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Abstract
Cervical cancer (CC) is considered as the fourth most common women cancer globally.that shows malignant features of 
local infiltration and invasion into adjacent organs and tissues. There are several individual studies in the literature that 
explored CC-causing hub-genes (HubGs), however, we observed that their results are not so consistent. Therefore, the 
main objective of this study was to explore hub of the HubGs (hHubGs) that might be more representative CC-causing 
HubGs compare to the single study based HubGs. We reviewed 52 published articles and found 255 HubGs/studied-genes 
in total. Among them, we selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) 
as the hHubGs by the protein–protein interaction (PPI) network analysis. Then, we validated their differential expression 
patterns between CC and control samples through the GPEA database. The enrichment analysis of HubGs revealed some 
crucial CC-causing biological processes (BPs), molecular functions (MFs) and cellular components (CCs) by involving 
hHubGs. The gene regulatory network (GRN) analysis identified four TFs proteins and three miRNAs as the key transcrip-
tional and post-transcriptional regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 
candidate drugs and validated them against the state-of-the-arts independent receptors by molecular docking analysis. 
Finally, we investigated the binding stability of the top-ranked three candidate drugs (Docetaxel, Temsirolimus, Paclitaxel) 
by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore the finding of this 
study might be the useful resources for CC diagnosis and therapies.
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PPI  Protein–Protein Interaction
ENCODE  Encyclopedia Of DNA Elements
MCODE  Molecular Complex Detection
DEGs  Differentially Expressed Genes
cDEGs  Common Differentially Expressed Genes
cHubGs  Common Hub Genes
cHubPs  Common Hub Proteins
hHubGs  Hub of the hub-genes
KPs  Key proteins
GO  Gene ontology
BPs  Biological processes
MFs  Molecular function
CCs  Cellular components
KEGG  Kyoto Encyclopedia of Genes and Genomes
TFs  Transcription factors
miRNAs  Micro-RNAs
MD  Molecular dynamic
MM-PBSA  Molecular Mechanics Poisson–Boltzmann Surface Area
RMSD  Root mean square deviation
3D  Three-Dimensional
PDB  Protein data bank
FDA  U.S. Food and Drug Administration
YASARA   Yet Another Scientific Artificial Reality Application

1 Introduction

Cancer has the largest clinical, social, and economic impact in terms of cause-specific disability-adjusted life years [1]. 
Cervical cancer (CC) is the fourth most common cancer in women and has the fourth highest mortality rate globally [2]. 
The most common causes of cancer-related mortality among individuals with CC are invasion and metastasis by CC cells, 
which are associated with a poor prognosis [3, 4]. Fortunately, effective primary and secondary preventive methods, 
including as human papillomavirus (HPV) vaccine and yearly cytology smears, are available for CC. Almost all CC patients 
have a long-term infection with high-risk HPV types [5–7]. For early-stage and low-risk CC, surgery, chemotherapy, or 
radiation have shown to be effective [8–10]. However, metastatic cervical cancer (mCC) has a 5-year survival rate of 16.5 
percent [11]. Additionally, the efficacy of chemotherapy and radiation is reduced by their side effects. Therefore, explo-
ration of biological causes as well as the development of new treatment targets and techniques for CC are required to 
increase patient survival.

The identification of biomarkers that might possibly alleviate the disorder’s pathogenesis could be a motivating factor 
that leads to the development of more effective therapy options in the future [12]. The potential benefits of molecular 
biomarkers suggest that they might improve the efficacy of CC diagnostic and treatment. Bioinformatics techniques are 
now widely used in several of biological research areas. Recently, sequencing tools have become more widely available, 
allowing researchers to make significant findings in both computational biology and molecular therapies [13]. Pro-
tein–Protein Interactions (PPI) were previously utilized to identify the hub genes that may be responsible for the disease, 
and a co-expression network was employed to validate the listed genes using a heat map based on their co-regulation 
scores [14–17]. Protein 3D structures are important for the fields in evolutionary biology and biotechnology, such as 
protein function prediction and drug design [18].

