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ABSTRACT: As blood cholesterol increases, it accumulates in the
intima of blood vessels, elevating the risk of atherosclerosis and
coronary artery disease. Drugs that inhibit enzymes essential for
cholesterol synthesis are effective in improving blood cholesterol
levels. Statins are used to treat hypercholesterolemia as they inhibit
3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase
(HMGR), the rate-limiting enzyme in cholesterol synthesis. Statins
are known to exert their effects by translocating to the liver, where
they are taken up by the organic anion transporting polypeptide
1B1 (OATP1B1). Therefore, we hypothesized that a compound
with high HMGR inhibitory activity and high affinity for OATP1B1
would be an excellent new therapeutic agent for hypercholester-
olemia with increased liver selectivity and fewer side effects. In this
study, we developed two models for predicting HMGR inhibitory activity and OATP1B1 affinity to propose the chemical structure
of a new therapeutic agent for hypercholesterolemia with both high inhibitory activity and high liver selectivity. HMGR inhibitory
activity and OATP1B1 affinity prediction models were constructed with high prediction accuracy for the test data: r2 = 0.772 and
0.768, respectively. New chemical structures were then input into these models to search for candidate compounds. We found
compounds with higher HMGR inhibitory activity and OATP1B1 affinity than rosuvastatin, the most recently developed statin drug,
and compounds that did not have a common structure of statins with high HMGR inhibitory activity.

1. INTRODUCTION
Cholesterol is essential for living organisms and is a
component of cell membranes, bile acids, and steroid
hormones. However, as blood cholesterol increases, cholesterol
accumulates in the intima of blood vessels, increasing the risk
of atherosclerosis and coronary artery disease.1 Drugs that
inhibit enzymes essential for cholesterol synthesis can be used
to improve blood cholesterol levels.2 Statins, which are
inhibitors of 3-hydroxyl-3-methylglutaryl coenzyme A
(HMG-CoA) reductase (HMGR), are used to treat hyper-
cholesterolemia because they inhibit HMGR or the rate-
limiting enzyme in cholesterol synthesis.2

Although statins are generally considered safe drugs, serious
side effects exist, including skeletal muscle disorders such as
rhabdomyolysis, myopathy, and renal impairment;3 thus,
statins are required to have fewer side effects. The cause of
these side effects is believed to be the action of statins on
tissues other than the liver. To mitigate these side effects, a
strategy is being implemented to minimize drug distribution to
tissues other than the liver.4 Drug uptake into the liver is
known to involve transporters, and many statins are known to
be taken up by organic anion transporting polypeptide 1B1
(OATP1B1).4,5 Therefore, compounds with high HMGR
inhibitory activity and high affinity for OATP1B1 would be

an excellent new treatment for hypercholesterolemia with
increased selectivity for the liver and fewer side effects.

As the development of a new drug generally takes 8−15
years and incurs huge costs, many studies have been conducted
to improve its efficiency.6 In silico drug discovery is attracting
attention as a way to dramatically increase the efficiency of
drug development.7 Quantitative structure−activity relation-
ship (QSAR)8 model, constructed between the activity and
molecular descriptors of chemical structures with compounds
using machine learning, can predict the activity of new
chemical structures.

The purpose of this study was to propose the chemical
structures of a new treatment for hypercholesterolemia that has
both high HMGR inhibitory activity and liver selectivity by
constructing QSAR models to predict HMGR inhibitory
activity and OATP1B1 affinity for efficient drug development.
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High-activity chemical structures were obtained using both
models, and data from publicly available databases and
published experimental data were used to construct the two
QSAR models. The molecular descriptors calculated from the
compound structures were used as explanatory variables to
construct models for predicting the objective variables. The
objective variable for the QSAR model predicting the HMGR
inhibitory activity was pIC50, which is the negative logarithm of
the half-maximal inhibitory concentration (IC50). For the
QSAR model predicting the OATP1B1 affinity, pKm, which is
the negative logarithm of the Michaelis constant (Km), was
used as the objective variable. Using these two models for
virtual screening, we searched for the chemical structure of a
new treatment for hypercholesterolemia with high HMGR
inhibition activity and liver selectivity.

