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Abstract
Alzheimer's disease (AD) is a complex disease, with no definitive biomarkers available that allow clinical diagnosis; this represents a major
problem for the advance of efficient drug discovery programs. A successful approach towards the understanding and treatment of AD
should take into consideration this complex nature. In this sense, metabolic networks are subject to severe stoichiometric restrictions.
Metabolomics amplifies changes both in the proteome and the genome, and represents a more accurate approximation to the phenotype
of an organism in health and disease. In this article, we will examine the current rationale for metabolomics in AD, its basic methodology
and the available data in animal models and human studies. The discussed topics will highlight the importance of being able to use the
metabolomic information in order to understand disease mechanisms from a systems biology perspective as a non-invasive approach to
diagnose and grade AD. This could allow the assessment of new therapies during clinical trials, the identification of patients at risk to
develop adverse effects during treatment and the final implementation of new tools towards a more personalized medicine.
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Introduction
Alzheimer's disease (AD) is characterized by adult-onset progres-
sive dementia associated with cerebral cortical atrophy, �-amy-
loid plaque formation and intraneuronal neurofibrillary tangles 
[1, 2]. About 75% of AD cases are classified as sporadic, which
means they occur in people with no history of the condition in
their family. All sporadic AD begins after age 65, and the risk of
developing this condition increases as a person gets older.
Although AD usually appears in people older than age 65, less
common forms of the disease appear earlier in adulthood and are
familial [3]. Familial AD can be divided into early-onset disease
(symptoms begin before age 65) and late-onset disease (symp-
toms begin after age 65). The different early-onset AD subtypes

are clinically indistinguishable and can be classified on the basis
of underlying genetic mechanisms as: AD type 1, 3 and 4 [3]. The
human mutations associated with familial AD are strongly corre-
lated to dysfunctional metabolism of �-amyloid precursor protein
(APP) in the brain of affected individuals to produce an accumu-
lation of amyloid-� peptide (A� peptide) and soluble amyloid pre-
cursor protein (sAPP) leading to the formation of amyloid
plaques. Thus, amyloid-� (A4) precursor protein (APP) gene
mutations cause type 1 AD (10–15% of all early-onset familial AD
cases) while mutations in two processing APP genes, called pre-
senilin 1 and 2, account for type 3 AD (70% of all early-onset AD)
and for type 4 (5% of all early-onset AD), respectively. Type 2 is
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classified as late-onset familial AD. Although the cause of these
cases is unknown, genetic changes are likely to play a role [3]. 
In this sense, there are hints of a genetic association of type 2 AD
with polymorphisms in the �4 allele, of the apoliprotein E gene
(ApoE), linking A� accumulation and deposition with the function
of very low-density lipoproteins (VLDLs) [4–7]. For ApoE-�4,
odds ratios were 11.8 and 21.8 for Caucasian and Asian popula-
tion-based data on systematic meta-analysis of genetic associa-
tion studies [8]. This 'late-onset familial' classification is to some
extent arbitrary. Thus, late-onset (or sporadic) form may also
include cases with a family history of AD that are not related to
known genetic origins. It is clear that lifestyles and other condi-
tions including neuroimmune alterations or cardiovascular dis-
eases make AD a complex disease, with no available definitive bio-
markers that allow us clinical diagnosis – nowadays diagnosis of
AD is only possible postmortem – and this is a major problem for
the advance of efficient drug discovery programs [1, 9, 10]. We
will summarize some of the main features and advantages of
metabolomics over other 'omic' approaches such as transcriptomics
and proteomics at assisting etiology, progression, clinical assess-
ment and evaluation of potential therapeutic treatments of AD.

Rationale for metabolomics in
Alzheimer's disease

Metabolomics (also known as metabonomics) can be defined as
an attempt to measure all the metabolites that are present within
a cell, tissue or organism and to assess their changes during
physiological stimuli or genetic modification [11–13]. To date, the
most successful applications of metabolomics have been obtained
in the area of functional genomics, where it involves the under-
standing of gene function in different organisms including yeast
[14, 15], plants [16] and mice [17] where phenotypes associated
to given mutants have been distinguished. It is interesting to point
out that small changes in the concentrations of enzymes have only
small effects on the metabolic fluxes but can induce substantial
changes on the concentrations of metabolic intermediates.
Because the metabolome is a downstream of the proteome and
transcriptome, it has been shown to be amplified, theoretically
[18] and experimentally [14, 19] and represents a more sensitive
level of organization than the proteome or transcriptome do for
understanding a complex biological outcome such as the one rep-
resented by AD or other neurodegenerative diseases.

