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Abstract Activation of the Gs G protein–coupled recep-

tor Rs1 in osteoblasts increases bone mineral density by

5- to 15-fold in mice and recapitulates histologic aspects of

fibrous dysplasia of the bone. However, the effects of

constitutive Gs signaling on bone tissue quality are not

known. The goal of this study was to determine bone tissue

quality in mice resulting from osteoblast-specific consti-

tutive Gs activation, by the complementary techniques of

FTIR spectroscopy and synchrotron radiation micro-com-

puted tomography (SRlCT). Col1(2.3)-tTA/TetO-Rs1

double transgenic (DT) mice, which showed osteoblast-

specific constitutive Gs signaling activity by the Rs1

receptor, were created. Femora and calvariae of DT and

wild-type (WT) mice (6 and 15 weeks old) were analyzed

by FTIR spectroscopy. WT and DT femora (3 and 9 weeks

old) were imaged by SRlCT. Mineral-to-matrix ratio was

25% lower (P = 0.010), carbonate-to-phosphate ratio was

20% higher (P = 0.025), crystallinity was 4% lower

(P = 0.004), and cross-link ratio was 11% lower (P =

0.025) in 6-week DT bone. Differences persisted in

15-week animals. Quantitative SRlCT analysis revealed

substantial differences in mean values and heterogeneity of

tissue mineral density (TMD). TMD values were 1,156 ±

100 and 711 ± 251 mg/cm3 (mean ± SD) in WT and DT

femoral diaphyses, respectively, at 3 weeks. Similar dif-

ferences were found in 9-week animals. These results

demonstrate that continuous Gs activation in murine oste-

oblasts leads to deposition of immature bone tissue with

reduced mineralization. Our findings suggest that bone

tissue quality may be an important contributor to increased

fracture risk in fibrous dysplasia patients.
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Osteoblast G protein–coupled receptors (GPCRs) are fun-

damental regulators of skeletal maintenance and repair.

Activation of osteoblast Gs-GPCR signaling increases bone

mass, as in pathological conditions such as fibrous dys-

plasia of the bone and McCune-Albright syndrome [1, 2].

However, the affected bone is associated with increased

fragility. In contrast, intermittent activation of the para-

thyroid hormone receptor (PTH1R) by recombinant para-

thyroid hormone (teriparatide) [3] increases bone
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formation and is an important treatment for osteoporosis.

Manipulation of skeletal GPCR signaling, therefore, is a

potentially potent technique for regulating disease pro-

cesses and enhancing repair of bone tissue [4].

The skeletal effects of Gs-GPCR signaling on bone

formation were investigated with the Col1(2.3)-tTA/TetO-

Rs1 mouse model of fibrous dysplasia of the bone. This

model uses a synthetic biology approach [4] to activate the

Gs signaling pathway in maturing mouse osteoblasts by the

constitutive Gs activity of the Rs1 engineered receptor

activated solely by a synthetic ligand (RASSL) [5, 6].

RASSLs are engineered receptors that no longer respond to

endogenous hormones but are activated by synthetic small-

molecule drugs. They have been useful for studying the

roles of G-protein signaling in a variety of in vivo systems

[7–10]. In the Col1(2.3)-tTA/TetO-Rs1 mouse model, Rs1

expression was sufficient to induce a dramatic increase in

skeletal bone mass and trabecular bone formation [6]. In

addition, cortical bone was lost, the normal bone marrow

canal was obliterated, and the normal bone marrow cellular

components were replaced by a large number of small cells

that histologically resemble young osteoblasts. These fea-

tures show strong similarity to the bony lesions in patients

with fibrous dysplasia of the bone, a disease that also

results from activation of the Gs signaling pathway [1, 2].

While elevated osteoblast Gs signaling has significant

effects on bone mass and structure, the quality of the

resulting bone tissue has not been thoroughly investigated.

Characteristics of bone tissue quality, including mineral

content and composition, crystal size and perfection, and

collagen matrix stability, are critical to the mechanical

competence [11–14] and remodeling characteristics [15,

16] of bone. Therefore, evaluation of tissue quality metrics

is crucial for understanding the anabolic effect of consti-

tutive Gs signaling on bone and for developing effective

treatments for skeletal pathology.

