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Abstract

Quantitative trait loci (QTL) hotspots (genomic locations enriched in QTL) are a common and notable feature when collecting many QTL
for various traits in many areas of biological studies. The QTL hotspots are important and attractive since they are highly informative and
may harbor genes for the quantitative traits. So far, the current statistical methods for QTL hotspot detection use either the individual-level
data from the genetical genomics experiments or the summarized data from public QTL databases to proceed with the detection analysis.
These methods may suffer from the problems of ignoring the correlation structure among traits, neglecting the magnitude of LOD scores
for the QTL, or paying a very high computational cost, which often lead to the detection of excessive spurious hotspots, failure to discover
biologically interesting hotspots composed of a small-to-moderate number of QTL with strong LOD scores, and computational intractabil-
ity, respectively, during the detection process. In this article, we describe a statistical framework that can handle both types of data as well
as address all the problems at a time for QTL hotspot detection. Our statistical framework directly operates on the QTL matrix and hence
has a very cheap computational cost and is deployed to take advantage of the QTL mapping results for assisting the detection analysis.
Two special devices, trait grouping and top cn;a profile, are introduced into the framework. The trait grouping attempts to group the traits
controlled by closely linked or pleiotropic QTL together into the same trait groups and randomly allocates these QTL together across the
genomic positions separately by trait group to account for the correlation structure among traits, so as to have the ability to obtain much
stricter thresholds and dismiss spurious hotspots. The top cn;a profile is designed to outline the LOD-score pattern of QTL in a hotspot
across the different hotspot architectures, so that it can serve to identify and characterize the types of QTL hotspots with varying sizes and
LOD-score distributions. Real examples, numerical analysis, and simulation study are performed to validate our statistical framework, inves-
tigate the detection properties, and also compare with the current methods in QTL hotspot detection. The results demonstrate that the
proposed statistical framework can effectively accommodate the correlation structure among traits, identify the types of hotspots, and still
keep the notable features of easy implementation and fast computation for practical QTL hotspot detection.
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Introduction

The quantitative trait loci (QTL) mapping experiments have been
performed for traditional traits (such as yield and quality in
rice, weight and body fat percentage in animals, and diabetes and
hypertensions in human) and molecular traits (such as gene ex-
pression or protein levels using the newly developed microarray
technique) to explore the genetic mechanisms of these traits in
various organisms and many areas of biological studies. When
performing on traditional traits, a single experiment can produce
abundant marker genotypes but usually consider only a few
traits, say about 10–20 traits, in the population, since measuring
traditional traits can be time-consuming and a costly process. On
the contrary, when the experiment is conducted on molecular
traits (called the genetical genomics experiment), with the aid of
a high-throughput molecular biology techniques, it can not only
produce abundant marker genotypes but also generate thou-
sands of molecular traits for the individuals at a time (Jansen and
Nap 2001; Brem et al. 2002). To detect the QTL for these traits,

many statistical methods have been proposed to analyze the QTL
mapping data for the estimation of QTL parameters, including
the QTL effects and positions, epistasis among QTL, heritabilities,
etc. (Lander and Botstein 1989; Haley and Knott 1992; Jansen
1993; Zeng 1994; Kao et al. 1999; Sen and Churchill 2001; Xu 2003;
Broman et al. 2003; Kao 2006; Lee et al. 2014; Wei and Xu 2016; da
Silva Pereira et al. 2020). In QTL mapping for either the traditional
or molecular traits, it has been observed that QTL are highly
abundant in some of the genomic regions and that QTL responsi-
ble for correlated traits are frequently clustered closely together
in some specific genetic regions as compared to other regions
(Goffinet and Gerber 2000; Schadt et al. 2003; Chardon et al. 2004;
West et al. 2007; Breitling et al. 2008; Wu et al. 2008; Wang et al.
2014; Basnet et al. 2015; Yang et al. 2019). These regions enriched
in QTL are referred to as QTL hotspots, and, statistically, they
harbor a significantly higher number of QTL than expected by
random chance. It has been noted that the phenomenon of QTL
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hotspots may have several causes, such as: QTL with high allelic
polymorphisms have a greater chance of being detected in differ-
ent crosses and environments; pleiotropic or closely linked QTL
that control correlated traits are frequently co-localized in the
same regions in different experiments (Falconer and Mackay
1996; Zhao et al. 2011; Vuong et al. 2015; Mengistu et al. 2016;
Zhang et al. 2020). As the QTL hotspots can lead to identifying
genes that affect the traits of interest, and further help to build
networks among QTL hotspots, genes, and traits, the QTL hotspot
detection analysis at genome-wide level has been a key step to-
ward deciphering the genetic architectures of quantitative traits
in genes, genomes, and genetics studies (Breitling et al. 2008; Fu
et al. 2009; Neto et al. 2012; Wang et al. 2014; Yang et al. 2019).

Genome-wide QTL hotspot detection first needs to collect data
with many QTL to proceed with the detection analysis. So far,
both the genetical genomics experiments and public QTL data-
bases can provide the data sets with many QTL for the hotspot
analysis, but note that these two data sources have different
structures. The genetical genomics experiment contains
individual-level data (containing the original marker genotypes
and many molecular traits) that allow to detect thousands of
QTL in a single experiment. And public database (such as
GRAMENE, Q-TARO, Rice TOGO browser, PeanutBase, and
MaizeGDB) curates thousands of summarized QTL data (contain-
ing the detected QTL, trait names, and reference sources without
any individual-level data) for various traditional traits from nu-
merous independent QTL experiments. Using these two types of
data, several statistical methods mainly based on permutation
tests have been proposed to detect QTL hotspots. West et al.
(2007), Wu et al. (2008), Li et al. (2010), Breitling et al. (2008), and
Neto et al. (2012) developed statistical methods to detect QTL hot-
spots using the genetical genomics experiments. The methods of
West et al., Wu et al., and Li et al. (the Q-method) first perform QTL
mapping at all genomic positions for all traits to construct a QTL
matrix. Then, they permuted the row elements of the QTL matrix
separately by trait to compute the thresholds of hotspot size
(in terms of the number of QTL) for assessing the significance of
QTL hotspots. As these methods do not account for the correla-
tion structure among traits, the thresholds are severely underes-
timated, leading to the detection of too many spurious hotspots
(Breitling et al. 2008; Neto et al. 2012). To consider the correlation
structure among traits, Breitling et al. (2008) permuted the
individual-level data by shuffling the all traits relative to geno-
types to generate numerous permuted data sets and then per-
formed QTL mapping on each of the permuted data sets to obtain
the QTL matrices and determine the hotspot thresholds in
hotspot detection. The way of permutation in Breitling et al. (the
N-method) can preserve the correlation structure among traits
and provide stricter thresholds to prevent spurious hotspots due
to non-genetic correlation. However, without considering the
magnitude of the LOD scores for QTL, biologically interesting hot-
spots composed of a moderate-to-small number of QTL with
strong LOD scores may be missed and discarded as nonsignifi-
cant (Neto et al. 2012). To further consider the LOD scores of QTL
in hotspot detection, Neto et al. (2012) adopted the same permu-
tation schemes and took the magnitude of LOD scores into ac-
count to compute a series of LOD thresholds for different hotspot
sizes. The approach of Neto et al. (the NL-method) can effectively
discover hotspots containing a moderate-to-small number of
QTL with strong LOD scores. Later, using the summarized QTL
data in public databases, Yang et al. (2019) proposed a statistical
procedure that operates on the QTL matrix with trait grouping to
tackle the issue in genome-wide QTL hotspot detection. As well

noted, the methods by permuting the individual-level data (the
N- and NL-methods) involve repeated the QTL mapping analysis
in each permutation and will suffer from the problem of compu-
tational intractability and may require parallel computations to
complete the analyses (Neto et al. 2012). On the contrary, the
methods by permuting the QTL [or expected QTL frequency
(EQF)] matrix (the Q and Yang et al. methods) need to perform
QTL mapping analysis only once in the whole procedure and,
therefore, can offer the advantage of easy implementation and
very cheap computation for QTL hotspot detection (Yang et al.
2019).