When we deal with translational medicine issues, cost assess-
ments should be taken into account. In this sense, metabolomic
approaches are cheap on a per-sample basis and therefore they
have been widely used in toxicology screening [20]. Although there
are several reports using metabolomic approaches as diagnostic
tools both in biological fluids [21] and human beings in vivo [22,
23], it is still an area that needs to be expanded. Metabolism is con-
served during evolution; metabolic networks are essentially very
similar in rodents and human beings. Therefore, a further advan-

tage of metabolomics over other 'omics' is that it is transferable
from one species to another. Thus, it suits a major requirement for
becoming an ideal tool for translational research; metabolic pat-
terns associated to pathology or therapeutic responses in animal
models could be directly transferred to the clinical setting.

Magnetic resonance spectroscopy (MRS) evaluation tech-
niques of metabolic parameters are safe and non-invasive, provid-
ing an excellent opportunity to perform in vivo studies in AD
mouse models and human patients. In this sense, longitudinal
studies are obviously of particular interest. MRS is also very ver-
satile. It is possible to measure several different molecules and
parameters by using either endogenous (for example, brain func-
tion could be related to the redox state of iron in deoxyhemoglo-
bin) or exogenous contrast agents (31P-, 13C-, 1H-MRS) [24]. It is
worth noting that MRS-based metabolomics is more reliable com-
pared to currently used neuropathological protocols in AD diagno-
sis, which are highly observer- and protocol-dependent. Finally,
MRS-based metabolomics is able to tackle a single problem at
both the molecular and systems level.

Although nuclear magnetic resonance (NMR)-based
metabolomics profiling offers evident advantages, the number of
MRS studies focused in AD is still rather limited. Some key issues
could explain that: (1) It is necessary to develop new analytical and
data-handling techniques, as we will see later on; (2) To allow
applications for clinical studies, in particular phase II studies, we
need to set a degree of standardization and consensus guidelines
in the experimental procedures. Very recently, pioneering work by
Beckonert and collaborators addressed questions in this sense
[25], and finally; (3) It is important to aim at using a common lan-
guage, as friendly as possible, among NMR biophysicists, bio-
chemists, biologists and clinical scientists, to steer translational
research projects in the field. In this sense, this review will try to fill
this gap among physicians and clinical scientists in relation with
our present understanding, overall working philosophy, and limita-
tions, of NMR-based metabolomics in AD. Being able to use a non-
invasive approach to diagnose and grade AD would be of greatest
importance when assessing new therapies during clinical trials.

Metabolomics of Alzheimer's disease

In the last few years, there have been a few reports about the use
of NMR spectroscopy in the study of AD diseases in both human
beings [26] and animal models of AD [27]. 1H-MRS is the most
common NMT technique, because of its wide availability on clinical
settings. In the in vivo spectra at low field (1.5 T of most reports
in human beings) a few metabolites can be easily detected (Fig. 1).
These include N-acetylaspartate (NAA) considered as a marker 
of neuronal density and integrity [28, 29]. NAA is synthesized
under normal conditions in the mitochondria of neurons, but not
in glial cells [30]. NAA is early detected and therefore it might be
useful for the assessment of neuroprotective treatment in AD [24].
However, the experimental design should be carefully established
to ensure that NAA levels are not affected by unspecific interac-
tions of the tested drug with NAA metabolism. Although NAA fulfils
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most of the key criteria to be a reliable marker of neuronal loss or
dysfunction, it is interesting to note that its biological function in
the brain is not well understood. NAA is not a neurotransmitter,
and it is reasoned that it could be involved in lipid synthesis into
myelin, as a storage form of aspartate, or involved in osmoregu-
lation, similar to taurine [31]. Glial cells contain higher concentra-
tions of myo-inositol compared to neurons, and therefore is con-
sidered a marker of gliosis [32]. Compounds containing choline
(named as tri-methyl amine) have been reported to change; they
also include ethanolamine-containing compounds [32]. Total
(phosphorilated and unphosphorilated) creatine is regarded as
being relatively stable and often used as an internal concentration
reference. Further details about the biological function of these
metabolites are out of the scope of the present review but can be
found elsewhere [31, 33].

Applying biofluid metabolomic analysis in AD studies is a big
challenge mainly because the brain is encapsulated within the
blood-brain barrier, a membrane that limits the passage of many
metabolites. However, recent work by Karrenbauer and coworkers
should be encouraging in the AD field, as it is possible to find a
single metabolite with biomarker capabilities. They have found
that cerebrosterol (a brain-specific cholesterol metabolite) levels
in plasma are negatively correlated with the size of multiple scle-
rosis lesions [34]. Based on these, and other findings, it has been
suggested that 'the application of biofluid based metabolomics in
neuroscience will provide many opportunities to produce real ben-
efit for sufferers of neurological disorders' [35]. While it may
prove tricky to apply biofluid-based metabolomic analysis to neu-
rosciences in a general manner, the brain remains the most acces-
sible organ for application of MRS in vivo.