We applied two complementary strategies for assessing

bone quality in mice with osteoblast-specific constitutive

Gs signaling activity: Fourier transform infrared (FTIR)

spectroscopy, to investigate tissue quality at the molecular

level, and synchrotron radiation micro-computed tomog-

raphy (SRlCT), to provide accurate quantification of bone

tissue mineral density (TMD) at high spatial resolution.

FTIR spectroscopy provides a method for examining

tissue quality and composition by measuring molecular bond

vibration frequencies [17, 18]. FTIR spectra of calcified

tissues typically provide information on the structure and

environment of the carbonate and phosphate groups of the

mineral phase and the amide groups of the organic matrix.

Metrics of bone quality can be calculated from these data.

Specifically, these parameters include mineral-to-matrix

ratio (correlated to ash density [19, 20]), carbonate-to-

phosphate ratio (reflecting the level of carbonate substitution

into the apatite lattice [15, 21]), crystallinity (related to

crystal size and perfection as determined by X-ray diffrac-

tion [22, 23]), and collagen cross-link ratio (the ratio of

nonreducible to reducible cross-links, indicating collagen

maturity and stability [24]). These FTIR parameters provide

information on the structure and mineralization of the inor-

ganic and organic components of bone.

SRlCT enables accurate TMD quantification at high

spatial resolution. In this technique, a high photon flux

monochromatic X-ray beam extracted from a synchrotron

beam replaces the standard polychromatic X-ray beam

used in conventional lCT devices. The use of a single

X-ray beam energy eliminates beam-hardening artifacts,

the high photon flux produces a high signal-to-noise ratio

and high spatial resolution, and the use of a nearly parallel

beam enables exact 3D tomographic reconstruction. Due to

these factors, TMD quantification by SRlCT is more

accurate than that by conventional lCT. SRlCT TMD

assessment has been verified against gravimetric methods

(ashing) [25] and 2D microradiography [26] and is cur-

rently considered the gold standard for high-resolution 3D

TMD evaluation.

In this study, we used FTIR spectroscopy and SRlCT to

evaluate measures of bone tissue mineralization, compo-

sition, and maturity in mice with osteoblast-specific con-

stitutive Gs signaling activity. Our results show that the

bone formed by activated Gs signaling is more immature

and has lower mineralization than that of wild-type (WT)

controls. These findings suggest that reduced bone quality

contributes to increased bone fragility in fibrous dysplasia

patients. In addition, our results illustrate that metrics of

bone tissue quality are important in investigating signaling

mechanisms.

Materials and Methods

Mouse Model

All transgenic mouse studies were approved by and per-

formed in accordance with the Institutional Animal Care

and Use Committee and the Laboratory Animal Research

Center at the University of California, San Francisco.

ColI(2.3)-tTA/TetO-Rs1 double transgenic (DT) mice were

generated by heterozygote crosses of mice carrying the

TetO-Rs1 transgene [6] with mice carrying the ColI(2.3)-

tTA transgene [27], as described [6]. Transgene expression

was activated by maintaining the mice on regular mouse

chow without doxycycline (LabDiet 5053; PMI Nutrition,

St. Louis, MO). These transgenic mice display osteoblast-

specific constitutive Gs signaling activity through the Rs1

receptor. Previous qPCR assays on whole femora of

6-week-old adult mice showed that Rs1 expression was
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selectively and highly induced in the bones of DT mice [6].

All studies compared DT mice to WT littermate controls.

FTIR Spectroscopy

Femora and calvariae of DT and WT mice were analyzed

by FTIR spectroscopy. Mice of two ages were evaluated:

6 weeks (n = 6 WT, 6 DT) and 15 weeks (n = 6 WT, 6

DT). Bones were excised, stripped of soft tissue, and fixed

in 70% ethanol. The desired region of each specimen was

isolated and desiccated through an ethanol series, followed

by exposure in a desiccant chamber. The sampled regions

were the mid-diaphysis of the left femur and the left pos-

terior quadrant (parietal bone) of the calvaria (Fig. 1). For

each sample, a 2-mg (approximately 2 mm long) bone

segment was isolated and a homogenized powder mixture

was created of 1% bone by weight in potassium bromide

(KBr; Thermo Electron, Waltham, MA). The powder

mixture was compressed using a manual die to create a

pellet for FTIR spectroscopy.