2. METHOD
2.1. Data Collection. An HMGR inhibitor dataset was

downloaded from the ChemBL database (ChEMBL3247).
Compounds with IC50 data were selected, and their IC50 was
converted to pIC50 using a negative log transformation.
Duplicate samples within a dataset were averaged to obtain
the pIC50 values. After processing, 833 compounds were
retained in the samples. These compounds were descriptorized
using the RDKit software.9 These compounds were then split
into training and test sets at a ratio of 70:30 and subjected to
machine learning QSAR modeling.

The dataset for the OATP1B1 substrates was based on
ChEMBL data (CHEMBL1697668) and additional data from
the literature.10 Compounds with Michaelis constants (Km)
were selected; Km was transformed to pKm using a negative log
transformation. Duplicate samples in the dataset were averaged
to obtain the pKm values. After processing, 41 compounds were
retained in the samples. These compounds were descriptorized
using the RDKit software.

2.2. QSAR Model Development. The regression analysis
methods used were ordinary least squares (OLS), partial least
squares regression (PLS), ridge regression (RR), least absolute
shrinkage and selection operator (LASSO), elastic net (EN),
linear support vector regression (LSVR), nonlinear support
vector regression (NLSVR), decision tree (DT), random forest
(RF), Gaussian process regression (GPR), gradient boosting
decision tree (GBDT), XGBoost (XGB), and the light gradient
boosting model (LGBM). In the regression analysis, the
hyperparameters were selected by maximizing the determi-
nation coefficients computed after a fivefold cross-validation
procedure.

The dataset was divided into training and test data, and the
predictive ability of models constructed with training data was
validated with test data. The coefficient of determination r2 (eq
1), root-mean-square error (RMSE) (eq 2), and mean absolute
error (MAE) (eq 3) were used as indicators to evaluate the
estimation performance of the model and are given as follows:
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where r2 is a measure of variability; if it is close to 1, the plots
are clustered on the diagonal of the scatterplot. RMSE and
MAE are measures of the overall error magnitude; the closer
they are to zero, the smaller the error.

For the HMGR inhibition and OATP1B1 affinity prediction
models, the model with the highest prediction accuracy was
compared with and without feature selection using the Boruta
algorithm. Boruta is a method for selecting important features
according to the importance of variables calculated using RF.
The percentile was set at 80.

A conformer-based 3D-QSAR (C3D-QSAR)11 was used to
construct an HMGR inhibition prediction model. C3D-QSAR
is a method for generating conformers and constructing a
QSAR model using representative descriptors (maximum,
minimum, median, and average values) of each three-
dimensional structure descriptor. Samples for inverse analysis
by C3D-QSAR were subjected to inverse analysis by 2D-
QSAR, and compounds predicted to have high inhibitory
activity were used.

Descriptors were calculated using RDKit software for the
2D-QSAR model of HMGR inhibition. A total of 130
descriptors were selected by eliminating those for which the
fractions of samples with the same values were 95% or higher.
A regression model [y = f(X)] was established to describe the
relationship between the descriptors (X) and pIC50 values (y).

Mordred12 was used to calculate the descriptors for C3D-
QSAR analyses of HMGR inhibition. A regression model [y =
f(X)] was established to describe the relationship between the
descriptors (X) and pIC50 values (y). The regression analysis
method was the same as that used for the 2D-QSAR model for
HMGR inhibition. The 180 descriptors were selected using the
Boruta algorithm after eliminating the descriptors for which
the fractions of samples with the same values were 95% or
higher.

