
between 2010 and 2012, the hybrid-type IR method (AIDR 3D) from 2012 to 2016, the
model-based IR method (FIRST) between 2016 and 2019, and the DLR method (AiCE) from
2019 to In contrast, and the ADCT data were reconstructed using hybrid-type IR (AIDR 3D)
in each patient during the entire study period.

All CT data obtained by both CT systems were reconstructed as 0.5-mm-thick sections
with a standard soft tissue kernel (FC03; Canon Medical Systems) when AIDR 3D was
applied in this study. On the other hand, UHR-CT data were reconstructed as 0.5-mm-thick
sections by FIRST using body sharp at the standard level (Canon Medical Systems) and
AiCE by AiCE body sharp at the standard level (Canon Medical Systems) from 2018 to 2020.

2.3. Data Collection

We recorded the following information preoperatively and at 3 and 6 months of follow-
up: patient characteristics including age, sex, and body mass index (BMI); clinical disease
characteristics including tumor side, surgical approach, RENAL score [23], and presence
of a hilar or cystic tumor; and surgical parameters including surgical time, console time,
warm ischemia time (WIT), estimated blood loss (EBL), need for blood transfusion, and
the presence of complications (Clavien-Dindo) [24]. Hilar tumor was defined as a tumor
located in the renal hilum, abutting the renal vessels, and/or the renal pelvis, as observed
on the preoperative CT [25,26]. Trifecta achievement was assessed as a composite outcome
measure to evaluate the RAPN surgical quality. The definition of trifecta includes a WIT
of ≤25 min, no complications, and negative surgical margins [27]. Complications were
defined as those with a Clavien-Dindo classification grade of ≥3. The estimated glomerular
filtration rate (eGFR; expressed as mL/min/1.73 m2), calculated using the Modification of
Diet in Renal Disease equation [28], was used to assess renal function.
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The study protocol was approved by the Fujita Health University Ethics Review
Committee (HM 20-119) and the study was performed in accordance with the ethical
standards laid down in the most recent version of the Declaration of Helsinki.

2.4. Surgery

All RAPN procedures were performed using a da Vinci Surgical System (Intuitive
Surgical, Sunnyvale, CA, USA), as previously described [29]. Briefly, the renal artery or its
branches were clamped with a bulldog clamp. The tumor was resected with 2–5 mm of
the parenchymal margin. For the inner layer, the collecting system and large vessels were
closed with 3-0 V-Loc sutures, and if needed, parenchymal sutures were made with 2-0 V-
Loc. The artificial hemostatic sponge TachoSil (Nycomed Austria GmbH, Linz, Austria)
was also introduced to increase the coagulation efficiency in the renal capsule.

UHR-CT provides clear and accurate images of the anatomical relations of the tumor
absolute and relative to the urinary tract and vascular structures, including the renal
pedicle. The digital CT data obtained during the early or late artificial and excretory phases
were transferred to a workstation (Ziostation 2, version 2.1.x, Qi Imaging, Redwood City,
CA, USA) that was used to produce 3D images for intraoperative navigation (Figure 3A).
The UHR-CT image data reconstructed on a 3D workstation also provide information
regarding the cutting surface, including where vascular stumps are going to be exposed
and where the urinary tract is going to open (Figure 3B). All of these data were obtained via
an intraoperative navigation system using TilePro software (Figure 3C). All seven surgeons
who performed the RAPN had completed the da Vinci certification program approved
in Japan.
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software. (A,B) show the same renal tumor; (C) shows another renal tumor.

2.5. Statistical Analysis

Owing to inherent differences in baseline patient and disease characteristics between
the ADCT and UHR-CT groups, we used 1:1 propensity score–matched analysis to ad-
just for imbalances in the confounding factors (age, sex, BMI, ASA score, eGFR, tumor
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side, approach, RENAL score, hilar tumor, and cystic tumor). The propensity scores for
each patient were calculated using multivariable logistic regression. A nearest neighbor
matching was performed with calipers of width equal to 0.25 of the standard deviation
of the logit of the propensity scores. Intergroup comparisons were performed using the
Mann–Whitney U-test, chi-square test, or Fisher’s exact test. All data were analyzed using
IBM SPSS Statistics version 23 (SPSS Japan Inc., Tokyo, Japan), and p values of <0.05 were
considered significant in all statistical analyses.