Studies in animal models of AD

The development of transgenic mouse models for AD enables the
controlled study of disease physiopathology, biomarkers studies,
therapeutic strategies and the evaluation of treatment effects by
NMR spectroscopy. Indeed, there are a few mouse models of AD
that have been used for NMR spectroscopy studies. These include
mice that express mutant amyloid precursor protein (APPtg2576)
that at 19 months were found to have reduced NAA, glutamate and
glutathione in vivo as well as in spectra from tissue extract [27,
36]. Marjanska and collaborators [36] working with APP-PS1
mice (which co-express mutated human presenilin 1 and APP)
also found a reduction in NAA and glutamate and an increase in
myo-inositol with age in the mutant mice. These authors take into
account the metabolic changes that occur during normal aging
[37], which should not be neglected.

The only work using pattern recognition techniques is the one
by von Kienlin and collaborators based on the transgenic mouse
line PS2APP [38]. This mouse model overexpresses mutant forms
of human presenilin 2 (PS2) and APP, developing an amyloidosis
exclusively in the neocortex and the limbic cortex at 8 months.
These authors reported a decrease in the amount of NAA in
PS2APP mice compared to control mice. When spectra were fed
into a Support Vector Machine to be analyzed, wild-type animals
could be differentiated with a sensitivity of 92% and a specificity
of 82% [38].

Cheng and collaborators showed that HR-MAS has potential
applications in experimental and clinical neuropathological inves-
tigations and that it could provide with a rational basis for the
interpretation of in vivo MRS [39]. Since then, numerous papers

Fig. 1 1H-MRS spectrum from a healthy vol-
unteer obtained at 1.5 T from a 8 cm3 (2 �
2 � 2 cm) volume of interest within the
brain with a PRESS sequence TR 1600
msec, TE 30 msec. Assignments are as fol-
lows: N-acetylaspartate, NAA; Creatine plus
phosphocreatine, Cr; Choline, Cho; myo-
inositol, mI; Glutamate plus glutamine, Glx.
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have been published using this technique but, to the best of our
knowledge, the only work using HR-MAS spectroscopy to study
AD showed a correlation between neuronal density and NAA in the
superior temporal sulcus [40] (the review by Choi and collabora-
tors [31] shows an AD HR-MAS spectra of mice brain but no ref-
erence is given).

While there is scarce data regarding pattern recognition in AD,
the group of Griffin has done extensive work by applying
metabolomics to neurodegenerative diseases in animal models
such as spinocerebellar ataxia 3 [41], Batten disease [42] and
Parkinson's disease [43]. It is worth to mention here the enor-
mous potential of the new AD model developed in Drosophila
melanogaster by Crowther and collaborators [44] for NMR studies.
These transgenic flies express toxic �-amyloid peptides exhibiting
a clear phenotype from a few days of age, including reduced loco-
motor function, impaired olfactory memory and shortened lifes-
pan. Therapeutic agents that interfere with the generation of toxic
aggregates of �-amyloid peptides have been shown to rescue the
flies [44]. The Drosophila model of AD will take advantage of the
previous knowledge, speed and statistical advantages of genetic
screens in flies. In addition, the shorter animal cycles of flies and
the absence of problems due to variability of metabolite concen-
trations that often is reported in different strains of mice will accel-
erate our understanding of AD.

Human studies

As early as 1995, pioneering work by Ross and collaborators
reported that AD patients had lower levels of NAA [26]. This has
been confirmed since by several groups in different brain regions
[45–47], although this feature is not specific of AD, as in almost
every neurodegenerative disease examined to date there is exten-
sive NAA loss in the region of the brain affected by the pathology
[31]. NAA myo-inositol (mI) ratio is able to differentiate AD from
non-AD patients [48], this being related to a decrease in NAA but
also to an increase in myo-inositol in AD post-mortem analysis
[49, 50]. The biological significance of these myo-inositol changes
is unknown so far. Kantarci and collaborators showed an increase
in choline to creatine ratios in AD patients compared to controls
[37]. This could be explained as an increase in the membrane
turnover due to neuronal degeneration or to the increased demand
of free choline to counterbalance the deficient acetylcholine pro-
duction in AD. On the other hand, other authors failed to detect
such an increase [47, 51].