RDKit was used to calculate the descriptors for the 2D-
QSAR analyses of OATP1B1 affinity. A regression model [y =
f(X)] was established to describe the relationship between the
descriptors (X) and the pIC50 values (y). The prediction
accuracies of different methods were compared by double
cross-validation (DCV).13 For the internal and external cross-
validations (CVs), five-fold and leave-one-out CV techniques
were used. The regression analysis method was the same as
that used for the 2D-QSAR model for HMGR inhibition. A
total of 141 descriptors were selected by eliminating those for
which the fractions of samples with the same values were 95%
or higher.

2.3. Inverse Analysis. Two datasets were used as
compounds for inverse analysis. The first dataset used
compounds from ZINC20.14 In general, compounds with
high water solubility are difficult to transfer into cells by
passive diffusion. This reduces side effects because they are less
likely to migrate to organs other than the liver. Therefore, in
this study, we used compounds with a log P of 2.5, among the
compounds included in ZINC20. This dataset is hereafter
referred to as the ZINC20 dataset. For the second dataset, we
used compounds that generated chemical structures with a
dihydroheptanoic acid structure, a common statin structure.
The generation of chemical structures is described in ref 15.
This dataset is hereinafter referred to as the SGBR dataset. The
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ZINC20 and SGBR datasets were inputted into the 2D-QSAR
model for HMGR inhibition. Compounds with a predicted
pIC50 greater than 8.0 were extracted as active compounds.
The extracted compounds were used as samples for inverse
analysis of the C3D-QSAR model for HMGR inhibition and
the 2D-QSAR model for OATP1B1 affinity. As the newest
statin currently on the market is rosuvastatin, the activity value
of rosuvastatin was used as a reference. Since the pIC50 of
rosuvastatin is 8.43 when calculated using the C3D-QSAR
model, compounds with predicted values of around 8.43 were
selected as compounds with high inhibitory activity. Similarly,
the pKm for rosuvastatin was calculated to be 1.71 using the
2D-QSAR model for OATP1B1 affinity, and thus, compounds
with predicted values around 1.71 were selected as high-affinity
compounds.

We established an applicability domain (AD)16 for various
prediction models because the performance of models is
unreliable when predicting new samples in extrapolated
regions. In this study, the distance calculated using the k-
nearest-neighbor algorithm17 was used as a measure of AD.
When a new sample was obtained, the average of the Euclidean
distances of the k-nearest neighbor samples from the new
sample was calculated. If the average value was less than the
threshold value, the sample was considered to be inside the
AD. The threshold was set to 99.7% of the mean of the
ascending training data. This threshold is derived from the 3-
sigma rule,18 which gives a probability of 0.997 for a sample
inside an AD.

3. RESULTS AND DISCUSSION
3.1. Model Construction. 3.1.1. 2D-QSAR Model for

HMGR Inhibition. The statistics representing the estimation
errors of the test data predicted by the different algorithms are
listed in Table 1. As a result, LGBM was selected as the

algorithm with the highest prediction accuracy because its r2
was close to 1, and its MAE and RMSE were small. A plot of
the predicted and measured values predicted by the LBGM
based on the test data is shown in Figure 1. High prediction
accuracy was confirmed by a good diagonal fit.
3.1.2. C3D-QSAR Model for HMGR Inhibition. The

statistics representing the estimation error in predicting the
test data using different algorithms are presented in Table 2. As
a result, the algorithm with the highest prediction accuracy was

selected because the r2 of GRP is close to 1, and the MAE and
RMSE are small. A plot of the predicted and measured values
predicted by GPR on the test data is shown in Figure 2. High
prediction accuracy was confirmed by a good diagonal fit
(Table 2).

3.1.3. 2D-QSAR Model for OATP1B1 Affinity. The results of
the comparison of the prediction accuracy of each method
using the DCV are listed in Table 3. LASSO was selected as
the algorithm with the highest prediction accuracy because its
r2 was close to 1, and its MAE and RMSE were small. A plot of
the predicted and measured values predicted by LASSO for the
test data is shown in Figure 3. High prediction accuracy was
confirmed by a good diagonal fit.