Spectroscopy was performed on a benchtop interfer-

ometer system (Nexus 870, Thermo Electron). Spectra

were acquired using 256 scans at a spectral resolution of

4 cm-1. A background scan was recorded immediately

after each sample scan to facilitate background correction.

After acquisition, the spectra were transferred to chemical

imaging software (Isys; Spectral Dimensions, Olney, MD)

for analysis. Spectra were baseline-adjusted and the inte-

grated areas of the amide I (1,595–1,720 cm-1), m1m3

phosphate (PO4
3-, 895–1,215 cm-1), and v2 carbonate

(CO3
2-, 840–890 cm-1) bands were calculated. Mineral-

to-matrix (PO4
3-/amide I), carbonate-to-phosphate

(CO3
2-/PO4

3-), and carbonate-to-matrix (CO3
2-/amide I)

ratios were calculated from integrated areas of the

respective peaks. Additionally, peak heights were mea-

sured at specific wave numbers: 1,020, 1,030, 1,660, and

1,690 cm-1. From these, a series of absorbance ratios were

calculated to determine additional spectroscopic parame-

ters. The ratio of 1,030 to 1,020 cm-1 represents the ratio

of stoichiometric apatite to nonstoichiometric apatite, a

measure of crystallinity. Finally, the ratio of 1,660 to

1,690 cm-1 represents the proportion of nonreducible to

reducible cross-links in the collagen, indicative of collagen

maturity.

FTIR Spectroscopy—Repeatability

Left femora from each of three 15-week-old WT mice were

used to assess repeatability of FTIR measures. From each

femur, a mid-diaphyseal section was isolated and processed

into a homogeneous powder mixture of 1% bone by weight

in KBr as described above. Three pellets were created from

each batch of the homogenized mixture, and the remaining

powder was stored in the desiccator to prevent hydration

Fig. 1 Calvariae and femora of

representative wild-type (WT)

and double transgenic (DT)

mice harvested at 6 and

15 weeks of age for FTIR

analysis. DT mice exhibited

increased femoral girth and

calvarial thickness at 6 weeks,

becoming more dramatic at

15 weeks. Scale bar 5 mm for

each image
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between each pellet preparation. Spectroscopy and analysis

of the three pellets from each bone were performed con-

secutively on a single day, following the methods detailed

in the previous section.

Synchrotron lCT Imaging

One representative femur from 3- and 9-week-old WT and

DT mice was imaged using SRlCT. Femora were dis-

sected, stripped of soft tissue, fixed in 10% neutral buffered

formalin for 24 h, and stored in 70% ethanol before

imaging. The distal surface of the femoral condyles was

mounted onto a block for imaging with a wax-based

adhesive. Synchrotron imaging was performed at the

European Synchrotron Radiation Facility (Grenoble,

France). Beamline ID19 of this facility is equipped with a

lCT acquisition system capable of producing high-reso-

lution 3D images with high contrast and signal-to-noise

ratio [28]. Images were acquired using a single energy

(21 keV) chosen to provide suitable contrast. The trans-

mitted monochromatic X-ray beam was recorded using a

scintillator coupled to a 2D 1,024 9 1,024 charge coupled

device (CCD) camera. The optical system was arranged to

produce a pixel size of 5 lm. Dark current and reference

images without the specimen were taken during acquisition

for flat field correction. Three-dimensional images were

reconstructed by means of a 3D filtered back-projection

algorithm from 900 projections. A local thresholding

scheme [29] was employed to segment the bone from

background (Fig. 2). This local thresholding scheme was

necessitated by the variations in voxel intensity observed in

the synchrotron images; global thresholds failed to capture

the entire mineralized region, particularly in DT bone, and

therefore underestimated TMD variation and miscalculated

mean TMD. After segmentation, average linear attenuation

was calculated and directly converted to TMD with a

theoretical relationship modeling linear attenuation coeffi-

cient as a function of hydroxyapatite concentration.

DXA Analysis

Whole-body DXA scans of WT and DT mice were per-

formed for animals aged 3 weeks (n = 10 WT, 14 DT),

6 weeks (n = 10 WT, 10 DT), 9 weeks (n = 8 WT, 14

DT), and 15 weeks (n = 7 WT, 7 DT) to assess phenotype

progression. Whole-body DXA scans were performed

under anesthesia with 1% isoflurane in a Lunar PIXImus2

(GE Lunar, Waukesha, WI), as described previously [6].