In this article, we introduce a general statistical framework
that can handle both types of data as well as take care of all the
above concerns, including the correlation structure among traits,
the magnitude of LOD scores of QTL in a hotspot and computa-
tional cost, for QTL hotspot detection. Our statistical framework
operates on the QTL matrix or the EQF matrix and hence is very
cheap in computation. By taking the advantages of using the
individual-level data in genetical genomics experiment, the esti-
mates of QTL parameters and the LOD scores at every position
for all traits can be obtained by the QTL mapping technique and
used to benefit the QTL hotspot analysis. Our statistical frame-
work attempts to take the QTL mapping results into account to
address the concerns and facilitate the hotspot detection. Two
special devices, trait grouping and top cn;a profile, are deployed in
the framework. In trait grouping, we first show that traits con-
trolled by the tightly linked or pleiotropic QTL (tightly linked or
pleiotropic traits) may have arbitrary values at their phenotypic
or genetic correlations, and hence we use the estimated QTL posi-
tions, rather than the phenotypic or genetic correlations among
traits, to make inference about the tightly linked and/or pleiotro-
pic traits for trait grouping. Then, the permutation algorithm of
Yang et al. (2019) is deployed to randomly shift the tightly linked
and/or pleiotropic QTL together along the genome separately by
trait group, accounting for the correlation structure among traits,
to compute a series of EQF thresholds, cn;as, for hotspot detection.
For each hotspot, we profile the top cn;a thresholds and use the
profile to outline the LOD-score pattern across the different LOD
thresholds. The top cn;a profile can then serve to characterize the
types of hotspots with varying sizes and LOD-score distributions,
so as to have the ability to assess the small and moderate hot-
spots with strong LOD scores. In this way, our framework can
overcome the underestimation of threshold arising from ignoring
the correlation structure among traits and also identify the differ-
ent types of hotspots with very low computational cost during
the detection process. Numerical analysis, simulation study, and
real examples are conducted to explore the patterns of genetic
correlations between closely linked and/or pleiotropic traits, in-
vestigate the properties of the proposed statistical framework,
and assess the performances and compared with the current
approaches. We demonstrate that the proposed statistical frame-
work can deal with both types of data, effectively accommodate
the correlation structure among traits, hotspot sizes, LOD score
distributions among QTL, and still keep the notable features
of easy implementation and fast computation to benefit hotspot
detection.

Materials and methods
Our statistical framework aims to operate on both the summa-
rized data from public databases and individual-level data
from genetical genomics experiments for QTL hotspot detection.
The key and basic idea of our framework is to perform
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permutation analysis on the QTL matrices or EQF matrices,
rather than on the original individual-level data, and to well uti-
lize the QTL mapping results in the process of QTL hotspot detec-
tion. Since the summarized data are an intermediate component
in the detection process of using the original individual-level
data, the framework for operating on the individual-level data to
detect the QTL hotspots is first described, and that for summa-
rized data will follow without additional treatment. In the follow-
ing, how the QTL matrices are constructed from the different
LOD thresholds in QTL mapping using the individual-level data is
first described. Then, we convert the QTL matrices into the EQF
matrices by assuming that the QTL position is normally distrib-
uted over its own QTL interval. After that, we show that using the
estimated QTL positions is more effective than using the pheno-
typic or genetic correlations in the inference of closely linked
and/or pleiotropic traits, which will be grouped together into the
same trait groups for the permutation analysis. Then, the permu-
tation algorithm of Yang et al. (2019) that permutes the closely
linked and/or pleiotropic QTL together across the genome in each
trait group is outlined and applied to the QTL matrices or EQF
matrices, and each computes a series of EQF thresholds, cn;as,
varying from strict to liberal, for assessing the hotspot signifi-
cance. For every hotspot, we profile the top cn;a’s thresholds
across the different EQF matrices and use the top cn;a profile to
identify the different types of QTL hotspots with varying sizes
and LOD-score distributions. Numerical analysis, simulation
study, and real examples are followed to validate our statistical
framework, investigate the detection properties, and also com-
pare with the current methods in QTL hotspot detection.

LOD scores and QTL matrices
A variety of QTL mapping methods have been proposed to esti-
mate the genetic architecture parameters of quantitative traits
(see Introduction). Using these methods, for each trait, a (partial)
likelihood-ratio test (LRT) statistic or an LOD score (1 LOD� 4.6
LRT) is calculated to test for the existence of a QTL at every geno-
mic position. The LOD scores at every position for all traits can be
recorded into an LOD score matrix. Then, given a predetermined
LOD threshold for the test, the LOD score matrix can be con-
verted into a QTL matrix by assigning 1 to the detected QTL posi-
tions and 0 otherwise. Several analytical, computational, and
empirical approaches have been developed to determine the ap-
propriate LOD threshold (Lander and Botstein 1989; Churchill
and Doerge 1994; Piepho 2001; Chang et al. 2009; Guo 2011; Kao
and Ho 2012). In general, obtaining thresholds using the analyti-
cal approaches, such as the Gaussian processes by Chang et al.
(2009), Guo (2011), and Kao and Ho (2012), has a very cheap
computational cost and may require the assumption of normal
distribution, and using the permutation test is robust to depar-
tures from normal assumption but needs to handle the problem
of computational intractability. In the context of hotspot detec-
tion analysis, for ease of computation, it is possible that the LOD
thresholds can be determined based on empirical experience or
by using the Gaussian process without bothering to use the per-
mutation tests. Given an LOD threshold, the estimated QTL posi-
tions, their confidence intervals (constructed by using the
asymptotic SD), and LOD support intervals (Lander and Botstein
1989) can be obtained. Note that, in the public databases, neither
LOD scores nor the confidence intervals of QTL positions are
provided, and only the flanking markers of the detected QTL
are recorded. Here, we called the confidence interval of a QTL po-
sition or the marker interval containing a QTL interval. Then, we

can use a QTL matrix (an atypical matrix) with column dimen-
sion equivalent to the genome size and row dimension corre-
sponding to the number of traits to summarize the QTL intervals
for all traits as follows: for each trait, we mount the QTL intervals
onto the elements of a row array as follows: each QTL interval
stands for an element of the length as its width at the corre-
sponding position, and a value of one is given to the element. The
remaining elements will be treated as zeros. Combining the
arrays for all traits will form a QTL matrix, whose elements are
either one or zero with unequal lengths (see Figure 1 in Yang et al.
2019 for graphical illustration). In this way, for a range of LOD
thresholds from relaxed to conservative, say LOD thresholds of
3–8 (by one increment), we can construct several (six) corre-
sponding QTL matrices for operation. The natural choices for the
relaxed and conservative LOD thresholds are the single-trait QTL
mapping threshold controlling genome-wide error rate (GWER)
for one trait and a multiple single-trait QTL mapping threshold
controlling GWER across all traits, respectively, as suggested by
Neto et al. (2012). The QTL matrices constructed with higher LOD
thresholds will contain fewer QTL but of larger LOD scores and
produce smaller hotspot size thresholds. Such a property can be
applied to consider both hotspot size and LOD-score distribution
of QTL for a hotspot in the detection analysis.

Expected QTL frequency, EQF matrices, and EQF
architecture
We assume that m QTL matrices have been constructed from the
LOD score matrix using the m different LOD thresholds
(L1; L2; . . . ; Lm). We now take one QTL matrix as an example to
show how to compute the EQF of a bin and to construct the EQF
matrix. The remaining EQF matrices of the other QTL matrices
can be obtained in the same way. Consider that there are T traits
each mapped for N1; N2; . . . ; NT QTL (intervals), respectively,
where N¼ N1 þ N2 þ � � � þ NT is the total number of QTL. Assume
that the genome is divided into W sequential equally spaced bins,
each with the same size � (say �¼1 or 2 cM), for QTL hotspot
analysis. For a bin x; xþ�ð Þ and a QTL interval a; bð Þ, where x, a,
and b denote the genomic positions, they may have an overlap or
no overlap. When there is an overlap, there is a probability that
the QTL is localized in the bin, and the QTL will contribute a prob-
ability to the EQF value of this bin. Such a QTL will be referred to
as a contributive QTL of a bin. We further assume that the QTL
position is normally distributed over its own QTL interval to com-
pute the contributed probability (EQF value) in a bin. Now let ftw

Figure 1 Phenotypic, genetic, and residual correlations of the 500
randomly selected pairwise traits that controlled by the QTL with LOD
scores larger than 3 in the yeast data set.
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denote the EQF value of the wth bin between x and xþ� for the
tth trait, where t ¼ 1; 2; . . . ;T and w ¼ 1; 2; . . . ;W. We have

ftw ¼
XNt

i¼1

ðvi

ui

Nxðpi; s
2
i Þ d xð Þ

( )
; (1)

where Nt is the number of contributive QTL of the tth trait, ðui; viÞ
is the overlap region, pi is the estimated QTL position (LOD
peak) of the contributed QTL, and s2

i is the asymptotic variance.
The asymptotic variance s2

i can be obtained in two ways: (1)
s2

i ¼ SI=ð2 � 1:96Þ½ �2, where SI is the 95% empirical support inter-
val (Visscher et al. 1996; Lynch and Walsh 1998), and (2) s2

i can be
obtained by the general formulas of Kao and Zeng (1997). For
each contributed QTL, a segment of the cumulative normal dis-
tribution probability ranging from ui to vi is added to the EQF of
the bin. If the bin ðx,xþ�) is on the right (left) side of the QTL po-
sition pi, then we have ui ¼ pi þ x (ui ¼ pi � x) and vi ¼ pi þ xþ
� ðvi ¼ pi � x��). In general, the contributed probability will be
greater if the bin is closer to the LOD peak (QTL position), the bin
size (�) is larger or the LOD score for a QTL is higher. Note that,
for one QTL interval, our method using equation (1) assigns a
fraction (the fractions of the within bins sum to one) and the NL-
method assigns one to each of the within bins. For the QTL data
from public databases, only the flanking markers are available
for the QTL intervals, and the uniform distribution can be used to
replace the normal distribution for computing the EQF value
(Yang et al. 2019). The EQF value can be calculated at each bin for
each single trait to produce the EQF matrix as F ¼ ftw

� �
T�W. The

sum over the EQF values of all traits, i.e., Fw ¼
PT

t¼1 ftw, at every
bin will produce the EQF architecture of the genome (see
Figures 2 or 3). A higher EQF value implies a greater expectation
of localizing a QTL in the bin. A hotspot detection is claimed in
the bin if its EQF value is higher than an EQF threshold that will
be determined by permutation tests below.