Table 1. Summary of the Statistical Parameters Is Derived
from the 2D-QSAR Model for HMGR Inhibition in Test
Data

r2 MAE RMSE

OLS −1.134 2.193 0.876
PLS 0.213 1.332 1.045
RR 0.583 0.97 0.775
LASSO 0.536 1.023 0.809
EN 0.582 0.971 0.772
LSVR 0.467 1.096 0.875
NLSVR 0.68 0.85 0.649
DT 0.186 1.355 1.097
RF 0.724 0.788 0.61
GPR 0.713 0.805 0.618
GBDT 0.705 0.815 0.643
XGB 0.717 0.798 0.613
LGBM 0.765 0.728 0.566

Figure 1. Scatterplot between the observed and the pIC50 is predicted
with LGBM-based 2D-QSAR model for HMGR inhibition in test
data.

Table 2. Summary of the Statistical Parameters Derived
from the C3D-QSAR Model for HMGR Inhibition

r2 MAE RMSE

OLS 0.548 1.009 0.711
PLS 0.617 0.929 0.71
RR 0.616 0.931 0.678
LASSO 0.584 0.968 0.733
EN 0.617 0.929 0.695
LSVR 0.404 1.159 0.901
NLSVR 0.766 0.726 0.535
DT 0.265 1.287 1.017
RF 0.736 0.772 0.596
GPR 0.772 0.716 0.542
GBDT 0.74 0.765 0.575
XGB 0.744 0.76 0.567
LGBM 0.763 0.73 0.544

Figure 2. Scatterplot between the observed and the pIC50 is predicted
with GPR-based C3D-QSAR model for HMGR inhibition in test
data.
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3.2. Inverse Analysis. 3.2.1. 2D-QSAR Model for HMGR
Inhibition. The number of compounds with a predicted pIC50
over 8.0 was 65868 in the ZINC20 dataset and 1753 in the
SGBR dataset. The chemical structures that were particularly
active are shown in Figures 4 and 5. Numerous non-statin-like
compounds were extracted. Various studies have reported the
potential of non-statin-like compounds as HMGR inhibitors.19

3.2.2. C3D-QSAR Model for HMGR Inhibition. Compounds
with a predictive value of around 8.43 were selected as highly
active compounds. There were no compounds in the ZINC
dataset with predicted values greater than 8.43. However, 37
compounds were predicted to be higher than the pIC50 of
pravastatin (7.4), a first-generation statin drug. Some of these
compounds, such as those shown in Figure 6, do not share a
common structure with statins. As shown in Figure 7, there
were two compounds in the SGBR dataset with predicted
values greater than 8.43.
3.2.3. 2D-QSAR Model for OATP1B1 Affinity. Compounds

with a predicted pKm value exceeding 1.71 were selected as
high-affinity compounds. Consequently, 42683 compounds in
the ZINC20 dataset exceeded the predicted value of 1.71.
Figure 8 shows the chemical structures of compounds with
pKm predictions exceeding 1.71 and pIC50 exceeding 7.4, as
predicted in Section 3.2.2 C3D-QSAR Model for HMGR
Inhibition. In the SGBR dataset, 911 compounds had
predicted values exceeding 1.71. The active chemical structures
are shown in Figure 9.
3.2.4. Chemical Structures of New HMGR Inhibitor

Candidates. The chemical structure shown in Figure 10
exhibited higher predicted pIC50 and pKm values than those of
rosuvastatin.

When the HMGR inhibitory activity was predicted, the
chemical structure with an isopropyl group had a higher
predicted HMGR inhibitory activity than the chemical

Table 3. Summary of the Statistical Parameters Is Derived
from 2D-QSAR Model for 2D-QSAR Model for OATP1B1
Affinity

r2 MAE RMSE

OLS −2.152 1.681 1.128
PLS 0.579 0.615 0.478
RR 0.674 0.541 0.429
LASSO 0.768 0.456 0.357
EN 0.669 0.545 0.436
LSVR 0.534 0.646 0.491
NLSVR 0.083 0.907 0.6
DT 0.369 0.752 0.545
RF 0.605 0.595 0.419
GPR 0.348 0.765 0.516
GBDT 0.188 0.853 0.582
XGB 0.327 0.777 0.598
LGBM −2.152 1.681 1.128

Figure 3. Scatterplot between the observed and the pKm predicted
with LASSO-based 2D-QSAR model for OATP1B1 affinity in test
data.