Histology

Femora of 6-week-old DT and WT mice collected for

histology were fixed in 10% neutral buffered formalin for

24 h. Undecalcified femora were embedded in polymethyl

methacrylate [6], and 4-l sections were cut on a hard-tissue

microtome. Decalcified bones were processed in 10%

EDTA, embedded in paraffin, sectioned, and stained with

hematoxylin and eosin (H&E) by the Gladstone Institutes

Histology Core (San Francisco, CA). Mid-diaphyseal

regions of interest were visualized to grossly assess phe-

notypic changes.

Statistics

Wilcoxon signed-rank tests revealed no significant differ-

ences in FTIR spectroscopic parameters between the two

anatomic sites (femur, calvaria); therefore, values were

averaged to produce a single result per animal. Results

obtained from WT and DT mouse specimens were com-

pared using t-tests or Wilcoxon rank sums tests as appro-

priate. Repeatability of FTIR measures was determined by

calculating the coefficient of variation (CV) for each

Fig. 2 Mid-diaphyseal femoral cross section of a 3-week-old double

transgenic mouse. Gray-scale data (a) were processed using a local

thresholding algorithm that incorporates edge detection (b, center
panel shows result of edge detection), allowing accurate segmentation

(b, right panel shows result of segmentation) despite the existence of

fine structures and dramatic spatial variation in attenuation. A

rendering of the resulting 3D segmented data set is shown (c)
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femoral specimen, then computing mean CV for the three

femora used in the repeatability study.

Results

FTIR Spectroscopy

FTIR spectroscopy was performed to assess bone quality in

young (6 weeks) and mature (15 weeks) WT and DT mice.

No differences in FTIR spectroscopic parameters were

detected between the two anatomic sites we tested (femora

and calvaria) for either WT or DT animals, despite the

different bone-formation processes (endochondral vs.

intramembranous) represented by the two sites.

Significant differences in FTIR spectroscopic measures

of bone composition were found between 6-week-old WT

and DT mice (Table 1, Fig. 3). Mineral-to-matrix ratio was

25% lower in DT bone (P = 0.010), carbonate-to-phos-

phate ratio was 20% higher (P = 0.025), crystallinity was

4% lower (P = 0.004), and cross-link ratio was 11% lower

(P = 0.025). These differences persisted in 15-week-old

animals. No differences were found between WT and DT

mice in carbonate-to-matrix ratio (P = 0.084 at 6 weeks,

P = 0.107 at 15 weeks). Differences associated with ani-

mal age were detected only in WT mice. WT carbonate-to-

phosphate ratio increased 17% from 6 to 15 weeks

(P = 0.017), carbonate-to-matrix ratio increased 49% (P =

0.007), and cross-link ratio decreased 8% (P = 0.037).

Change in carbonate-to-matrix ratio with age approached

significance in DT mice (25% increase, P = 0.050). These

results indicate that bone tissue in DT mice is more

immature than that in WT mice. In addition, while WT

tissue matured as the mice aged, DT mice retained their

immature tissue composition.

FTIR Spectroscopy—Repeatability

Mean CV values were calculated to assess repeatability of

the FTIR measurements. Mean CV for FTIR measures

ranged from 0.3% to 3.9%, with crystallinity displaying the

lowest variation and carbonate-to-phosphate ratio display-

ing the highest variation for the samples tested (Table 2).

SRlCT Imaging

SRlCT data were evaluated to assess bone microstructure

and TMD. Synchrotron imaging revealed dramatic differ-

ences in structure between WT and DT femora (Fig. 4).

The 3-week-old DT femur had no distinct marrow cavity or

cortical shell but, rather, a disorganized trabecular pattern

throughout the cross section. This structural abnormality

persisted in the 9-week-old DT femur. Quantitative anal-

ysis of the synchrotron data revealed differences in TMD

mean and variance values. TMD values were 1,156 ± 100

and 711 ± 251 mg/cm3 (mean ± SD) in WT and DT

femur diaphyses, respectively, at 3 weeks and 1,205 ± 72

and 813 ± 133 mg/cm3 in WT and DT mice, respectively,

at 9 weeks. These results show that tissue composition and

organization are altered in DT mice.