However, new drug development is a difficult, time-consuming, and costly endeavor. The major challenges are to 
identify disease-causing drug target proteins and drug agents that can alleviate disease severity by interacting with the 
target proteins. As opposed to developing a new drug, repurposing existing drugs for certain conditions might save 
time and money. By this time, numerous studies have proposed different sets of hub/key-genes to explore molecular 
mechanisms and pathogenetic processes in CC [19–24]. Some of these studies have also been suggested their hub-genes 
or studied-gene guided candidate drugs for the treatment of CC [23, 24]. By the literature review, we observed that 
their suggested CC-causing hub-genes (HubGs) or studied-genes sets as well as candidate drugs are not so consistent 
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in different published articles. On the other hand, so far, none of these studies investigated the performance of their 
suggested drugs against the other published hub-genes mediated target proteins. Obviously, more representative hub-
genes are required to explore more effective candidate drugs against CC. Therefore, in this study, our main objectives 
are to (1) explore hub of the HubGs (hHubGs) highlighting their functions, pathways, and regulatory factors, (2) explore 
hHubGs-guided candidate drugs for the treatment against CC, and (3) cross-validation of the proposed candidate drugs 
against the state-of-the-arts alternatives independent target proteins published by others. The workflow of this study 
is demonstrated in Fig. 1.

2  Materials and methods

In this study, the necessary meta-drug target and agents were collected from different online sources and published 
articles to explore globally most effective repurposable drugs for the treatment against CC by using the integrated 
bioinformatics approaches.

2.1  Metadata sources and descriptions

We have collected metadata for both drug targets and agents associated with CC to reach the goal of this study as 
described below.

Fig. 1  The workflow of this study
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2.2  Collection of studied/hub‑DEGs to explore drug targets

Several research groups already published different sets of studied or hub differentially expressed genes (studied/
hub-DEGs) associated with CC [12, 13, 20, 22–71]. Here DEGs indicates the differentially expressed genes between 
CC and control samples. The present study included the articles in 2010–2021 associated with CC infections.To select 
the top-ranked hub-genes (independent meta-receptors) associated with CC disease; we reviewed 52 published arti-
cles and collected 255 hub meta-receptors to explore key genes (KGs) by protein–protein interaction (PPI) network 
analysis [see Table S1]. The proteins corresponding to our proposed KGs would be considered as the key drug targets.

2.3  Collection of drug agents

Several research groups already suggested transcriptome-guided different sets of repurposable drugs for the treat-
ment against CC [23, 24, 69, 70, 72–91]. We collected host transcriptome-guided 80 meta-drug agents by the literature 
review of CC disease [see Table S2] for exploring candidate drugs.

2.4  Protein–protein interaction (PPI) network analysis of all Hub/Studied‑DEGs

The STRING online database (https:// string- db. org/) was used to construct the PPI network of DEGs. [92]. We utilized 
the Cytoscape software to enhance the quality of the PPI network [93]. To select common Hub-Genes (cHubGs) or 
common Hub-Proteins (cHubPs) from the PPI network, the Cytoscape plugin cytoHubba  was implemented [93, 
94]. The PPI network is comprised of a number of nodes and edges that represent proteins and their interactions, 
respectively. A node with the largest number of significant interactions/connections/edges with other nodes is con-
sidered the top-ranked cHubGs. Four topological analyses of PPI network were applied to select the cHubGs (Degree 
[95], BottleNeck [96], Betweenness [97], and Stress [98]). The Cytoscape software’s Molecular Complex Detection 
(MCODE) (http:// apps. cytos cape. org/ apps/ mcode) plugin was used to identify the most significant modules in the 
PPIs network. MCODE clustering detected highly interconnected portions, which helps the study with effective drug 
design. By identifying densely connected regions, MCODE was utilized to represent molecular complexes in the PPIs 
network [99]. The hub of the hub-genes (hHubGs) were then selected since they were shared by both cHubGs and 
MCODE clustering genes.

2.5  Differential expression patterns analysis of hHubGs

To validate the expression of the hHubGs, the Gene Expression Profiling Interactive Analysis (GEPIA) website was 
applied to analyze the data of RNA sequencing expression based on thousands of samples from the GTEx projects 
and TCGA.