Trait grouping
Yang et al. (2019) suggested grouping the genetically correlated
traits together to account for the correlation structure among
traits and overcome the underestimation of threshold, prevent-
ing spurious hotspots. The primary purpose of trait grouping is to
group the tightly linked and/or pleiotropic traits together, and, in
each trait group, the tightly linked and/or pleiotropic QTL are
treated as permutation units and permuted together to cope with
correlation structure among traits and obtain much stricter
thresholds in detection analysis. Here, instead of using the phe-
notypic or genotypic correlations among traits, we use the esti-
mated QTL positions directly to make inference about those
tightly linked and/or pleiotropic traits for trait grouping. The rea-
son is that using phenotypic or genetic correlations among traits
is not effective and sufficient to group together the tightly linked
and/or pleiotropic traits as shown below. Let P, G, and E denote
the phenotypic value, genotypic value, and residual of a quantita-
tive trait, respectively, then we have P ¼ Gþ E as usual. For a pair
of traits, P1 and P2, we can derive

q P1; P2ð Þ ¼ q G1;G2ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 � h2
2

q
þ q E1; E2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� h2

1Þ � ð1� h2
2Þ

q
(2)

(see also Falconer and Mackay 1996), where q P1; P2ð Þ, q G1;G2ð Þ,
and q E1; E2ð Þ are the phenotypic, genetic, and residual correla-
tions between the two traits, respectively, and h2

i is the

heritability. Equation (2) tells that phenotypic correlation be-
tween two traits is an outcome of interplays among genetic corre-
lation, residual correlation, and heritability. Some real examples
of the three correlations between traits include: Zeng et al. (1999)
analyzed the cone number and branch quality in pine and found
that phenotypic correlation is very small (0.013), the genetic cor-
relation is estimated to be significantly negative (�0.196), and the
residual correlation is estimated to be significantly positive
(0.189). The heritabilities are 0.560 and 0.363, respectively. We an-
alyzed the 5,740 molecular traits in the yeast data (Brem and
Kruglyak 2005) and found that there are various types of relation-
ships between the three correlations. Figure 4 presents the phe-
notypic, genetic, and residual correlations of 500 randomly
selected pairs of traits in the yeast data set after performing the
QTL mapping analysis. It shows that, for a pair of traits, high
(low) phenotypic correlation does not imply high (low) genetic
correlation, and vice versa, as the heritability and residual corre-
lation also play roles in affecting the strength of phenotypic cor-
relation. The phenotypic and genetic correlations seem to have
an arbitrary relationship, making accurate prediction of each
other difficult.

We further show that a pair of tightly linked or pleiotropic
traits may have arbitrary values at their genetic correlation
depending on the effects and linkage parameters. First, we con-
sider the case of two monogenic traits. Assume that the first trait,
t1, is affected by a QTL, Qi, and the second trait, t2, is affected
by another QTL, Qj, in a backcross population. We have
q G1;G2ð Þ ¼ 6ð1 � 2rijÞ, where rij is the recombination fraction be-
tween Qi and Qj, despite their effects. The value of q G1;G2ð Þ is
positive (negative) if they have the same (opposite) direction of
effects. If the two traits are pleiotropic (rij ¼ 0Þ, we have
q G1;G2ð Þ ¼ 61. Furthermore, we consider the case of two digenic
traits. Assume that t1 is controlled by Qi and Qk, and t2 is con-
trolled by Qj and Ql. We have the model G1 ¼ l1 þ a1xiþa2xk to
model the genetic value of t1, where xi and xk are coded variables
for Qi and Qk, and a1 and a2 are the effects. Similarly, we have
the model G2 ¼ l2 þ b1xjþb2xl to model the genetic value of t2,
where xj and xl are coded variables for Qj and Ql, and b1 and
b2 are the effects. For Qi–Qj–Qk–Ql order, the genetic correlation
between the two traits is

q G1;G2ð Þ ¼
kija1b1 þ kjka2b1 þ kila1b2 þ kkla2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a2

1 þ a2
2 þ 2kika1a2� � ½b2

1 þ b2
2 þ 2kjlb1b2�

q (3)

where kij ¼ 1 � 2rij is the linkage parameter between Qi and Qj,
showing that the genetic correlation is a function of QTL effects
and linkage parameters. To analyze equation (3), we first con-
sider that the four QTL are tightly linked, located in a 10-cM re-
gion and have the effects with similar magnitude but opposite
sign (a1 ¼ 1; a2 ¼ �1; b1 ¼ 1; b2 ¼ �1 and a1 ¼ 1; a2 ¼ �1; b1 ¼ �1;
b2 ¼ 1Þ to investigate the pattern of genetic correlations. For the
case ða1 ¼ 1; a2 ¼ �1; b1 ¼ 1; b2 ¼ �1Þ, the genetic correlations are
q(g1; g2Þ ¼ 0:823 for ðdij ¼ 1; djk ¼ 5; dkl ¼ 1Þ, q(g1; g2Þ ¼ 0:480 for
ðdij ¼ 2; djk ¼ 2; dkl ¼ 2Þ, q(g1; g2Þ ¼ 0:221 for ðdij ¼ 3; djk ¼ 1; dkl ¼ 3Þ,
and q(g1; g2Þ ¼ 0:028 for d: For the case ða1 ¼ 1; a2 ¼ �1;
b1 ¼ �1; b2 ¼ 1Þ, the genetic correlations are q(g1; g2Þ ¼ �0:823 for
ðdij ¼ 1; djk ¼ 5; dkl ¼ 1Þ, q(g1; g2Þ ¼ �0:480 for ðdij ¼ 2; djk ¼ 2;
dkl ¼ 2Þ, qðg1; g2Þ ¼ �0:221 for ðdij ¼ 3; djk ¼ 1; dkl ¼ 3Þ, and
q(g1; g2Þ ¼ �0:028 for d: It shows that the genetic correlations
between traits controlled by multiple; tightly linked QTL can

have various patterns, ranging from large (60:823Þ to small
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values (close to 0), depending on the effects and linkage parame-
ters. If two traits are pleiotropic for one or two QTL, the genetic
correlation can be 61 (dij ¼ 0; djk ¼ 5; dkl ¼ 0) or close to 0
(dij ¼ 2; djk ¼ 0; dkl ¼ 2). To simplify the analysis, we consider the
case that the two QTL are pleiotropic and unlinked (Q i ¼ Q j,
Qk ¼ Q l, kij ¼ kkl ¼ 1, kik ¼ kil ¼ kjk ¼ kjl ¼ 0) so that equation (3)
reduces to

q G1;G2ð Þ ¼ a1b1 þ a2b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1b1 þ a2b2Þ2 þ ða1b2 � a2b1Þ2

q ; (4)

which can be considered as two different components, one
(a1b1Þ contributed from Q i ¼ Qj and the other (a2b2Þ contributed
from Qk ð¼ Q lÞ. The two components can be positive or negative
and may sum up to any value ranging from �1 to 1 including 0.
Based on equation (4), some examples of arbitrary genetic corre-
lations between the two digenic pleiotropic traits are: If
ða1 ¼ 5; a2 ¼ 2; b1 ¼ 2; b2 ¼ �5Þ, we have a1b1 þ a2b2 ¼ 0 and
q G1;G2ð Þ ¼ 0. If ða1 ¼ 2; a2 ¼ 2; b1 ¼ 2; b2 ¼ 2Þ, we have a1b2 �
a2b1 ¼ 0 and q G1;G2ð Þ ¼ 1. If ða1 ¼ 2; a2 ¼ 2; b1 ¼ �2; b2 ¼ �2Þ,
we have a1b2 � a2b1 ¼ 0 and q G1;G2ð Þ ¼ �1. If ða1 ¼ 5;
a2 ¼ 2; b1 ¼ 2; b2 ¼ 5Þ, we have a1b1 þ a2b2 ¼ 20 and
q G1;G2ð Þ ¼ 0:690. If ða1 ¼ 5; a2 ¼ 2; b1 ¼ �2; b2 ¼ �5Þ, we have
a1b1 þ a2b2 ¼ �20 and obtain q G1;G2ð Þ ¼ �0:690. Again, depend-
ing on the relative sizes and directions of effects, their genetic
correlations can be �1, �0.690, 0, 0.690, and 1, showing that the
digenic pleiotropic traits may have very strong-to-very weak ge-
netic correlations as well as no genetic correlation. If the two
traits only share one pleiotropic QTL (Q i ¼ Q jÞ, we have

q G1;G2ð Þ ¼ a1b1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 þ a2
2Þðb2

1 þ b2
2Þ

q
, which varies between 1 and

�1 (q G1;G2ð Þ < 1Þ depending on the magnitude of the non-
pleiotropic QTL effects (a2 and b2). The genetic correlation created
by the pleiotropic QTL ðQ i ¼ Q jÞ is tuned (reduced) by the other

non-pleiotropic QTL Qk and Q l. The genetic correlation tends to
be smaller, if the non-pleiotropic QTL have larger effects.