DXA Analysis

Whole-body BMD values were measured for DT and WT

mice at 3, 6, 9, and 15 weeks of age to evaluate skeletal

growth over the range of ages assessed via FTIR and SRlCT

(Fig. 5). At 3 weeks of age DT mice had BMD values sta-

tistically indistinguishable from those of WT mice. BMD of

DT mice was 103% that of their WT littermates by 6 weeks

of age and 165% by 9 weeks (P \ 0.003). BMD of DT mice

remained constant through 15 weeks, with no statistically

significant change detectable relative to the 9-week mea-

surement. These results indicate that the accumulation of

bone mineral in DT mice persists through sexual maturity,

then plateaus in mature mice ([8 weeks).

Histology

Undecalcified sections were processed to visualize cortical

and trabecular structure. Decalcified sections were stained

Table 1 FTIR analysis results for wild-type (WT) and double transgenic (DT) mice

6-week animals 15-week animals

WT (n = 6) DT (n = 6) P WT (n = 6) DT (n = 6) P

Phosphate:amide I 5.14 ± 0.68 3.85 ± 0.66 0.010 5.77 ± 0.83 4.10 ± 0.60 0.007

Carbonate:amide I 0.059 ± 0.007* 0.053 ± 0.006 0.084 0.088 ± 0.03* 0.066 ± 0.011 0.107

Carbonate:phosphate 0.012 ± 0.001* 0.014 ± 0.002 0.025 0.014 ± 0.001* 0.016 ± 0.001 0.006

Crystallinity 1,030/1,020 1.06 ± 0.01 1.02 ± 0.01 0.004 1.05 ± 0.01 1.02 ± 0.01 0.014

Cross-link ratio 1,660/1,690 1.73 ± 0.08* 1.54 ± 0.15 0.025 1.59 ± 0.11* 1.41 ± 0.06 0.010

Data for calvariae and femora were not different (P [ 0.05); one mean value per animal was used for this analysis

* P \ 0.05 by Wilcoxon rank sums test; all other 6- vs. 15-week comparisons, nonsignificant
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with H&E to reveal cellular, matrix, and marrow compo-

nents. A disordered mineralization pattern with effacement

of the cortical compartment and elimination of the med-

ullary canal was seen in these images (Fig. 6), in agree-

ment with our previous finding that Rs1-induced basal Gs

signaling in osteoblasts of DT mice increased trabecular

bone and decreased cortical bone in lesions, reminiscent of

fibrous dysplasia of the bone [6].

Discussion

Our results show that continuous Gs activation in mouse

osteoblasts leads to deposition of large quantities of

immature trabecular bone with reduced mineralization.

FTIR spectroscopy revealed a 25–29% deficit in mineral-

to-matrix ratio in the bones of mice expressing Rs1, and

synchrotron imaging showed a reduced mean TMD. These

findings are consistent with low levels of bone minerali-

zation. Measures of mineral composition, mineral maturity,

and collagen maturity also indicate significant abnormali-

ties in bone formation induced by Gs activation in maturing

osteoblasts. These alterations in tissue quality accompany

dramatic structural changes, including greatly increased

bone mass, increased heterogeneity of mineralization, dis-

organization of trabecular morphology, effacement of the

cortical shell, and elimination of the medullary canal.

Our model is particularly relevant for GPCR diseases

found in humans, including primary hyperparathyroidism

and fibrous dysplasia of the bone such as that occurring in

McCune-Albright syndrome. Patients with primary hyper-

parathyroidism present with marked cortical thinning and

decreased cortical BMD [30, 31], possibly related to

increased cortical porosity [32–34]. The elimination of the

cortical compartment in DT mice is an extreme version of

the cortical loss seen in primary hyperparathyroidism.

However, the massive increase in trabecular volume

observed in DT mice is not generally seen in patients with

hyperparathyroidism. Bone from McCune-Albright syn-

drome patients shows a fibrous infiltrate, significant

increases in trabecular bone formation, ablation of the

marrow cavity, and an increased propensity to deformation

and fracture [35]. In addition, these patients accumulate

unmineralized osteoid with a nonlamellar structure as well

as mineralized tissue with markedly reduced mineral con-

tent [1, 36]. The mineralization abnormalities found in our

mouse model of fibrous dysplasia may reflect those in

patients with fibrous dysplasia of the bone.