3. Results

Among the 323 patients who underwent RAPN at Fujita Health University between
July 2010 and July 2020, a total of 321 (ADCT, 221; UHR-CT, 100) were enrolled after exclu-
sions due to incomplete data or conversion to radical nephrectomy. Patient characteristics,
including age, sex, BMI, ASA (American Society of Anesthesiology) score, preoperative
estimated glomerular filtration rates (eGFR), tumor side, surgical approach, RENAL score,
and the presence of hilar or cystic tumors were compared between groups, before and after
matching. No significant intergroup differences were observed (Table 1).

Table 1. Patients’ clinical characteristics.

Pre-Matching Post-Matching

Median (IQR) or n (%) ADCT (n = 221) UHR-CT (n = 100) p Value ADCT (n = 99) UHR-CT (n = 99) p Value

Age 60 (49–68) 62 (54–70) 0.072 62 (50–70) 62 (54–70) 0.444

Sex (%): Male 166 (75.1) 72 (72.0) 0.583 73 (73.7) 71 (71.7) 0.873
Female 55 (24.9) 28 (28.0) 26 (26.3) 28 (28.3)

BMI, kg/m2 24 (22–26) 24 (22–26) 0.334 24 (21–26) 23 (22–26) 0.175

ASA score 2 (1–2) 2 (1–2) 0.274 2 (1–2) 2 (1–2) 0.365

eGFR, mL/min/1.73 m2 70 (59–80) 68 (56–80) 0.333 71 (58–80) 68 (56–80) 0.421

Tumor side: Right 114 (51.6) 53 (53.0) 0.904 54 (54.5) 53 (53.5) 0.887
Left 107 (48.4) 47 (47.0) 45 (45.5) 46 (46.5)

Approach:Transperitoneal 118 (53.4) 47 (47.0) 0.335 57 (57.6) 47 (47.5) 0.203
Retroperitoneal 103 (46.6) 53 (53.0) 42 (42.4) 52 (52.5)

RENAL score 7 (5–8) 7 (5–8) 0.375 7 (6–8) 7 (5–8) 0.133

Hilar tumor 48 (21.7) 14 (14.0) 0.127 21 (21.2) 14 (14.1) 0.264

Cystic tumor 36 (16.3) 11 (11.0) 0.237 16 (16.2) 11 (11.1) 0.408

Regarding perioperative factors, including surgical time, console time, WIT, EBL, nega-
tive surgical margins, pathology, Clavien-Dindo classification ≥3, and trifecta achievement
after propensity matching, there were no significant intergroup differences in surgical or
console time (ADCT 158 vs. UHR-CT 163, p = 0.440; ADCT 110 vs. UHR-CT 112, p = 0.483,
respectively), whereas the WIT was significantly shorter in the UHR-CT group compared to
the ADCT group (15 vs. 17, p = 0.032). The EBL was also significantly lower in the UHR-CT
group compared to the ADCT group (33 vs. 50, p = 0.028). No significant intergroup
differences were observed in negative surgical margins (ADCT 100% vs. UHR-CT 99%,
p = 1.000), clear cell carcinoma in pathology (ADCT 80.8% vs. UHR-CT 72.7%, p = 0.246),
or complications (ADCT 0% vs. UHR-CT 2.0%, p = 0.497). There was also no significant
intergroup difference in trifecta achievement (ADCT 80.8% vs. UHR-CT 81.8%, p = 1.000)
(Table 2).
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Table 2. Patients’ surgical outcomes.

Post-Matching

Median (IQR) or n (%) ADCT (n = 99) UHR-CT (n = 99) p Value

Surgical time, min 158 (136–190) 163 (148–190) 0.440

Console time, min 110 (95–144) 112 (91–133) 0.483

WIT, min 17 (14–20) 15 (12–21) 0.032

EBL, ml 50 (20–104) 33 (10–85) 0.028

Transfusion 3 (3.0) 1 (1.0) 0.621

Negative surgical margins 99 (100) 98 (99.0) 1.000

Pathology, clear cell carcinoma 80 (80.8) 72 (72.7) 0.246

Clavien-Dindo ≥ 3 0 (0) 2 (2.0) 0.497

Trifecta 80 (80.8) 81 (81.8) 1.000

We next assessed WIT and EBL in the RENAL score category. Each group was divided
into the low RENAL score (4–7) or high RENAL score (8–12). The low RENAL score
group included 121 patients (ADCT, 55; UHR-CT, 66), while the high RENAL score group
included 77 patients (ADCT, 44; UHR-CT, 33). There was no significant difference in EBL
in the low or high RENAL score group (ADCT 30 vs. UHR-CT 25, p = 0.206; and ADCT
71 vs. UHR-CT 57, p = 0.178, respectively) (Figure 4A,B), while the WIT of the UHR-CT
group was significantly shorter than that of the ADCT group in the low RENAL score
group (ADCT 15 vs. UHR-CT 13, p = 0.042) but not in the high RENAL score group (ADCT
19 vs. UHR-CT 21, p = 0.927) (Figure 4C,D).
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and urinary vascular structures surrounding it, we believe that UHR-CT might be an op-
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Figure 4. Estimated blood loss (EBL; in mL) of the low (A) and high (B) RENAL score (ADCT vs.
UHR-CT, median with interquartile range) groups. WIT (minutes) of low (C) or high (D) RENAL score
(ADCT vs. UHR-CT, median and interquartile range). ADCT, area-detector computed tomography;
UHR-CT, ultra-high-resolution computed tomography.