To sum up, the above analyses of equations (2–4) tell us that
(1) phenotypic correlation between traits may have no relation-
ship with their genetic correlation; (2) the genetic correlation
between pleiotropic monogenic traits is either �1 or þ1; (3)
depending on their effect sizes and linkage parameters, the
genetic correlations between closely linked or pleiotropic poly-
genic traits may show very weak to very strong genetic correla-
tions, ranging between �1 and þ1, including no genetic
correlations, and the relationship between tightly linked or pleio-
tropic traits and their genetic correlations can be uncertain; (4)
trait grouping based on genetic correlations can only combine
the closely linked or pleiotropic traits with high genetic correla-
tions but will fail to combine those with weak (or no) genetic cor-
relations; and (5) grouping pleiotropic QTL together can control
the correlation components contributed from themselves to ac-
count for the genetic correlations among traits. Based on the
above, instead of using genetic correlations, we suggest directly
using the estimated QTL positions (significant LOD peaks) to
make inference about the closely linked and pleiotropic traits for
trait grouping. For example, we can define those QTL being local-
ized in the same bins (e.g., bin size of 0.5, 1, or 2 cM) as tightly
linked and/or pleiotropic QTL, and group their traits together into
the same trait groups (hereinafter referred to as “empirical trait
grouping”). In each trait group, the tightly linked and/or pleiotro-
pic QTL will be treated as a trunk or unit in permutation, and the
other QTL will be permuted along to account for the correlation

structure among traits and compute stricter thresholds for
assessing the significance of QTL hotspots.

Permutation algorithm for computing the EQF
thresholds cn;a’s
We devise two permutation schemes, the QTL-interval permuta-
tion and the EQF-bin permutation, to compute the EQF thresh-
olds for assessing the significance of QTL hotspots. The QTL-
interval permutation operates on the QTL matrix and then con-
siders the genome to be circular (Cabrera et al. 2012) and ran-
domly swaps the QTL intervals in the circular genome. On the
contrary, the EQF-bin permutation works on the EQF matrix and
then breaks a QTL interval into several EQF bins and randomly
shifts the EQF bins along the genome. When trait grouping is
considered to cope with the correlation structure among traits,
the QTL intervals or EQF bins associated with the tightly linked
and/or pleiotropic QTL will be permuted together across the ge-
nome separately for each trait group to obtain stricter EQF
thresholds. Below the QTL-interval permutation algorithm is first
outlined, and the EQF-bin permutation algorithm will follow
without much difficulty.

Using the m different LOD thresholds, we have converted the
LOD score matrix into the m QTL matrices and then m EQF matri-
ces, respectively. For an EQF matrix, F, we first obtain the EQF
sum over all traits for the W bins and order them from highest
to lowest, Fð1Þ, Fð2Þ, . . ., FðWÞ. Then, we define qFreqðnÞ as the nth
EQF sum of the W ordered observed EQF sums and use qFreqðnÞ
as a test statistic for at least n spurious hotspots under the null
hypothesis that the QTL are randomly distributed in the genome.
The algorithm of the QTL-interval permutation with trait group-
ing for computing the threshold that can control GWER of
qFreq nð Þ at a fixed a level is described below:

1) The traits with tightly linked or pleiotropic QTL are grouped
together. After grouping, there are, say R, trait groups con-
taining g1; g2; g3; . . . ; gR traits, respectively ð

P
gi ¼ TÞ.

2) Generate a new permuted QTL matrix by performing per-
mutation in each trait group as follows: first consider the
genome to be circular. For each trait group, the QTL inter-
vals of the tightly linked or pleiotropic QTL are permuted to-
gether and the other QTL intervals are permuted alone to
obtain a permuted QTL matrix.

3) Obtain the EQF matrix, F�; from the permuted QTL matrix,-
and compute the total EQF sums over all rows for the W
locations in, i.e. F�w ¼

PT
t¼1 f �tw for w ¼ 1; 2; . . . ; W: for

w¼1,2,. . .,W. Then,order the W EQF sums ðF�w 0sÞ from high-
est to lowest as F�ð1Þ; F�ð2Þ; . . . ; F�ðWÞ

4) For a fixed hotspot number n, obtain and store F�ðnÞ . corre-
sponding to the nth EQF sum of the W ordered EQF sums
for F�

5) Repeat steps 1–4 B times so that there are B new permuted
matrices ðnamely; F1; F2; . . . ; FBÞ for obtaining the
F1
ðnÞ; F2

ðnÞ; . . . ; FB
ðnÞ: The B–permutation samples of Fi

ðnÞ; i ¼
1; 2; . . . ; B; are the estimate of the null distribution of the
test statistic qFreq nð Þ for at least n spurious hotspots any-
where in the genome under the null.

6) The upper ð1� aÞ, -quantile of the B-permutation samples
generated in step 5 is the EQF threshold,denoted by cn;a for
qFreq nð Þ for assessing at least n spurious hotspots.

If the EQF-bin permutation with trait grouping is considered,
the permutation is performed on the original EQF matrix, F,
directly. In steps 2 and 3, for each trait group, the EQF bins associ-
ated with the tightly linked or pleiotropic QTL are permuted
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together and those of the other QTL intervals are permuted alone
to obtain a permuted EQF matrix, F� (see also Yang et al. 2019).
Then, we order the W EQF sums (F�wsÞ from highest to lowest
as F�ð1Þ, F�ð2Þ, . . ., F�ðWÞ to obtain the cn;a threshold by using step 4 to
step 6. In this way, the proposed algorithm can deploy both the
EQF-bin permutation and the QTL-interval permutation to com-
pute a series of thresholds, cn;as, for qFreq nð Þs to assess the signif-
icance of QTL hotspots. For n ¼ 1, 2, . . ., k, where k is determined
by b ¼ ck;a (b is the threshold value obtained without trait group-
ing, i.e., by using the Q-method), a series of cn;as ranging from the
most conservative (n ¼ 1) to the most liberal (n ¼ k) can be
obtained and used for assessing the significance of different
numbers of QTL hotspots. By adopting cn;a, it can control GWER
of qFreq nð Þ at level a of detecting at least n spurious hotspots un-
der the null, as detecting more than n hotspots is less likely than
detecting n hotspots given the threshold cn;a. Since the permuta-
tion algorithm is performed on the QTL matrix or EQF matrix and
only one QTL mapping analysis is required in the whole proce-
dure, our framework has a very cheap computational cost as
compared to the N-method and NL-method that need to perform
many repeated QTL mapping analyses, and hence is suitable for
practical use.

The top cn;a profile
The permutation algorithm allows to compute a series of EQF
thresholds, cn;as, for each of the m EQF matrices. Now, we denote
F Lið Þ as the EQF matrix constructed using LOD threshold Li and
cn;aðLiÞs as the corresponding thresholds for F Lið Þ. We define the
top cn;aðLiÞ threshold for a bin w as

Top cn;a Lið Þ ¼ min
n
fcn;aðLiÞg � FwðLiÞ; (5)

where FwðLiÞ is the EQF sum of the bin w over all traits in the F Lið Þ
matrix. That is, the top cn;aðLiÞ threshold is the largest EQF thresh-
old (with the smallest n) for bin w to be significant as a QTL
hotspot in the F Lið Þmatrix. For a hotspot, the smaller the value of
n in the top cn;a threshold is, the relatively more significant it is.
Therefore, in a specific EQF architecture, the top cn;a threshold of
a hotspot can be used to characterize its significance status com-
pared to the other hotspots. For a hotspot, there are m top cn;a

thresholds across all the m EQF architectures. The pattern of (the
n values in) the m top cn;a thresholds can outline how the relative
significance status of a hotspot changes over the different EQF
architectures. For example, in Figure 1B, the hotspot (hotspot A)
has an EQF value 55 in F 2ð Þ and an EQF value 53 in F 6ð Þ. The top
cn;a thresholds are c3;0:05 2ð Þ and c2;0:05 6ð Þ with values of n being 3
and 2, respectively, meaning that the hotspot has a relatively
large amount of QTL with large LOD scores (LOD scores >6) as
compared to other bins. In Figure 1D, the hotspot (hotspot C) has
an EQF value 71 in F 2ð Þ and an EQF value 13 in F 6ð Þ. The top cn;a

thresholds are c2;0:05 2ð Þ and c7;0:05 6ð Þ with values of n being 2 and
7, respectively, meaning that the hotspot has a relatively less
amount of QTL with large LOD scores (LOD scores >6) as com-
pared to other bins. Therefore, by investigating how the value of
n changes among the top cn;aðLiÞ thresholds of a hotspot, we can
understand the LOD-score distribution of a hotspot relative to
those of other hotspots across the different EQF architectures.
In this way, we can compute and profile the top cn;a thresholds
for a hotspot in different F Lið Þ matrices (say Li ¼ 3; 4; 5; 6; 7; 8,
depending on the number of trait and genome size), and further
use the top cn;a profile to outline the LOD-score distribution of
QTL in a hotspot. If the top cn;a profile of a hotspot shows a

decreasing (increasing) pattern of n with Li increasing, we may
conclude that the hotspot contains relatively more (fewer) QTL
with high LOD scores, as compared to other hotspots (see
Figures 1 and 5). If the profile has a nearly flat pattern, we may
infer that the QTL in the hotspot are well-balanced in the magni-
tude of the LOD scores. Based on the above interpretation, the
pattern of top cn;a profile of a QTL hotspot can readily identify
and characterize the types of hotspots with varying sizes and
LOD-score distributions.