An important issue is whether AD could be differentiated from
other neuropathologies, especially mild cognitive impairment
(MCI). The MCI patients present with cognitive impairment
beyond the one expected at their age and education and progress
to AD with a rate of 10–15% per year. In this sense, Martinez-
Bisbal and collaborators could differentiate between AD, vascular
dementia, depression and MCI [51]. In longitudinal studies it has
been reported that metabolite annual percent change was able to
differentiate control, MCI and AD patients [37]; moreover, they

could predict which patients with MCI would evolve to AD based
on the metabolite annual percent change [37]. Other longitudinal
studies have shown that MRS of occipital cortex is a valuable tool
in predicting the conversion of MCI patients to AD [52] while
presymptomatic mutation carriers of PS1 or APP showed meta-
bolic changes before the expected onset of AD [53]. Contrary to
the results obtained in human studies in AD [49, 50], myo-inosi-
tol concentrations are not affected in Huntington's disease
patients [26, 31].

Reproducibility of metabolite ratios may depend on physiolog-
ical conditions and acquisition-related factors such as voxel posi-
tioning, but it has been suggested that metabolite ratio changes
observed in longitudinal studies represent true changes over time
[37]. Because metabolomics does not rely on the measure of indi-
vidual peaks but rather analyzes the whole of the spectra dataset
and does not depend on any internal reference, it may actually
improve the test–retest reproducibility of MRS.

MRS changes associated to AD vary in different brain regions.
According to Modrego and collaborators spectra from occipital
regions were able to predict conversion from MCI to probable AD,
while differences in spectra from hypocampus or parietal cortex
were not statistically significant [52]. Rami and collaborators
obtained single voxel spectra from the posterior cingulate, the left
temporal pole and the left posterior tempoparietal region, and they
only found metabolic differences between MCI and AD in the left
temporal pole [47].

Chemical shift imaging allows researchers to obtain spectra
simultaneously from various locations, making it ideal for studies
involving regional differences. A standard MRS study on patients
should include the acquisition of images to guide placing the vox-
els into the appropriate anatomic regions. It has been shown that
the use of MRS combined with image analysis improves the clas-
sification of AD [54]. Using this approach it was found that NAA
reduction in AD patients as compared to controls, is more severe
in the medial temporal and parietal lobes while it was not changed
in white matter or frontal lobe gray matter [54]. In the same article,
these authors showed that by using MR imaging alone, they were
able to classify AD from control with 89% accuracy, that increased
up to 95% when adding spectroscopy (NAA), while no data were
provided about the accuracy of spectroscopy alone [54].

MRS can be used to evaluate treatments both for AD and
other neurodegenerative diseases and it may be important in
phase II clinical studies for the evaluation of AD treatment [24].
This topic goes beyond the scope of this review; the interested
reader is directed to an excellent work by Mueller and col-
leagues [24].

Regarding the approaches involving pattern recognition stud-
ies, they have yet to be performed on MRS data from AD patients,
although there is extensive data in brain tumour classification
[22, 55] reviewed in [56]. Despite the fact that MRS is a relatively
insensitive technique compared to others, such as positron emis-
sion tomography (PET), MRS can measure a variety of factors
such as neuronal loss (NAA reduction), cellularity or membrane
turnover. The ability to measure a large set of parameters is
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essential to perform metabolomic studies that are based on the
analysis of large data arrays. Therefore, it is expected as a likely
theme for expansion in the near future.

Methodology: 
NMR metabolomics at work

Mass spectrometry (MS) coupled with chromatography (either gas
or liquid) or NMR spectroscopy are the two main methodologies
used in metabolomic studies, although other approaches have
been used such as Fourier transform infra red (FTIR) spectroscopy
or high-performance liquid chromatography (HPLC). MS is a very
sensitive technique, and therefore ideal to find biomarkers of dis-
ease. However, it requires the manipulation of the sample and a
previous chromatography step before the MS determination, intro-
ducing a bias towards which metabolites can be detected. On the
other hand, although high resolution 1H-NMR spectroscopy is not
a high sensitivity approach, by using this simple, one-dimensional
technique, it is possible to measure up to 100 metabolites, without
requiring any further sample manipulation and having the potential
of being used in vivo, even in patients. Extensive work has been
done in trying large-scale reconstruction of biological systems
mainly using mass spectroscopy; readers are directed to excellent
recent reviews in the field [57–59].

Despite the low sensitivity of NMR spectroscopy, it has been
successful in distinguishing mutants in yeast [14], mouse models
of neurodegenerative disease [42] or myocardial infarction in
swine [60] among others. This may be due to the fact that meta-
bolic networks are dominated by a few highly connected nodes 
or metabolites [61, 62]. In those systems, perturbations will be
rapidly and widely spread throughout the network and thus many

metabolites may be affected. Also, it may help that NMR is able to
detect the most highly connected metabolites [62].