2.6  GO terms and KEGG pathway enrichment analysis of all Hub/Studied‑DEGs

Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment/anno-
tation/over-representation analysis [100, 101] is a widely used approach to determine the significantly annotated/
enriched/over-represented functions/classes/terms and pathways by the identified KGs. It is indeed vital for under-
standing how genes work at the molecular level and what role they play in the cell. Biological Process, Cellular Com-
ponent, and Molecular Function are the three categories of GO terms [102]. We used the DAVID online tool (https:// 
david. ncifc rf. gov/ tools. jsp) to perform GO and KEGG enrichment analysis [103]. The p-value 0.05 was selected as the 
significance level.

2.7  Regulatory network analysis of hHubGs

Using the NetworkAnalyst online tool, we performed TFs-hHubGs and miRNAs-hHubGs interaction network analysis 
on hHubGs to uncover major transcriptional regulatory transcription factors (TFs) and post-transcriptional regulatory 

https://string-db.org/
http://apps.cytoscape.org/apps/mcode
https://david.ncifcrf.gov/tools.jsp
https://david.ncifcrf.gov/tools.jsp
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micro-RNAs (miRNAs) [104]. The ENCODE (https:// www. encod eproj ect. org/) [105] and RegNetwork repository [106] 
databases were used to construct the TFs- hHubGs and miRNAs- hHubGs interaction networks, respectively. To 
enhance the quality of the networks, the Cytoscape software [93] was utilized. Then, we determined the regulators 
(TFs or miRNAs) based on their high connectivity with hHubGs.

2.8  Drug repurposing by molecular docking study

We performed a molecular docking analysis of our suggested receptor proteins with drug agents to propose in-silico validated 
efficient candidate drugs for the treatment of CC. As previously mentioned in the data sources (see Table S1), we considered 
our proposed hHubGs based key proteins (KPs) and their regulatory key TFs proteins as drug target proteins and 77 meta-drug 
agents. Both receptor proteins and meta-drug agents require 3-Dimensional (3D) structures for molecular docking studies. 
All of the targeted proteins’ 3D structures were downloaded from the Protein Data Bank (PDB) [107] and SWISS-MODEL [108]. 
All meta-drug agents’ 3D structures were downloaded from the PubChem database [109]. Using discovery studio visualizer 
2019 [110], the 3D structures of the target proteins were displayed, and target chains that were not part of the gene were 
deleted. The protonation state of protein was assigned using the PDB2PQR and H +  + servers [111, 112]. As well, all absent 
hydrogen atoms were properly added. The pKa for the receptor amino acids were examined under the physical conditions 
of pH = 7, salinity = 0.15, external dielectric = 80, and internal dielectric = 10. Then, using AutoDock tools, the receptor was 
prepared for molecular docking study by eliminating water molecules, and ligand heteroatoms and by addition of polar 
hydrogens [113]. The grid box was generated over the entire surface of the proteins. The ligands were prepared for molecular 
docking study by using AutoDock tools to set the torsion tree and rotatable and nonrotatable bonds in the ligand. AutoDock 
Vina was used to calculate binding affinities between target proteins and drug agents [114]. The exhaustiveness parameter 
was set to 10. PyMol [115] and discovery studio visualizer 2019 [110] were used to analyse the docked complexes for surface 
complexes, types, and distances of non-covalent bonds. Let Aij denotes the binding affinity between ith target protein (i = 1, 
2, …, m) and jth drug agent (j = 1, 2, …, n). To select the top-ranked lead compounds as the candidate drugs, we ordered 
the drug target proteins and agents according to the descending order of row sums 

∑n

j=1
Aij , j = 1,2,…,m, and column sums 

∑m

i=1
Aij , j = 1,2,…,n, respectively.

2.9  Molecular dynamic (MD) simulations

To discover the dynamic behavior of the top-ranked protein–ligand complexes, MD simulations were performed using 
YASARA Dynamics software [116], and the AMBER14 force field [117]. A total of six different systems were used to run 
MD simulation. The systems included Docetaxel-CDK1, Temsirolimus-CHEK1, Paclitaxel-TOP2A, apo-CDK1, apo-CHEK1, and 
apo-TOP2A.