Data availability
All data and the R codes for the data analysis used in this article
are available at http://www.stat.sinica.edu.tw/chkao/.

Supplementary material is available at https://doi.org/10.
25387/g3.13614122.

Results
In this section, simulation study and real example analysis
are conducted to illustrate the proposed statistical framework,
investigate the related properties, and evaluate the performance
as well as compare with the current methods in QTL hotspot
detection. In simulation study, we investigate the performance
of the proposed statistical framework and compare with the
Q-method, the N-method, and the NL-method in detecting QTL
hotspots. In real example analysis, we first apply the statistical
framework to analyze the summarized QTL data collected in
GRAMENE rice database (Yang et al. 2019) and then to analyze the
individual-level yeast data set in Brem and Kruglyak (2005) and
compare the results with those in Yang et al. (2019) and Neto et al.
(2012) in QTL hotspot detection, respectively. We also investigate
and validate the patterns of genetic correlations among closely
linked and pleiotropic traits in the yeast data set to confirm the
theoretical analysis in trait grouping.

Simulation study
Yang et al. (2019) have performed the simulation study to show
that the permutation procedure with trait grouping can control
GWERs at the target levels for the QTL data with correlation
structure and has the ability to produce quality results by offer-
ing a sliding scale of thresholds for QTL hotspot detection. In the
Yang et al. simulation study, all traits were assumed to be mono-
genic, and a perfect trait grouping, in which all the simulated
pleiotropic traits were correctly grouped together, is considered
for grouping traits. Here, in addition to considering multigenic
traits, we further show the effectiveness of empirical trait group-
ing, in which the traits with QTL being localized in the same bins
are grouped together, and investigate the ability of top cn;a profile
in characterizing and identifying the different types of QTL
hotspots with varying sizes and LOD-score distributions in the de-
tection analysis. Likewise, we simulate a small-scale genetical ge-
nomics data set that contains 100 backcross progeny with 5
chromosomes of length 100 cM and 600 molecular traits. Each
chromosome contains 50 equally spaced markers, and the bin
size of 2 cM (similar to that in Yang et al. 2019) is used in the
analysis. The 600 traits are assumed to be monogenic or multi-
genic. Three unlinked hotspots A, B, and C are considered: (1) a
small hotspot A is caused by a gene at 50 cM of the first chromo-
some and affects 100 pleiotropic traits with heritabilities 0.3–0.45
showing high LOD scores in QTL mapping; among the 100 pleio-
tropic traits, we assume that 60 traits are monogenic, and the
other 40 traits are digenic or trigenic and also affected by other
genes located in the second and/or fourth chromosome. (2) A big
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hotspot B is caused by a gene located at 50 cM of the third chro-
mosome and contains 300 pleiotropic traits. Among the 300 pleio-
tropic traits, half have heritabilities 0.1–0.45 showing moderate-
to-high LOD scores, and half have heritaibilities 0.3–0.45 showing
high LOD scores. (3) A big hotspot C contains 200 traits and is
caused by a gene at 50 cM of the fifth chromosome. The heritabil-
ities of the 200 traits are 0.1–0.2 showing small LOD scores.
Supplementary Figure S1, A–D, shows the LOD distributions of
the traits in the three hotspots and the distribution of the pair-
wise correlation among traits for the simulated data set. The
pairwise correlations among traits vary from �0.42 to 0.67 with
mean 0.114 (Supplementary Figure S1D). For the purpose of com-
parison, the bin containing the estimated QTL position will be
given to 1 (and 0 otherwise) to construct the QTL matrix for the
operation of the Q-method and our approach. The EQF-bin per-
mutation and empirical trait grouping are adopted in the analy-
sis. We also adopt 1.5-LOD 95% support intervals to decrease the
spread of the hotspots for the N-method and NL-method (Neto
et al. 2012).

The results of the Q-method, N-method, the NL-method, and
the proposed procedure (with empirical trait grouping) are sum-
marized in Supplementary Figure S2, A–F, which are similar to
those in Figure 6 of the Yang et al. paper using perfect trait group-
ing. Supplementary Figure S2A and Figure 1 present the hotspot
architecture constructed using a single-trait LOD threshold of
2.47 (obtained by permutation test) and the 5% significance hot-
spot size thresholds obtained by the Q-method, N-method, and
proposed frameworks. The hotspots on the first, third, and fifth
chromosomes have sizes 55, 214, and 67, respectively. The hot-
spot size thresholds obtained by the Q-method and N-method are
3 and 16, which correspond to c21;0:05 and c13;0:05 by our approach.
Supplementary Figure S2, B–F, present the hotspot architectures
inferred using the NL-method LOD thresholds of 5.19, 3.77, 1.58,
1.36, and 1.13 that aim to control GWER of 5% for spurious
hotspots of sizes 1, 3, 43, 60, and 90, respectively. It shows that, in
addition to detecting the three true hotspots, the Q-method and
N-method also detect several spurious hotspots (20 and 9 in total)
near the true hotspots due to lower thresholds, and the proposed
procedure can produce less spurious hotspots due to higher
thresholds (see Figure 1A). For example, using c2;0:05 ¼ 76 (the
threshold for detecting at least two hotspots) as a threshold, only
the hotspot on the third chromosome is detected (Figure 1A).
Using c4;0:05 ¼ 36 (the threshold for detecting at least four hot-
spots) as a threshold, all the three hotspots can be detected
(Figure 1A). It shows that empirical trait grouping in our frame-
work is effective to cope with the correlation structure among
traits and can obtain stricter thresholds, preventing spurious hot-
spots in QTL hotspot detection. Figure 1, B–D, presents the top
cn;a profiles of the three hotspots, A, B, and C, in the 2- to 6-LOD
EQF architectures. In Figure 1B, the top cn;a profile of hotspot A
has a decreasing pattern with the value of n decreasing from 3 to
2 over the 2- to 6-LOD EQF architectures, indicating that hotspot
A contains relatively more QTL with large LOD scores. In
Figure 1C, the top cn;a profile for hotspot B has a flat pattern with
n¼ 1 for all the EQF architectures, indicating that hotspot B is a
major hotspot containing QTL with balanced LOD scores. In
Figure 1D, the top cn;a profile of hotspot C shows an increasing
pattern with the value of n increasing from 2 to 7 over the five
EQF architectures, indicating that hotspot C contains relatively
fewer QTL with large LOD scores. Therefore, the patterns of top
cn;a profiles can outline the LOD-score distributions of the hot-
spots, A, B, and C, well. To sum up, the simulation study shows
that the proposed statistical procedure with trait grouping and

top cn;a profile has the ability to produce quality results by offer-
ing a sliding scale of thresholds from high to low for QTL hotspot
detection and is applicable to distinguish the different types of
hotspots in the hotspot analysis.

The GRAMENE rice dataset
The GRAMENE database is a web-accessible and common refer-
ence database for crop research. For rice, it collects 8,216 QTL
(N¼ 8,216) responsible for 236 different traits (T¼ 236) from 230
published studies (experiments). The total length of the rice 12
chromosomes is 	1,536.9 cM. There are 1,914 common markers
on the consensus map with an average marker density of one
marker every 0.81 cM. The QTL density is 	5.35 QTL per cM.
Among the 8,216 QTL collected in the GRAMENE database, 309
(3.76%) QTL are localized at markers, 3,791 (46.14%) QTL are lo-
calized in the marker intervals with sizes between 0 and 0.5 cM,
74 (0.90%) QTL are localized in the 0.5-1 cM intervals, 200 (2.43%)
QTL are localized in the 1–2 cM intervals, 509 (6.20%) QTL are in
the 2–5 cM intervals, 6.94 (5.57%) QTL are in the 5–10 cM inter-
vals, and 1,023 (12.45%) QTL are in the 10–20 cM intervals. The
medium, mean, and SD of the interval sizes are 0.56, 9.82, and
16.82 cM, respectively. It implies that, if bins are identified as hot-
spots, the major contribution to their EQF is from the �1 cM QTL
intervals and that the large QTL intervals only contribute a small
portion to the EQF of the hotspots. The flanking marker pairs of
the 8,216 QTL (8,216 QTL intervals) are recorded and used
for detecting QTL hotspots. By using equation (1) with uniform
distribution and using bin size of 0.5 cM (� ¼0.5 cM), the EQF
architectures (Figure 2) and the EQF matrix (with a dimension
236� 3,070) can be obtained. When adopting empirical trait
grouping in permutation analysis, only those QTL intervals �0.5
cM are considered, and there are a total of 71 trait groups in the
analysis.