NMR spectroscopy can be applied directly onto biofluids such as
plasma [14] or urine [63] with little or no manipulation of the sam-
ple. In tissues, both dipolar coupling and diamagnetic susceptibility
anisotropy are significant, giving rise to large line widths that reduce
the quality of the spectra. This can be greatly improved by spinning
the samples at the 'magic angle' (54.7) at which dipolar coupling is
averaged to zero producing NMR spectra with line widths close to
those obtainable in liquid samples [64]. Figure 2 shows a Magic
Angle Spinning (MAS) spectra of mouse brain tissue.

How does a basic data handling in NMR-based metabolomics
work? Metabolomic studies comprise large datasets and pattern
recognition tools to decipher the changes associated with AD
processes from those associated with normal physiological varia-
tion. To investigate the innate variation of the dataset, unsupervised
techniques such as principal component analysis (PCA) could be
used [65]. However, specific questions are being posed, for exam-
ple: Is it possible to differentiate healthy from pathological sam-
ples? Supervised methods such as prediction to latent structures
through partial least squares (PLS) may be more appropriate [66].
Supervised classification consists in creating models that maxi-
mize the difference between groups, while minimizing at the same
time intra-group variation by providing a priori information.

For all the supervised classification methods, it is necessary to
test the robustness and predictability of the models, because of
the risk of spuriousness, i.e. the model fits the training set well but
does not accurately predict new observations. When possible and
datasets are large enough, this test has to be carried out using an
independent set of observations, one that has not been used to
create the model. Otherwise, it can be done by the leave-one-out
approach, where one sample of the dataset is tested against the
model created with the others; this process is repeated as many
times as samples are in the dataset.

Fig. 2 1H-MAS spectra of mouse brain cortex obtained at 400 MHz (9.4 T). Each resonance corresponds to a chemical moiety within a particular
metabolite, with the intensity being proportional to the concentration of that metabolite. Tentative assignments based only on a chemical shift are as
follows: 1, methyl group of lipids; 2, lactate; 3, alanine; 4, Acetate/�-amino butiric acid; 5, N-acetylaspartate; 6, Glutamate/Glutamine; 7, Glutamate;
8, Glutamine; 9, Creatine; 10, Choline; 11, Phosphocholine; 12, Glicerophosphocholine; 13, Taurine; 14, myo-inositol.
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Results of a pattern recognition analysis should provide two
distinct but interlinked informational sets. On the one hand, the
ability to differentiate between groups of samples is relevant by
itself, especially in the clinical or pre-clinical environment [21]. On
the other hand, they also provide with metabolic and functional

information, and this information can be related to particular
metabolic disorders [42]. Figure 3 shows a schematic representa-
tion of the main steps in any metabolomic analysis. Once the
dataset is acquired, it is usually normalized within each spectrum
and scaled along each variable [67]. Afterwards, unsupervised

Fig. 3 Flow chart of the chemometric approach used to cluster NMR data. (A) Raw data are organized as a dataset that it is pruned, scaled and nor-
malized. (B) Unsupervised classification methods (Principal component analysis) allow to see any major trends in the dataset variation and to detect
any outlayers. (C) Supervised classification (Discriminant Analysis) allows detecting variation related to a variable of interest. (D) Cooman's plot
shows the separation of two different groups. Axes represent a measure of the distance the data are from an ideal model. In this manner confidence
intervals can be built. (E) Metabolic data can be derived for any classification models created, both supervised and unsupervised.
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classification method(s) can be applied in order to view the general
trend of the dataset variance; this can be extended to discriminant
analysis that emphasizes any differences between known groups
of samples. Group differences can be identified in Cooman's plot
(Fig. 3D), showing separation of the two groups with confidence
intervals built in. In all models created, supervised and unsuper-
vised, information about which metabolites are more relevant can
be obtained.

Conclusions

Even in situations where a small number of metabolites can be
measured robustly, such as in the actual MRS settings, clinically
relevant models can be built using metabolomic data. While
biofluid-based metabolomic studies present special challenges,
the application of biofluid and in vivo metabolomics will provide
many opportunities to produce real benefits for sufferers of neu-
rological disorders. The nature of metabolomics eases the trans-
fer between animal experiments and the clinical setting; it is then
and ideal approach for translational research. Moreover, the
increase in magnetic field from clinical scanners will allow obtain-
ing spectra, very similar to the ones actually obtained from

research animals. The tools to implement metabolomics on AD are
present and, when tested, proved to be useful [38]. Due to the
main features of NMR spectroscopy, it would be an ideal approach
in the growing field of human pharmacogenomics. Thus, it would
be possible to identify NMR profiles which may predict the
response of a treatment in the individual patient so that the treat-
ment with the highest prospect for success can be chosen from
the beginning. Thus, we have now the opportunity to implement
those techniques both in the experimental settings to understand
the pathology of the disease and its evolution and in the clinical
(AD diagnosis and treatment follow-up) environments.