For the complexes, the ligand parameters for the complexes were assigned using AutoSMILES [118] algorithms. A TIP3P 
[119] water model in a simulation cell was used for optimized and solvated the hydrogen bonding network of the pro-
tein–ligand complexes before the simulation. With a solvent density of 0.997 gL1, periodic boundary conditions were main-
tained. Titratable amino acids in the complexes were subjected to pKa calculation during solvation. The initial energy minimi-
zation process of each simulation system, consisting of of 55,410 ± 10, 72,287 ± 10, and 96,252 ± 10 atoms for CDK1_Docetaxel, 
CHEK1_Temsirolimus, and TOP2A_Paclitaxel complexes were performed by a simulated annealing method respectively, 
using the steepest gradient approach (5000 cycles). For the details of MD simulation methods see our previous paper [14, 
15]. The trajectories were recorded every 250 ps for further analysis, and subsequent analysis was implemented by default 
script of YASARA [120] macro and SciDAVis software available at http:// scida vis. sourc eforge. net/. All snapshots were then 
subjected to YASARA software’s MM-Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculation using the 
formula below [121],

Here, MM-PBSA binding energy was calculated using YASARA built-in macros using AMBER 14 as a force field, with larger 
positive energies indicating better binding [122].

BindingfreeEnergy = EpotReceptor + EsolvReceptor + EpotLigand + EsolvLigand − EpotComplex − EsolvComplex

https://www.encodeproject.org/
http://scidavis.sourceforge.net/
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3  Results

3.1  Basic characteristics of the selected studies

The goal of this study was to identify the potential biomarkers and repurposing drug agents against cc. To screening 
the published articles, we conducted title, abstract, result, and conclusion with cervical cancer, hub genes/targets/
receptors/proteins, number of drug agents/compounds/ligands, and collected 52 published articles from online 
databases to collect the hub genes or study genes. To select the top-ranked independent meta-receptors associ-
ated with CC disease, we gather 255 hub meta-receptors from 52 published articles to explore hub of the Hub-DEGs 
(hHubGs) by protein–protein interaction (PPI) network analysis [see Table S1]. On the other hand, we acquired 23 
published papers from online databases to select the meta-drug agents/compounds/ligands against CC disease and 
accumulated host transcriptome-guided 77 meta-drug agents from 23 reputed published papers against CC disease 
[see Table S2] for exploring the candidate drugs.

3.2  Identification of hub of hub‑genes (hHubGs)

To identify the hHub-proteins, the protein protein interaction (PPI) network analysis was utilized by using the all 
collected hub-DEGs from the selected published papers. The PPI network of cDEGs was constructed using STRING 
database (Fig. 2a) which contains 229 nodes and 4488 edges. We selected top-ranked sixteen (16) cHubGs {PLK1, 
TP53, GAPDH, VEGFA, CDK2, MKI67, CHEK1, CDK1, BRCA1, TOP2A, CLTC, CCNA2, JUN, CCND1, CCNB1, TYMS} applying 
four topological measures in the PPI network. Then, using MCODE, clusters were selected from the PPI network. It was 
shown that the most significant cluster had 27 nodes and 350 edges (see Table S3). MCODE analysis demonstrated 
that the most significant cluster contained the ten hHubGs {CDK2, CHEK1, MKI67, TOP2A, CDK1, BRCA1, PLK1, CCNA2, 
CCNB1, TYMS} (see Fig. 2b). These top hHubGs may be focused for the pre-clinical potential drug target molecule 
that may open a new era of therapeutic targets.

Fig. 2  a Protein-proteins interaction network for common differentially expressed genes of CC, and edges specify the interconnection in the 
middle of two genes. The analyzed network holds 229 nodes and 4488 edges. Surrounding nodes (PLK1, TP53, GAPDH, VEGFA, CDK2, MKI67, 
CHEK1, CDK1, BRCA1, TOP2A, CLTC, CCNA2, JUN, CCND1, CCNB1, TYMS) represented the hub genes. b Module analysis network obtained 
from MCODE analysis. Surrounding nodes (CDK2, CHEK1, MKI67, TOP2A, CDK1, BRCA1, PLK1, CCNA2, CCNB1, TYMS) were found to be com-
mon across 10 hub genes, so we considered these ten genes as the key genes. The network represents highly interconnected regions of the 
PPIs network. The network holds 27 nodes and 350 edges
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3.3  Differential expression patterns analysis of hHubGs