With respect to renal function, there were no significant intergroup differences in the
postoperative preservation ratio of eGFR at 3 or 6 months of follow-up (ADCT 91.8% vs.
UHR-CT 93.5%, p = 0.195; and ADCT 91.7% vs. UHR-CT 94.0%, p = 0.160, respectively).
(Supplementary Figure S2A,B).
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4. Discussion

To achieve successful outcomes for RAPN, especially in cases of highly complex
tumors, it is necessary to clearly visualize precise information about the key anatomical
structures. However, even using recently developed novel augmented-reality imaging
techniques [30–32], we could not obtain sufficiently precise information for RAPN because
ADCT might not provide sufficient image quality. To address these disadvantages, UHR-CT
was initiated.

As mentioned above, the reconstructed data in the x-y plane obtained by HR mode
with UHR-CT were superior to those obtained by ADCT. In addition, the use of model-
based IR and DLR methods to UHR-CT from 2016 to 2019 may have improved its vascular
structure visualization over ADCT using the hybrid-type IR method. Therefore, our results
are compatible with those of previous studies [10]. Because RAPN success depends on
the obtainment of accurate information on the anatomical relationships of the tumor and
urinary vascular structures surrounding it, we believe that UHR-CT might be an optimal
tool, especially for vascular structure evaluations. UHR-CT was first used to construct 3D
images for intraoperative navigation during RAPN.

In this study, perioperative outcomes and renal function at 3 and 6 months after
RAPN were compared between the UHR-CT and ADCT groups after propensity score
matching. The EBL during RAPN was significantly lower in the UHR-CT group than in the
ADCT group. We believe that the EBL was significantly less with intraoperative navigation
using UHR-CT because it provided accurate information about the vascular structures,
including small vessels such as the segmental renal artery. Furthermore, the median WIT
was significantly shorter in the UHR-CT group than in the ADCT group, and both were
less than 25 min. Considering our observation that WIT was significantly shorter in the
low RENAL score group, RAPN procedures for tumors that were not highly complex were
steadily performed with intraoperative navigation using UHR-CT.

Warm ischemic damage is regarded the most important factor affecting postoperative
renal function [33]. Therefore, intensive efforts have been made to minimize the damage
induced by warm ischemia during PN. UHR-CT image data reconstructed on a 3D work-
station indicate, for example, in which direction the tumor should be excised and how
deeply it penetrates, allowing for an accurate preoperative simulation of its surface left
behind after the excision, including where vascular stumps will be exposed and where
the urinary tract will open. We believe that obtaining this accurate information with an
intraoperative navigation system using UHR-CT leads to a decreased EBL and WIT versus
ADCT. Although there were no significant intergroup differences in the postoperative
preservation of eGFR at 3 or 6 months of follow-up, the decrease in EBL and WIT acquired
with UHR-CT may benefit future renal function.

This study had several limitations. First, it was a retrospective single-institution
study that lacked well-designed analyses. The reconstruction modes used with UHR-CT
varied over time, which may have affected our results, and the potential for bias must be
considered. Second, to adjust for clinical and demographic heterogeneity, we performed
a matched-pair analysis, which resulted in a small sample size. Third, although all our
surgeons have sufficient experience in performing RAPN, their technical proficiencies may
have varied.

5. Conclusions

Here we developed an intraoperative navigation system that produces accurate image
data using a 3D workstation. Although no differences in short-term renal function were
observed, the UHR-CT resulted in shorter WIT and reduced EBL than ADCT in this
propensity score–matched cohort. To the best of our knowledge, this is the first report to
demonstrate the feasibility and usefulness of UHR-CT for intraoperative surgical navigation
during RAPN.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14082047/s1, Figure S1: Schematic demonstrating the
difference in detector architecture between ultra-high-resolution computed tomography (CT) and
area-detector CT, Figure S2: Preservation ratio of postoperative eGFR at 3 or 6 months (ADCT vs.
UHR-CT, median with interquartile range).
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