Acknowledgements

Authors would like to thank Dr. J. Alonso for providing the image and spec-
tra shown in Figure 1. This work was supported by grants from the Spanish
Ministry of Health (PI052056; PI061641 to D.P) and the Spanish Ministry
of Science (SAF2007–29418-E to D.P). DP's laboratory is part of the
national cooperative research network in multiple sclerosis RETIC-REEM,
Spanish Ministry of Health. IB's and DGD's laboratory is part of the national
cooperative research network in cardiovascular diseases RETIC-RECAVA,
Spanish Ministry of Health.



1484 © 2008 The Authors
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

19. Urbanczyk-Wochniak E, Luedemann A,
Kopka J, Selbig J, Roessner-Tunali U,
Willmitzer L, Fernie AR. Parallel analysis
of transcript and metabolic profiles: a new
approach in systems biology. EMBO Rep.
2003; 4: 989–93.

20. Coen M, Holmes E, Lindon JC, Nicholson
JK. NMR-based metabolic profiling and
metabolonomic approaches to problems in
molecular toxicology. Chem Res Toxicol.
2008; 21: 9–27.

21. Sabatine MS, Liu E, Morrow DA, Heller
E, McCarroll R, Wiegand R, Berriz GF,
Roth FP, Gerszten RE. Metabolomic iden-
tification of novel biomarkers of myocar-
dial ischemia. Circulation. 2005; 112:
3868–75.

22. Preul MC, Caramanos Z, Collins DL,
Villemure JG, Leblanc R, Olivier A,
Pokrupa Rarnold DL. Accurate, noninva-
sive diagnosis of human brain tumors by
using proton magnetic resonance spec-
troscopy. Nat Med. 1996; 2: 323–5.

23. Majos C, Julia-Sape M, Alonso J,
Serrallonga M, Aguilera C, Acebes JJ,
Arus C, Gili J. Brain tumor classification
by proton MR spectroscopy: comparison
of diagnostic accuracy at short and long
TE. AJNR Am J Neuroradiol. 2004; 25:
1696–704.

24. Mueller SG, Schuff N, Weiner MW.
Evaluation of treatment effects in
Alzheimer's and other neurodegenerative
diseases by MRI and MRS. NMR Biomed.
2006; 19: 655–68.

25. Beckonert O, Keun HC, Ebbels TM, Bundy
J, Holmes E, Lindon JC, Nicholson JK.
Metabolic profiling, metabolomic and
metabonomic procedures for NMR spec-
troscopy of urine, plasma, serum and tissue
extracts. Nat Protoc. 2007; 2: 2692–703.

26. Shonk TK, Moats RA, Gifford P, Michaelis
T, Mandigo JC, Izumi J, Ross BD.
Probable Alzheimer disease: diagnosis
with proton MR spectroscopy. Radiology
1995; 195: 65–72.

27. Dedeoglu A, Choi JK, Cormier K, Kowall
NW, Jenkins BG. Magnetic resonance
spectroscopic analysis of Alzheimer's dis-
ease mouse brain that express mutant
human APP shows altered neurochemical
profile. Brain Res. 2004; 1012: 60–5.

28. Moffett JR, Namboodiri MA, Cangro CB,
Neale JH. Immunohistochemical localiza-
tion of n-acetylaspartate in rat brain.
Neuroreport. 1991; 2: 131–4.

29. Simmons ML, Frondoza CG, Coyle JT.
Immunocytochemical localization of n-
acetyl-aspartate with monoclonal antibod-
ies. Neuroscience. 1991; 45: 37–45.

30. Baslow M. N-acetylaspartate in the verte-
brate brain: metabolism and function.
Neurochem Res. 2003; 28: 941–53.

31. Choi JK, Dedeoglu A, Jenkins BG.
Application of MRS to mouse models of
neurodegenerative illness. NMR Biomed.
2007; 20: 216–37.

32. Brand A, Richter-Landsberg C, Leibfritz
D. Multinuclear NMR studies on the energy
metabolism of glial and neuronal cells.
Dev Neurosci. 1993; 15: 289–98.

33. Firbank MJ, Harrison RM, O'Brien JT. A
comprehensive review of proton magnetic
resonance spectroscopy studies in demen-
tia and Parkinson's disease. Dement
Geriatr Cogn Disord. 2002; 14: 64–76.

34. Karrenbauer VD, Leoni V, Lim ET,
Giovannoni G, Ingle GT, Sastre-Garriga J,
Thompson AJ, Rashid W, Davies G, Miller
DH, Bjorkhem I, Masterman T. Plasma
cerebrosterol and magnetic resonance
imaging measures in multiple sclerosis.
Clin Neurol Neurosurg. 2006; 108: 456–60.