Figure 2 presents the EQF architectures of the 12 chromo-
somes and the hotspots detected under different EQF thresholds.
In Figure 2, the first highest peak (on the 4th chromosome) with
EQF value 71.97 is significant under the threshold c1;0:05 ¼ 71:81
Under c3;0:05 ¼56.55, there are two hotspots detected (on the
third and fourth chromosomes). The highest peak of the first
chromosome has an EQF value 35.89 and was significant under
c10;0:05 ¼35.88, but not significant under c9;0:05 ¼ 36:06, and the
top cn;a threshold associated with this peak is c10;0:05. Under
c9;0:05 ¼ 36:06, there are 7 significant hotspots in practice. Under
c100;0:05, there are 102 significant hotspots (not shown). Chardon
et al. (2004) empirically suggested five times of the average EQF
value per bin (5.35
 2� 5 ¼ 13:38Þ as the threshold, which
roughly corresponds to c109;0:05 ¼13.34. Under c109;0:05, there are
116 significant hotspots detected (not shown). The EQF threshold
obtained by the Q-method is about 9.75 (corresponding to c179;0:05,
where 179 is the upper bound of n, i.e., k¼ 179), leading to the de-
tection of 179 QTL hotspots, among which many of them are be-
lieved to be spurious since the EQF threshold obtained by the Q-
method is too liberal (Neto et al. 2012; Yang et al. 2019). As com-
pared to the result of Figure 4 in Yang et al. (2019) using trait
grouping based on the general agronomic consideration (with
nine trait groups), the EQF thresholds obtained by empirical trait
grouping (with 71 trait groups) are higher, and the observed and
expected hotspot numbers are closer to each other.

The yeast dataset
The yeast data consist of expression measurements on 5,740
transcripts and 2,956 genetic markers on 112 segregant strains
(Brem and Kruglyak 2005). The expression measurements are
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further converted to normal quantiles for the hotspot analysis as
described by Neto et al. (2012) and are available in the R package
yeastqtl (https://github.com/byandell/qtlyeast). Among the 2,956
markers, numerous markers are in complete linkage disequilib-
rium, and only one of them will be used in the analysis. In total,
1,072 markers are used in the analysis. The genome size is 	6,345
cM. The average marker density is about one marker every 	5.92
cM. For comparison with the QTL hotspot detection analysis in
Neto et al. (2012), the QTL mapping analysis was performed also
using the regression interval mapping (Haley and Knott 1992)
with the same bin size of 2 cM (D ¼2 cM) under a single-QTL
model with the R/qtl software (Broman et al. 2003). The LOD
scores at all bins for each trait were recorded to construct the
LOD score matrix, and the 1.5-LOD 95% support interval (Neto
et al. 2012) is used to construct the EQF matrix for the analyses
that follow. The EQF-bin permutation with empirical trait group-
ing is performed to obtain the EQF thresholds.

For the same yeast data set, Neto et al. (2012) used a single-
trait permutation LOD threshold of 3.45 corresponding to a 5%
GWER to claim the QTL detection and construct the QTL matrix
and obtained 7.40 as the conservative LOD threshold (associated
with hotspot size 1). Using the Gaussian process (Guo 2011), the

relaxed LOD threshold for one trait ranges from 	3.05 to 	3.48,
and the conservative LOD threshold for 5,740 traits is 	6.17, re-
spectively. We therefore use a sliding scale of empirical LOD
thresholds of 3, 4, 5, 6, 7, and 8 for claiming QTL detection and
constructing the six corresponding QTL matrices. Using the six
LOD thresholds, among the 5,740 molecular traits, there are
5,586, 2,797, 1,740, 1,232, 911, and 696 QTL detected for 3,863,
2,455, 1,656, 1,205, 895, and 688 traits, respectively, among which
multiple QTL were detected for 1,402, 325, 83, 27, 16, and 8 traits,
respectively. As it should be, higher LOD thresholds will result in
fewer detected QTL but with larger LOD scores. The QTL densities
are less than one QTL per cM (	0.88, 	0.44, 	0.26, 	0.19, 	0.14,
and 	0.11 under the six different LOD thresholds) for the six QTL
matrices. The empirical trait grouping results in a total of 475,
562, 523, 450, 375, and 308 trait groups under the six different
LOD thresholds.

Figure 3, A–F, presents the 3- to 8-LOD EQF architectures of
the yeast genome and the hotspots detected under different EQF
thresholds (at 5% GWER). In Figure 3, A–F, the threshold values,
cn;as, for the test statistic qFreq(n)s are coordinately represented
by the left and right axes. For example, in the 3-LOD EQF archi-
tecture, the first highest EQF peak is located in the bin [2,224]

Figure 2 (A–D) The hotspot architecture and the top cn;a profiles of the three simulated hotspots across the 2- to 6-LOD EQF architectures. (A) Inferred
hotspot architecture using a single-trait permutation LOD threshold of 2.47 corresponding to a GWER of 5% of falsely detecting at least one QTL
somewhere in the genome. The hotspots on chromosomes 1, 3, and 5 have sizes 55, 214, and 67, respectively. The thresholds cn;0:05 are coordinately
represented by the left and right axes. The left axis denotes the values of EQF, and the right axis denotes the values of n. The dashed line at count 16
corresponds to the hotspot size threshold at a GWER of 5% according to the N-method. The dashed line at count 3 corresponds to the Q-method’s 5%
significance threshold. The thresholds c1;0:05, c2;0:05, and c4;0:05 obtained by the proposed procedure are 219, 76, and 36, respectively. The number in the
bracket on the right axis denotes the number of detected hotspots. (B) The top cn;a profile for hotspot A shows a decreasing pattern with the value of n
decreasing from 3 to 2 over the 2- to 6-LOD EQF architectures, indicating that hotspot A contains relatively more QTL with large LOD scores. (53): the
hotspot size (number of QTL) is 53 and the top cn;0:05 threshold is c2;0:05 in the 6-LOD EQF threshold. (C) The top cn;a profile for hotspot B shows a flat
pattern with n¼ 1 for all the EQF architectures, indicating that hotspot B containing QTL with balanced LOD scores. (D) The top cn;a profile for hotspot C
shows an increasing pattern with the value of n increasing from 2 to 7 over the five EQF architectures, indicating that hotspot C contains relatively
fewer QTL with large LOD scores. Results are based on 1,000 permutations. Q: The Q-method; N: The N-method.
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(223–225 cM of the second chromosome), which is significant un-
der the threshold c1;0:05 3ð Þ ¼ 152:75 for at least one spurious hot-
spot. The bin [2,224] is also the highest EQF peak in the 4- and 5-
LOD EQF architectures, and is the 4th, 10th and 14th highest
peak, respectively, in the 6- to 8-LOD EQF architectures. Under
the six c1;0:05 thresholds, the bin [2,224] is significant in the 3- to
5-LOD EQF architectures, but not significant in the 6- to 8-LOD
EQF architectures. There are 1, 1, 1, 3, 2, and 2 bins significant as
hotspots with the six c1;0:05 thresholds, respectively. Similarly,
under the c5;0:05 thresholds, there are 13, 10, 8, 6, 5 and 5 bins sig-
nificant as hotspots in the six EQF architectures. The EQF thresh-
olds obtained by the Q-method (bs) correspond to about c125;0:05,
c86;0:05, c58;0:05, c42;0:05, c35;0:05, and c29;0:05, respectively, for the 3- to
8-LOD EQF architectures. Using these bs, there are 136, 81, 50, 44,
32, and 28 significant bins, among which most of them are
believed to be spurious since the bs are known to be too liberal
due to ignoring the correlation structure among traits, in the six
EQF architectures. In general, Figure 3, A–F, displays several obvi-
ous peaks, indicating that there must exist several hotpots in the
yeast genome. More detailed chromosome-by-chromosome plots
are presented in Supplementary Figure S3, 1–21.

Figure 6, A–H, presents the six EQF architectures of the bin
[2,224] on the second chromosome, its top cn;a profiles and distri-
bution of QTL with LOD scores >3. Figure 6H displays that the top
cn;a thresholds of the bin [2,224] are c2;0:05ð3Þ, c2;0:05ð4Þ, c1;0:05ð5Þ,
c3;0:05ð6Þ, c8;0:05ð7Þ and c13;0:05 8ð Þ across the six EQF architectures.
The values of n increase from 2 to 13 over the six LOD thresholds,
meaning that the bin [2, 224] is more significant as a hotspot by

Figure 3 The EQF architectures along the 12 chromosomes and the
hotspots detected under different EQF thresholds (cn;0:05) associated with
their qFreq(n) statistics at GWER of 5% the GRAMENE rice dataset. The
thresholds cn;0:05 are coordinately represented by the left and right axes.
The left axis denotes the values of EQF, and the right axis denotes the
values of n. The blue line corresponds to the EQF threshold c1;0:05 ¼ 71:81
for detecting at least one hotspot, and there is one (the number in the
bracket) hotspot detected with c1;0:05. Similarly, c3;0:05 ¼ 56:55 for
detecting at least three hotspot, and there are two hotspots detected
with c3;0:05. The red line shows c179;0:05 ¼ 9:75 for detecting at least 179
hotspots, which approximately corresponds to b (the EQF threshold of
the Q-method), and there are 179 significant hotspots with c179;0:05.