To investigate the differential expression patterns of hHubGs (CDK2, CHEK1, MKI67, TOP2A, CDK1, BRCA1, PLK1, CCNA2, 
CCNB1, TYMS) between CC and control samples, we performed box-plot analysis by using the GEPIA web-tool (see Fig. 3a). 
We observed the all hHubGs were significantly differentially exprerssed between CC and control samples. On the other 
hand, The GEPIA database was also used to investigate the prognostic power of these 10 hHubGs in CC patients using by 
using their survival analysis. From Fig. 3b, we observed that the lower expressions of two hHubGs (CDK2 and CCNA2) and 
higher expression of (CHEK1, TOP2A, BRCA1, CCNB1 and TYMS) increases the survival probability of patients, significanty.

3.4  Functional and pathway enrichment analysis of all Hub/Studied‑DEGs

The GO functional enrichment analysis revealed that our proposed hHubGs significantly enriched with abundant 
number of biological processes (BPs), molecular functions (MFs) and cellular components (CCs) (Table 1 and Table S1). 

Fig. 3  a Validation of the expression of 10 hHubGs in CC tissues via GEPIA website. Red color represents tumor samples, while gray color 
represents normal samples. b Overall survival of 10 hHubGs in CC patients. The green curve is the high expression group and the magenta 
curve is the low-expression group
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The Table 1 shows top 5 significantly enriched GO-terms for each of three categories (BPs, MFs, and CCs). These func-
tions and pathways are highly connected with the CC related biological functional pathways in host which are crucial 
for developing therapeutic targets. The top five GO terms of the biological process including DNA replication, cell 
division, G1/S transition of mitotic cell cycle, mitotic nuclear division, and regulation of signal transduction by p53 
class mediator were significantly enriched by the hHubGs-sets {BRCA1, CHEK1, CDK2, CDK1}, {CCNB2, CCNB1, CDK2, 
CDK1}, {TYMS, CDK2, CDK1}, {CCNB2, CDK2, CDK1}, and {BRCA1, CHEK1, CDK2}, respectively. The MFs GO terms protein 
binding, chromatin binding, ATP binding, protein kinase binding, and protein heterodimerization activity were sig-
nificantly enriched by the hHubGs-sets {CHEK1, CCNB2, CCNB1, CDK2, CDK1}, {TOP2A, CDK1}, {TOP2A, CDK2, CDK1}, 
{CCNB1}, and {TOP2A}, respectively. The Cellular Components GO terms nucleoplasm, Cytosol, nucleus, spindle pole, 
and cytoplasm were significantly enriched by the hHubGs-sets {TOP2A, BRCA1, CHEK1, CCNB2, CCNB1, CDK2, CDK1}, 
{CHEK1, CCNB2, CCNB1, CDK2, CDK1}, {MKI67, CHEK1, CCNB2, CCNB1, CDK2, CDK1, TOP2A}, {CCNB1}, and {MKI67, 
CCNB1, CDK2, TOP2A, BRCA1}, respectively. We also observed that KEGG pathway categories Cell cycle, Pathways 
in cancer, HTLV-I infection, Hepatitis B, and p53 signaling pathway were significantly enriched by the hHubGs-sets 
{CCNB2, CCNB1, CHEK1, CDK2, CDK1}, {CDK2}, {CHEK1}, {CDK2}, and {CCNB2, CCNB1, CHEK1, CDK2, CDK1}, respectively. 
The other significantly enriched GO terms and KEGG pathways of hHubGs-sets were given in Table S4.

3.5  Transcriptional and post transcriptional regulatory factors of hHubGs

The network analysis of hHubGs with TFs detected top-ranked four significant TFs (TEAD1, ZBTB33, RCOR2, and ZEB1) 
as the key transcriptional regulatory factors for hHubGs (see Fig. 4). We found that TEAD1 is key TFs of three hHubGs 

Table 1  The top five significantly (p-value < 0.001) enriched GO functions and KEGG pathways by hub/studied-genes involving hHubGs with 
CC diseases