35. Griffin JL, Salek RM. Metabolomic appli-
cations to neuroscience: more challenges
than chances? Expert Rev Proteomics.
2007; 4: 435–7.

36. Marjanska M, Curran GL, Wengenack
TM, Henry PG, Bliss RL, Poduslo JF, Jack
CR Jr, Ugurbil K, Garwood M. Monitoring
disease progression in transgenic mouse
models of Alzheimer's disease with proton
magnetic resonance spectroscopy. Proc
Natl Acad Sci USA. 2005; 102: 11906–10.

37. Kantarci K, Weigand SD, Petersen RC,
Boeve BF, Knopman DS, Gunter J, Reyes
D, Shiung M, O'Brien PC, Smith GE, 
Ivnik RJ, Tangalos EG, Jack CR Jr.
Longitudinal 1H-MRS changes in mild cog-
nitive impairment and Alzheimer's disease.
Neurobiol Aging. 2007; 28: 1330–39.

38. von Kienlin M, Kunnecke B, Metzger F,
Steiner G, Richards JG, Ozmen L,
Jacobsen H, Loetscher H. Altered metabolic
profile in the frontal cortex of PS2APP trans-
genic mice, monitored throughout their life
span. Neurobiol Dis. 2005; 18: 32–9.

39. Cheng LL, Ma MJ, Becerra L, Ptak T,
Tracey I, Lackner A, Gonzalez RG.
Quantitative neuropathology by high reso-
lution magic angle spinning proton mag-
netic resonance spectroscopy. Proc Natl
Acad Sci USA. 1997; 94: 6408–13.

40. Cheng LL, Newell K, Mallory AE, Hyman
BT, Gonzalez RG. Quantification of neu-
rons in Alzheimer and control brains with
ex vivo high resolution magic angle spin-
ning proton magnetic resonance spec-
troscopy and stereology. Magn Reson
Imaging. 2002; 20: 527–33.

41. Griffin JL, Cemal CK, Pook MA. Defining
a metabolic phenotype in the brain of a
transgenic mouse model of spinocerebel-
lar ataxia 3. Physiol Genomics. 2004; 16:
334–40.

42. Pears MR, Cooper JD, Mitchison HM,
Mortishire-Smith RJ, Pearce DA, Griffin
JL. High resolution 1H NMR-based
metabolomics indicates a neurotransmitter
cycling deficit in cerebral tissue from a
mouse model of batten disease. J Biol
Chem. 2005; 280: 42508–14.

43. Salek RM, Colebrooke RE, Macintosh R,
Lynch PJ, Sweatman BC, Emson PC,
Griffin JL. A metabolomic study of brain
tissues from aged mice with low expres-
sion of the vesicular monoamine trans-
porter 2 (VMAT2) gene. Neurochem Res.
2008; 33: 292–300.

44. Crowther DC, Page R, Chandraratna D,
Lomas DA. A Drosophila model of
Alzheimer's disease. Methods Enzymol.
2006; 412: 234–55.

45. Adalsteinsson E, Sullivan EV, Kleinhans
N, Spielman DM, Pfefferbaum A.
Longitudinal decline of the neuronal marker
n-acetyl aspartate in Alzheimer's disease.
Lancet. 2000; 355: 1696–7.

46. Block W, Jessen F, Traber F, Flacke S,
Manka C, Lamerichs R, Keller E, Heun R,
Schild H. Regional n-acetylaspartate reduc-
tion in the hippocampus detected with fast
proton magnetic resonance spectroscopic
imaging in patients with Alzheimer disease.
Arch Neurol. 2002; 59: 828–34.

47. Rami L, Gomez-Anson B, Bosch B,
Sanchez-Valle R, Monte GC, Villar A,
Molinuevo JL. Cortical brain metabolism
as measured by proton spectroscopy is
related to memory performance in patients
with amnestic mild cognitive impairment
and Alzheimer's disease. Dement Geriatr
Cogn Disord. 2007; 24: 274–9.

48. Miller BL, Moats RA, Shonk T, Ernst T,
Woolley S, Ross BD. Alzheimer disease:
depiction of increased cerebral myo-inosi-
tol with proton MR spectroscopy.
Radiology. 1993; 187: 433–7.

49. Klunk W, Xu C, Panchalingam K, McClure
R, Pettegrew J. Quantitative 1H and 31P
MRS of PCA extracts of postmortem
Alzheimer's disease brain. Neurobiol Aging.
1996; 17: 349–57.