Figure 4 (A-F) The EQF architectures along the 16 chromosomes and the hotspots detected under different EQF thresholds (cn;0:05) at GWER of 5% in the
3- to 8-LOD EQF architectures with bin size of 2 cM for the yeast dataset. The left axis denotes the values of EQF, and the right axis denotes the values of
n. The blue lines (first horizontal lines) correspond to the EQF thresholds c1;0:05 ¼ 152:75; 111:08, 68:92, 44:21, 32:74, and 26:08 for detecting at least one
hotspot, and in practice there are 1, 1, 1, 3, 2, and 2 hotspots detected with these c1;0:05s in the 3- to 8-LOD EQF architectures. The bottom horizontal
(red) lines show the EQF thresholds of the Q-method, bs, which approximately correspond to c125;0:05, c86;0:05, c58;0:05, c42;0:05, c35;0:05, and c29; 0:05;

respectively (see text). The number in the bracket is the number of detected hotspots.
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Figure 5 (A–H) The 3- to 8-LOD EQF architectures of the second chromosome and the cn;0:05 EQF thresholds at GWER of 5% for the yeast dataset.
The left axis denotes the values of EQF, and the right axis denotes the values of n. (A–F) The peak at the bin [2,224] is significant as a hotspot under the
c1;0:05 3ð Þ ¼ 152:75; c1;0:05 4ð Þ ¼ 111:08; c1;0:05 5ð Þ ¼ 68:92; c3;0:05 6ð Þ ¼ 38:66; c8;0:05 7ð Þ ¼ 16:70, and c13;0:05 8ð Þ ¼ 8:29 thresholds in the 3- to 8-LOD EQF
architectures. For (A)–(F), the number in the bracket is the number of detected hotspots. (G) The distribution of LOD scores >3 for the QTL at the bin
[2,224]. (H) The top cn;0:05 profile shows that the values of n are 1, 1, 1, 3, 8, and 13, showing an increasing pattern, across the 3- to 8-LOD EQF
architectures. For (G) and (H), the number in the bracket is the EQF value of the bin.

Figure 6 (A–C) The distributions of QTL with LOD scores >3 and the top cn;0:05 profiles for the bins [15,60], [14,242] and [3,89.5] (the first marker on
chromosome 3 starting at the position of 9.5 cM) for the yeast dataset. The upper panels display the distributions of LOD scores, and the bottom panels
show the top cn;0:05 profiles. (A) The top cn;0:05 profile displays that the n values have an increase trend within the narrow range from 1 to 5 over the 3- to
8-LOD thresholds, showing that the bin [15,60] is a major hotspot containing QTL with balanced LOD scores. (B) The top cn;0:05 profile displays a flat
pattern with the values of n varying within the range of from 1 to 3 showing that the bin [14,242] is also a major hotspot containing the QTL with
balanced LOD scores. (C) The top cn;0:05 profile has a decreasing trend over the 3- to 8-LOD thresholds, showing that the bin [3,89.5] is also a major
hotspot containing relatively more QTL with � 6 LOD scores. The number in the bracket is the EQF value of the bin.
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using the < 6 LOD thresholds as compared to by using the �6
LOD thresholds and, therefore, can be regarded as a major QTL
hotspot containing relatively more QTL with < 6 LOD scores
(moderate LOD scores) and relatively fewer QTL with �6 LOD
scores (large LOD scores). Figure 6G shows the distribution of
LOD scores, which is more abundant in QTL with moderate LOD
scores. Figure 5, A–C, displays the distributions of LOD scores
(upper panels) and the top cn;0:05 profiles (bottom panels) for the
2nd, 3rd, and 24th highest peaks at [15,60], [14,242], and [3,89.5],
respectively. The three top cn;0:05 profiles have a slightly increas-
ing trend (within the narrow range of 1 to 6), a near flat pattern,
and a decreasing pattern over the EQF architectures, respectively.
It tells that both the bin [15,60] and bin [14,242] are major hot-
spots containing QTL with balanced LOD scores (moderate-to-
large LOD scores) and that the bin [3,89.5] is also a major hotspot
containing relatively more QTL with larger LOD scores, as can
be also perceived in the distributions of LOD scores (upper pan-
els). The EQF architectures, the top cn;a profiles, and distributions
of LOD scores of the 23 significant peaks are placed in
Supplementary Figure S3, 1–21. In general, the significance status
of a bin as a hotspot and the types of the hotspots can be well
characterized by using the top cn;a profile.

We also compared the above results obtained by the proposed
statistical framework with those by the Q-, N-, and NL-methods
presented in Neto et al. (2012). The Q-method produces liberal
thresholds and detects many spurious hotspots (see above). The
N-method detected five major hotspots on chromosomes 2, 3, 12,
14, and 15, and a suggestive hotspot (almost reaches significance)
on chromosome 8, which are also detected by the NL-method
(Neto et al. 2012) and by our statistical framework (correspond to
the hotspots at the bins [2,224], [3,89.5], [8,60], [12,324], [14,242],
and [15,60] in our analysis). Notably, our framework detects two
hotspots at [3,61] and [3,89] on the third chromosome. Other
small peaks on chromosomes 1, 4, 5, 7, 9, 13, and 16 considered
by the NL-method are also detectable with our statistical frame-
work (using less strict thresholds). Both the NL-method and our
framework can assess the significance of hotspots with any
type of LOD-score distribution. We follow Neto et al. to classify
the hotspots into three types: (i) a hotspot composed of many
QTL with moderate (<6) LOD, (ii) a hotspot consisting of a few
QTL with strong (�6) LOD scores, and (iii) a large hotspot contain-
ing QTL with a range of moderate-to-large LOD scores. In our
statistical framework, the top cn;a profiles for the type i, ii, and iii
hotspots will respectively show increasing, decreasing and flat

patterns. The NL-method summarized that the hotspots on chro-
mosomes 2, 3, 12, 14, and 15 are of type iii, the hotspots on the
5th, 8th, and 13th chromosomes are of type ii, and no hotspot is
of type i. Using the top cn;a profiles, our framework concludes
that the hotspots at bin [2,224] and bin [5,258] on the second and
fifth chromosomes can be considered as being of type i (see
Figure 3 and Supplementary Figures S3-7), the hotspot at
bin [3,89.5] on the third chromosome is of type ii, not type iii by
the NL-method, and the hotspots on the 12th, 14th, and 15th
chromosomes are of the same type (type iii) as the NL-method
(see Supplementary Figures S3-16). Also, the hotspots at bin
[8,60] on the 8th chromosome and at bin [13, 516] on the 13th
chromosome are of the same type (type ii) as the NL-method
(Supplementary Figures S3-12 and S3-18). Neto et al. identified
two significant peaks on each of the 2nd, 12th, and 15th chromo-
somes; Nevertheless, we only observed a single significant peak
on each of them but detected two peaks (at bins [3,57.5] and
[3,89.5]) on the third chromosome. The other small peaks at bins
[4,464] and [7,30] on the fourth and seventh chromosomes are
less interesting but may be classified as type i according to their
top cn;a profiles (see Supplementary Figures S3-5 and S3-10).
In general, the top cn;a profile can be used to characterize the
three types of hotspots, and the results by the NL-method and
our statistical framework are conformable in the detection and
classification of QTL hotspots.

The pairwise phenotypic and genetic correlations
in trait groups
We show by equations (2–4) that trait grouping based on the phe-
notypic or genetic correlations is not effective in combining
closely linked or pleiotropic traits. Also, genetic correlations
between monogenic pleiotropic traits are either �1 or þ1, and
genetic correlations between multigenic pleiotropic traits can be
arbitrary values between �1 and þ1 (including zero), depending
on the relative sizes and directions of effects and their linkage
parameters. The above argument can be also justified by analyz-
ing the pairwise phenotypic and genetic correlations among traits
(with closely linked or pleiotropic QTL) in the same trait group in
the yeast data. Figure 7, A–F, displays the distributions for all
pairwise phenotypic and genetic correlations among the traits in
the first largest trait groups (the bin containing the most traits) in
the 3- to 8-LOD EQF architectures. The largest trait groups con-
tain 3,124, 1,411, 136, 78, 55, and 40 pleiotropic traits, among
which there are 1,299, 221, 5, 0, 0, and 0 traits are detected with

Figure 7 (A–F) The distributions of pairwise phenotypic and genetic correlations in the first largest trait groups (containing most traits) of the 3- to 8-
LOD EQF architectures for the yeast dataset. (A–F) The largest trait groups contain 3,124, 1,411, 136, 78, 55, and 40 pleiotropic traits (pleiotropic QTL),
among which there are 1,299, 221, 5, 0, 0, and 0 traits are detected with multiple QTL, respectively, in the six EQF architectures. The upper and bottom
panels show the pairwise phenotypic and genetic correlations, respectively.
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multiple QTL, respectively, in the six EQF architectures. In the
case of the 3-LOD EQF architecture (Figure 7A), as many (1,297)
pleiotropic traits are multigenic, their pairwise genetic correla-
tions vary between þ1 and �1, with a large proportion falling be-
tween �0.25 and 0.25. When the LOD thresholds become stricter,
it will produce less detected QTL, less multigenic, and more
monogenic pleiotropic (or linked) traits (in proportion), causing
that pairwise genetic correlations of �1 or þ1 gradually become
the most dominant feature (Figure 7, A–F, bottom panels). In
Figure 7, D–F (bottom panels), the cases of the 6-LOD, 7-LOD, and
8-LOD EQF architectures, all the 78, 55, and 40 traits are mono-
genic and hence the pairwise genetic correlations among them
are either �1 or þ1 (see subsection trait grouping). The distribu-
tions for the pairwise phenotypic correlations among traits in the
largest trait group are also presented in Figure 7, A–F (upper pan-
els), showing that the pleiotropic traits have a vaguer relationship
with their phenotypic correlations. The distribution of pairwise
phenotypic correlations shows a bell shape in the cases of 3- and
4-LOD EQF architectures (Figure 7, A and B upper panels),
becomes a plateau type in the case of 4-LOD EQF architecture
(Figure 7C, upper panels), and has a bimodal pattern in the cases
of 6-, 7- and 8-LOD EQF architectures (Figure 7, D–F upper pan-
els), respectively. In general, the results in Figure 7 and the ana-
lytical derivations in equations (2–4) are compatible and confirm
each other. The results also validate the use of the estimated QTL
positions rather than the phenotypic or genetic correlations for
trait grouping that intends to take into account the linkages
among QTL for avoiding spurious hotspots in our statistical
framework.