Figure 4. Chemical structures with pIC50 predictions over 8.0 by 2D-QSAR on the ZINC20 dataset.
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structure with a methyl group. This is consistent with the
results reported by Beck et al.20 Wang et al. studied the
interaction of atorvastatin derivatives with HMGR using MD
simulations and reported that the three rings attached to the
pyrrole ring interact hydrophobically with HMGR.21 The
phenyl group in the chemical structure shown in Figure 10
may also exhibit high inhibitory activity due to similar
hydrophobic interactions. Istvan et al. reported a hydrogen

bond between the carbonyl oxygen of atorvastatin and Ser 565
of HMGR.22 Since the chemical structure shown in Figure 10
is similar to that of atorvastatin, it may interact with Ser 565 of
HMGR and inhibit the activity of HMGR in the same way as
atorvastatin. In addition, the compound shown in Figure 10
has a hydroxyl group attached to the phenyl group. These
hydroxyl groups may interact with HMGR by binding to
hydrophilic amino acid residues. Gui et al. suggested that a

Figure 5. Chemical structures with pIC50 predictions over 8.0 by 2D-QSAR on the SGBR dataset.

Figure 6. Chemical structures with pIC50 predictions over 7.4 by C3D-QSAR on the ZINC dataset.
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sterically large hydrophobic region in the center with either a
negative charge or polar groups at either end could interact
with OATP1B1.23 In the compound in Figure 10, the structure
is similar, so the results are consistent with those reported by
Gui et al. Based on these observations, it is possible that the
compound with the chemical structure shown in Figure 10 is a

better statin drug than rosuvastatin because of its high HMGR
inhibitory activity and high OATP1B1 affinity.

None of the compounds in the ZINC dataset were predicted
to have higher HMGR inhibitory activity than rosuvastatin.
However, we found that several compounds, such as those
shown in Figure 8, were predicted to have higher inhibitory

Figure 7. Chemical structures with pIC50 predictions over 8.43 by C3D-QSAR on the SGBR dataset.

Figure 8. Chemical structures with pKm predictions over 1.71 by 2D-QSAR and pIC50 predictions over 7.4 by C3D-QSAR on the ZINC dataset.
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activity than pravastatin, some of which had predicted pKm
values greater than those of rosuvastatin. They are potentially
new HMGR inhibitors because these compounds are more
likely to be transferred to the liver than rosuvastatin.

4. CONCLUSIONS
In this study, we assumed that compounds with high HMGR
inhibitory activity and high affinity for OATP1B1 would be
suitable as hyperlipidemic drugs, and constructed HMGR
inhibition prediction models and OATP1B1 affinity prediction
models. Two datasets, ZINC20 and SGBR dataset, were used
as screening data. We identified compounds with higher
HMGR inhibitory activity and OATP1B1 affinity than those of

rosuvastatin in the SGBR dataset. Although there were no
compounds in the ZINC20 dataset with HMGR inhibitory
activity higher than that of rosuvastatin, there were compounds
with HMGR inhibitory activity higher than that of pravastatin
that may be potential new HMGR inhibitors.

In this study, three regression models were constructed and
used to propose new statin chemical structures. All constructed
models had high prediction accuracy. In addition, the proposed
chemical structures had higher pIC50 or pKm values than
known statins, suggesting that they may be excellent statin
drugs. However, their study was limited to predictions using
QSAR. In future studies, it will be necessary to synthesize these
compounds and measure their activity experimentally. Addi-
tionally, other transporters such as OATP2B1 and toxicity
effects should be considered in the future.
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