50. Pettegrew J, Klunk W, Panchalingam K,
McClure R, Stanley J. Magnetic resonance
spectroscopic changes in Alzheimer's dis-
ease. Ann NY Acad Sci. 1997; 826: 282–306.

51. Martinez-Bisbal MC, Arana E, Marti-
Bonmati L, Molla E, Celda B. Cognitive
impairment: classification by 1H magnetic



J. Cell. Mol. Med. Vol 12, No 5A, 2008

1485© 2008 The Authors
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

resonance spectroscopy. Eur J Neurol.
2004; 11: 187–93.

52. Modrego PJ, Fayed N, Pina MA.
Conversion from mild cognitive impair-
ment to probable Alzheimer's disease pre-
dicted by brain magnetic resonance spec-
troscopy. Am J Psychiatry. 2005; 162:
667–75.

53. Godbolt AK, Waldman AD, MacManus
DG, Schott JM, Frost C, Cipolotti L, Fox
NC, Rossor MN. MRS shows abnormali-
ties before symptoms in familial Alzheimer
disease. Neurology. 2006; 66: 718–22.

54. Schuff N, Capizzano AA, Du AT, Amend
DL, O'Neill J, Norman D, Kramer J,
Jagust W, Miller B, Wolkowitz OM, Yaffe
K, Weiner MW. Selective reduction of n-
acetylaspartate in medial temporal and
parietal lobes in ad. Neurology. 2002; 58:
928–35.

55. Usenius JP, Tuohimetsa S, Vainio P, Ala-
Korpela M, Hiltunen Y, Kauppinen RA.
Automated classification of human brain
tumours by neural network analysis using
in vivo 1H magnetic resonance spectro-
scopic metabolite phenotypes. Neuroreport.
1996; 7: 1597–600.

56. Griffin JL, Kauppinen RA. A
metabolomics perspective of human brain
tumours. FEBS J. 2007; 274: 1132–9.

57. Kell DB. Metabolomics and systems biol-
ogy: making sense of the soup. Curr Opin
Microbiol. 2004; 7: 296–307.

58. Kell DB. Systems biology, metabolic mod-
elling and metabolomics in drug discovery
and development. Drug Discov Today
2006; 11: 1085–92.

59. Oliver SG. From genomes to systems: the
path with yeast. Philos Trans R Soc Lond
B Biol Sci. 2006; 361: 477–82.

60. Barba I, Jaimez-Auguets E, Rodriguez-
Sinovas A, Garcia-Dorado D. (1)H NMR-
based metabolomic identification of at-risk
areas after myocardial infarction in swine.
Magma. 2007; 20: 265–71.

61. Jeong H, Tombor B, Albert R, Oltvai ZN,
Barabasi AL. The large-scale organization
of metabolic networks. Nature. 2000; 407:
651–4.

62. Brindle JT, Antti H, Holmes E, Tranter G,
Nicholson JK, Bethell HW, Clarke S,
Schofield PM, McKilligin E, Mosedale
DE, Grainger DJ. Rapid and noninvasive
diagnosis of the presence and severity of
coronary heart disease using 1H-NMR-
based metabonomics. Nat Med. 2002; 8:
1439–44.

63. Holmes E, Nicholls AW, Lindon JC,
Ramos S, Spraul M, Neidig P, Connor SC,
Connelly J, Damment SJ, Haselden J,

Nicholson JK. Development of a model for
classification of toxin-induced lesions
using 1H NMR spectroscopy of urine com-
bined with pattern recognition. NMR
Biomed. 1998; 11: 235–44.

64. Cheng LL, Lean CL, Bogdanova A, Wright
SC Jr, Ackerman JL, Brady TJ, Garrido L.
Enhanced resolution of proton NMR
spectra of malignant lymph nodes using
magic-angle spinning. Magn Reson Med.
1996; 36: 653–8.

65. Ebbels TM, Keun HC, Beckonert OP,
Bollard ME, Lindon JC, Holmes E,
Nicholson JK. Prediction and classifica-
tion of drug toxicity using probabilistic
modeling of temporal metabolic data: the
consortium on metabonomic toxicology
screening approach. J Proteome Res.
2007; 6: 4407–22.

66. Eriksson L, Antti H, Gottfries J, Holmes
E, Johansson E, Lindgren F, Long I,
Lundstedt T, Trygg J, Wold S. Using
chemometrics for navigating in the large
data sets of genomics, proteomics, and
metabonomics (gpm). Anal Bioanal Chem.
2004; 380: 419–29.

67. Craig A, Cloarec O, Holmes E, Nicholson
JK, Lindon JC. Scaling and normalization
effects in NMR spectroscopic metabonomic
data sets. Anal Chem. 2006; 78: 2262–7.