FTIR spectroscopic measures provide bone tissue char-

acterization at the molecular level and, importantly, are

correlated with mechanical integrity and remodeling

properties of the tissue. Mineral-to-matrix ratio increases as

Fig. 3 FTIR spectroscopic results for 6- and 15-week wild-type (WT)

and double transgenic (DT) mice. Significant variations from WT

controls were evident in FTIR parameters describing mineral content,

crystallinity, and collagen cross-links in DT bone at 6 weeks. These

differences persisted in 15-week-old animals. As measurements for

calvariae and femora were not different (P [ 0.05), one mean value per

animal was used for this analysis. Bars indicate significant differences

between WT and DT animals (all P \ 0.03). Asterisks indicate

significant differences between 6- and 15-week animals (all P \ 0.05)

G. J. Kazakia et al.: Mineral Composition and Gs Receptor Expression 15

123



both primary and secondary mineralization progress and,

therefore, is positively associated with tissue age [12, 37].

Studies of human tissue and animal models demonstrated

positive correlations between mineral-to-matrix ratio and

tissue stiffness and hardness [12, 38, 39]. Mineral-to-

matrix ratio explains 50–60% of the variation in both tissue

modulus and hardness [37, 40]. In our study, decreased

mineral-to-matrix ratio in DT bone suggests the presence

of immature bone with reduced resistance to deformation.

Since FTIR crystallinity values are positively associated

with tissue age, tissue yield strength, and stiffness [12, 14,

37], the decreased crystallinity we observed in DT bone

substantiates the presence of immature tissue with reduced

mechanical properties. We previously showed that DT

animals have markedly elevated bone-turnover markers;

display irregular, punctate bone formation by von Kossa

staining and double fluorescent labeling; and have

increased numbers of TRAP-positive osteoclasts [6]. These

characteristics support the conclusion that DT bone lesions

contain regions with extremely high rates of bone forma-

tion and turnover, consistent with our findings of accu-

mulated immature tissue.

Increased carbonate substitution has been associated

with increased tissue age [12, 15, 41, 42], increased tissue

Table 2 Repeatability of FTIR spectroscopic parameters

Phosphate:amide I Carbonate:amide I Carbonate:phosphate Crystallinity 1,030/1,020 Cross-link ratio 1,660/1,690

Mean CV 1.15 3.46 3.86 0.32 1.72

Fig. 4 Full bone renderings and

detailed sections from the mid-

diaphysis of femora from

3-week-old wild-type (WT) and

double transgenic (DT) mice

(upper panel). Mid-diaphyseal

cross section of a 9-week-old

DT mouse (lower panel).
SRlCT images illustrate a

disordered mineralization

pattern, lack of dense cortical

tissue, and elimination of

central marrow cavity.

Histograms compiled from

synchrotron data of 3-week-old

samples reveal decreased mean

and increased variance in tissue

mineral density in DT bone

Fig. 5 BMD measured in age-matched wild-type (WT) and double

transgenic (DT) littermates. Whole-body BMD values of DT mice

were 103%, 165%, and 145% higher than those of WT littermate

controls at 6, 9, and 15 weeks of age, respectively (*P \ 0.0003 by

t-test of DT vs. WT)
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indentation modulus and hardness [40], and—by a mech-

anism of reduced ductility—increased incidence of fracture

[43] and inferior mechanical properties at the whole-bone

level [20]. Carbonate substitution in the hydroxyapatite

lattice leads to a change in lattice dimensions and increased

disorder of the crystalline structure [44]. Further, mineral

solubility is affected by carbonate content and increased

carbonate content is thought to enhance bone resorption

[45]. Carbonate-to-phosphate ratio was significantly ele-

vated in DT bone, indicating an alteration in crystal syn-

thesis and perhaps playing a role in the high turnover

observed in DT animals [6].

Collagen matrix biochemistry is also related to tissue

age, mineralization, and mechanics. Intermolecular cross-

linking provides the matrix tensile strength and influences

whole-bone strength [46–49]. Cross-link formation also

alters the rate of mineralization and microdamage accu-

mulation [50], thereby providing a second mechanism for

regulating the mechanical properties of bone [51]. The

ratio of mature to immature, reducible cross-links—quan-

tified as cross-link ratio—increases with tissue maturity

[52, 53] and correlates positively with indentation modulus

[12]. In DT bone, low cross-link ratio indicates immature

tissue with reduced stiffness.