Discussion
Genome-wide detection of QTL hotspots requires first to collect
the data with many QTL widespread in the genome and, then, to
construct the hotspot architectures and further to determine the
thresholds for assessing the significance of QTL hotspots. The
public databases and genetical genomics studies are two feasible
ways to provide the data containing many QTL. The public data-
bases curate abundant summarized QTL data for various tradi-
tional traits from numerous published studies (experiments), and
the genetical genomics study can produce adequate individual-
level data for many molecular traits in a single study for the de-
tection of QTL hotspots. The GRAMENE rice database collects
QTL for many traditional traits from numerous independent
experiments. It is likely that the same traits are investigated and
mapped for the same QTL in different experiments. Ideally, these
same QTL (reproducible QTL) should only be counted once in
counting process to avoid over counts of QTL for hotspot sizes.
Otherwise, there is a concern about over counts of QTL, leading
to artifactual hotspots, in the analysis. The genetical genomics
study allows to perform the permutation analysis on both the
QTL matrix and individual-level data, and the public database to
date allows the analysis only on the QTL matrix to obtain the sig-
nificance thresholds. Notably, permuting the QTL matrix has the
outstanding advantage of very low computational cost, and per-
muting the individual-level data has the benefit of preserving the
correlation structure among traits but comes with very expensive
computational cost (see Introduction). Our statistical framework is
deployed on the QTL matrices and hence can deal with both
types of data with very low computational effort for QTL hotspot
detection. Also, we introduce two special devices, trait grouping
and top cn;a profile, into the framework, to address the concerns,

including the correlation structure among traits and the magni-
tude of LOD scores, in hotspot detection. In trait grouping, by well
using the QTL mapping results, the traits with QTL being local-
ized in the same bins are grouped into the same trait groups, and
these QTL are permuted together separately by trait group to
cope with correlation structure among traits and obtain stricter
thresholds. The top cn;a profile is designed to outline the pattern
of top cn;a thresholds for a hotspot across the different EQF archi-
tectures constructed by using different LOD score thresholds. If
the top cn;a profile of a QTL hotspot shows an increasing (decreas-
ing) pattern, it tells that the hotspot contains relatively fewer
(more) QTL with stronger LOD scores, as compared to other hot-
spots. A flat pattern of top cn;a profile implies that the hotspot
contains QTL with balanced LOD scores. Hence, the top cn;a

profile can display the relative significance status of a hotspot at
different EQF architectures and can characterize and identify the
types of QTL hotspots with different hotspot sizes and LOD-score
distributions. In this way, our statistical framework can account
for the correlation structure among traits and identify the differ-
ent types of hotspots with very low computational cost in the
hotspot detection. Simulation study, numerical analysis, and real
examples are used to illustrate the proposed statistical frame-
work, verify the related properties, and compare with the existing
methods in the QTL hotspot detection.

It has been pointed out that the spurious hotspots may arise
from non-genetic correlations among traits or the use of liberal
thresholds in the process of QTL hotspot detection (Darvasi 2003;
Perez-Enciso 2004; Neto et al. 2012). The non-genetic correlations
among traits are capable of inducing a spurious linkage, leading
to excessive correlated traits being mapped to the similar regions
and creating spurious QTL hotspots. The liberal thresholds arise
out of ignoring the correlation structure among traits in the com-
putation of the thresholds when assessing the significance of
QTL hotspots (Breitling et al. 2008). Both imply the need to take
genetic correlations among traits as well as the linkages between
the underlying QTL into account for avoiding spurious hotspots
in QTL hotspot detection. Linkages have been well known to be
the main cause of genetic correlations among traits (Falconer
and Mackay 1996). Such a fact is obvious for monogenic traits.
However, for the multigenic traits, we show by equations (2–4)
that they are not equivalent in the sense that strong linkages will
not be necessary to create a significant genetic correlation be-
tween traits, simply because different linkage components may
individually contribute positive or negative to the genetic correla-
tion, but collectively combine to produce a low or no genetic cor-
relation. This validates the approach to directly considering the
linkages between QTL instead of genetic correlations for trait
grouping in the analysis to dismiss spurious hotspots. The QTL
mapping technique has proven to be powerful in estimating the
QTL positions and related parameters to make inference about
the linkages among QTL and to dissect the phenotypic correlation
into genetic and non-genetic correlations for the traits (Jiang and
Zeng 1995; Kao et al. 1999). By taking advantage of the QTL map-
ping results, our framework groups the traits with QTL being lo-
calized in the same bins together and permutes these QTL
together to dismiss spurious linkages among traits and compute
much stricter thresholds, so as to have the ability to control the
genome-wide error rates and avoid spurious hotspots. Instead of
performing an infeasible multiple-trait joint analysis (Jiang and
Zeng 1995) for testing the pleiotropy vs. close linkage among nu-
merous QTL and traits, we directly treat the QTL being localized
in the same bins as the tightly linked or pleiotropic QTL for trait
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grouping. In practice, pleiotropic traits cannot be totally grouped
together and the traits in different groups may remain correlated
to each other (due to linkage). Our method may still suffer from
the same problem (inflated error rates and underestimated
thresholds) as the Q-method. But, the problem will be subtler
because trait grouping can still control the major correlation
components to cope with the correlation structure among traits
effectively to some extent and result in more conservative
thresholds and less spurious hotspots in the detection analysis.
Our statistical framework relied on the QTL detected by using ap-
propriate QTL mapping methods. Here, the single-QTL regression
interval mapping (Haley and Knott 1992) is adopted to estimate
the QTL parameter. It would also be possible to extend our ap-
proach to using the EM interval mapping (Lander and Botstein
1989) and multiple-QTL interval mapping methods (Kao et al.
1999; Sen and Churchill 2001). With multiple-QTL interval map-
ping, e.g., using the multiple-QTL mapping functions in QTL
Cartographer (Basten et al. 1999) or R/qtl (Broman et al. 2003), the
LOD profile for each QTL adjusted for all other QTL can be
obtained and used to construct the QTL matrices given some
specified LOD thresholds. Once the QTL matrices are obtained,
the subsequent steps are then straightforward to implement in
the detection analysis.

The genetical genomics experiment is usually performed to
produce the transcript abundance of many genes (the transcrip-
tion profile) at a time point or under a specific condition in the
life stage of an organism. Then, by performing the QTL mapping
analysis on the transcription profile followed by the analysis of
QTL hotspot detection, we can obtain the EQF architecture (given
an LOD score threshold) to outline the QTL hotspot architecture
along the genome for the organism. The QTL hotspot architecture
actually summarizes the expressivity of genes at all the genomic
positions and can be used to infer the networks among QTL hot-
spots, genes, and traits at a time point for the organism (Yang
et al. 2019). As the microarray technology for gene expressions
becomes less expensive, it is possible to conduct the genetical ge-
nomics experiments at several time points during the life cycle of
an organism to collect multiple transcription profiles for further
investigating the behaviors of the QTL hotspots over the time
course of the experiments. To take rice as an example, the geneti-
cal genomics experiments can be conducted at the vegetative,
reproductive, and ripening stages, or at multiple time points
under the abiotic and biotic stresses (such as disease infection,
pathogen attack, cold, drought, and salt stresses) to obtain multi-
ple transcription profiles. Then, we can perform the QTL map-
ping and hotspot detection analysis on the transcription profiles
to obtain their respective QTL hotspot architectures at all the
time points. Our statistical framework for QTL hotspot detection
has a very low computational cost and hence is particular
suitable for obtaining the QTL hotspot architectures for all the
transcription profiles within a reasonable time frame as com-
pared to the methods by permuting the individual-level data
(without bothering the use of parallel computation on a cluster,
see Neto et al. 2012). The collective QTL hotspot architectures can
be used to discern the strengths (the pattern) of each specific QTL
hotspot at different life stages or different time points after suf-
fering the stresses. Through investigating the patterns of QTL
hotspots across different time points, we can understand how
the genes (genomic positions) express themselves differently at
the different time points (stages) to outline their dynamic behav-
iors during the experiments. The study of together using the QTL
public databases and the collective QTL hotspot architectures

obtained from a series of genetic genomics experiments can help
to explore the networks among the expressivity of genes, QTL
hotspots, and quantitative traits, as well as to provide deeper in-
sight into the dynamic genomic activity for the organisms in
broad areas of biological studies.
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