FTIR analyses showed that DT bone does not exhibit

maturation between 6 and 15 weeks. In contrast, specimens

from 6- and 15-week-old WT mice showed signifi-

cant differences in carbonate-to-matrix and carbonate-

to-phosphate ratios, indicative of increasingly mature tis-

sue. Cross-link ratio decreased in WT animals, in contrast

to the established association between cross-link ratio and

matrix maturation.

SRlCT imaging was used to quantify mean TMD and

distribution of TMD values, measures complementary to

those determined through FTIR analysis. Consistent with the

deficit in mineral-to-matrix ratio identified by FTIR, DT

bone had mean TMD values 39% and 33% lower than WT

bone at 3 and 9 weeks, respectively. SRlCT also revealed

increased heterogeneity in mineral content in DT mice as

reflected by the large standard deviation of TMD in DT

bones at 3 and 9 weeks (151% and 88% higher, respec-

tively). The alteration in distribution of mineralization val-

ues might significantly affect the overall material properties

of DT bone; heterogeneous regions of tissue mineralization

may hinder crack propagation and toughen tissue. It is

intriguing to consider that the increased variation in TMD

may represent a compensatory mechanism by which DT

mice counteract the deficit in tissue mineralization.

Increased tissue volume in DT animals may represent an

additional adaptive response to the formation of hypomin-

eralized tissue and loss of cortical structure. These changes

may partially or fully compensate for any loss of whole-bone

strength or stiffness. No spontaneous fractures have been

identified in DT animals, perhaps supporting this hypothesis.

The presence of immature bone in our mouse model of

fibrous dysplasia suggests that strategies for modulating

Fig. 6 Diaphyseal sections of

representative 6-week-old wild-

type (a, c) and double

transgenic (b, d) femora

visualized by microscopy.

Undecalcified sections (a, b)

and decalcified sections with

H&E staining (c, d) demonstrate

a disordered mineralization

pattern with effacement of a

distinct cortical compartment

and elimination of the marrow

canal in the double transgenic

femur. Scale bars 1 mm
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bone formation, such as antiresorptive medications, may

have therapeutic value for these patients. Since the fibrous

dysplastic bone lesions appear to be reversible by inhibit-

ing Gs signaling [54], the immature bone formation seen in

our DT mice might also be reversed. This would be an

important metric as potential therapies for fibrous dysplasia

are developed.

Despite identifying significant effects of Rs1 signaling

on bone mineralization, our study has several limitations.

First, we were unable to perform direct measurement of

mechanical competence in DT mice. Mechanical testing is

challenging in DT specimens due to morphological

abnormalities and heterogeneous mineralization. However,

the compositional measures derived from FTIR and

SRlCT data are highly associated with mechanical prop-

erties of bone tissue and give us insight into the mecha-

nisms of increased fragility in fibrous dysplastic bone.

Second, the ages of animals characterized by FTIR and

SRlCT were different; this should be taken into consid-

eration when making direct comparisons between analysis

results. However, for each analysis technique, the younger

animals (3 and 6 weeks old) were in the rapid skeletal

growth phase, while the older animals (9 and 15 weeks old)

had reached a plateau of bone accumulation. This is sup-

ported by BMD measurements and consistent with the

observed sexual maturity window of 7–8 weeks in both

WT and DT mice. Finally, our findings are based on

samples from a relatively small number of animals. The

significant abnormalities in tissue quality and skeletal

structure we observed in our TD mice were surprisingly

conserved between the two different anatomic sites sam-

pled (femora and parietal bones of calvariae). This finding

allowed us to compile results from the two skeletal sites

and perform a conservative statistical analysis. Despite

these limitations, we believe that our results provide new

insight into the roles of Gs signaling in regulating the

matrix formation process.

In conclusion, our results illustrate that activation of the

Gs signaling pathway in maturing osteoblasts leads to a

significant degradation of bone tissue quality in a mouse

model of fibrous dysplasia. The striking influence of the

fibrous dysplasia model on tissue quality metrics reinforces

the paradigm that tissue quality, and not just quantity and

structure, must be considered in the evaluation of any

disease processes or potential therapies.
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