Biological Process (BPs)
GO ID GO Term Hub-DEGs (Counts) P-Value Associated hHubGs
GO:0,006,260 DNA replication 33 2.32E-28 BRCA1, CHEK1, CDK2, CDK1
GO:0,051,301 cell division 37 5.39E-21 CCNB2, CCNB1, CDK2, CDK1
GO:0,000,082 G1/S transition of mitotic cell cycle 22 6.39E-19 TYMS, CDK2, CDK1
GO:0,007,067 mitotic nuclear division 28 1.38E-16 CCNB2, CDK2, CDK1
GO:1,901,796 regulation of signal transduction by 

p53 class mediator
18 1.78E-12 BRCA1, CHEK1, CDK2

Molecular Function (MFs)
GO ID GO Term Hub-DEGs (Counts) P-Value Associated hHubGs
GO:0,005,515 protein binding 192 1.39E-19 CHEK1, CCNB2, CCNB1, CDK2, CDK1
GO:0,003,682 chromatin binding 28 1.08E-11 TOP2A, CDK1
GO:0,005,524 ATP binding 55 8.87E-11 TOP2A, CDK2, CDK1
GO:0,019,901 protein kinase binding 22 9.59E-08 CCNB1
GO:0,046,982 protein heterodimerization activity 24 2.07E-07 TOP2A
Cellular Component
GO ID GO Term Hub-DEGs (Counts) P-Value Associated hHubGs
GO:0,005,654 nucleoplasm 93 6.62E-19 TOP2A, BRCA1, CHEK1, CCNB2, CCNB1, CDK2, CDK1
GO:0,005,829 cytosol 91 5.86E-13 CHEK1, CCNB2, CCNB1, CDK2, CDK1
GO:0,005,634 nucleus 115 2.22E-09 MKI67, CHEK1, CCNB2, CCNB1, CDK2, CDK1, TOP2A
GO:0,000,922 spindle pole 13 1.91E-08 CCNB1
GO:0,005,737 cytoplasm 108 5.49E-08 MKI67, CCNB1, CDK2, TOP2A, BRCA1
KEGG Pathway
has ID Pathways Hub-DEGs (Counts) P-Value Associated hHubGs
hsa04110 Cell cycle 30 6.63E-21 CCNB2, CCNB1, CHEK1, CDK2, CDK1
hsa05200 Pathways in cancer 39 1.88E-13 CDK2
hsa05166 HTLV-I infection 28 1.11E-10 CHEK1
hsa05161 Hepatitis B 20 2.47E-09 CDK2
hsa04115 p53 signaling pathway 11 5.32E-06 CCNB2, CCNB1, CHEK1, CDK2, CDK1
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(TYMS, CCNB1, and MKI67), ZBTB33 for four hHubGs (TYMS, CDK2, MKI67, and CDK1), RCOR2 for three hHubGs (TYMS, 
MKI67, and TOP2A), and ZEB1 for three hHubGs (BRCA1, CDK2, and MKI67). Similarly, the network analysis of hHubGs 
with miRNAs identified top-ranked three significant miRNAs denote as hsa-miR-548d-5p, hsa-miR-146a and hsa-miR-559 
that are considered as the key post-transcriptional regulatory factors for hHubGs-sets {CCNA2, CDK2, BRCA1}, { CHEK1, 
TYMS, BRCA1, TOP2A}, and { CDK2, MKI67, CCNB1} respectively (see Fig. 4).

3.6  Drug repurposing by molecular docking

We considered 10 hHubGs and its regulatory 4 TFs (ZBTB33, TEAD1, ZEB1, RCOR2) as the m = 14 drug target receptors. 
We downloaded 3D structure of 14 receptors (BRCA1, CCNB1, CDK1, TOP2A, CCNA2, CDK2, CHEK1, MKI67, PLK1, TYMS, 
RCOR2, TEAD1, ZBTB33, ZEB1) from Protein Data Bank (PDB) [107] with PDB IDs 1n5o, 2b9r, 4y72, 1zxm, 1h26, 1b38, 1nvq, 
1r21, 1q4o, 1hw3, 4czz, 6im5, 6df5, 2e19 respectively. The PubChem database [109] was used to retrieve the 3D structures 
of 77 drugs. To determine the binding scores for each pair of target proteins and meta-drug agents, molecular docking 
analysis was performed between m = 14 target proteins and n = 77 meta-drug agents. Then, we sorted the targets accord-
ing to the row sums of the binding score matrix A = (Aij) and the drug agents according to the column sums in order to 
choose a small number of drug agents as the candidate drugs. The Fig. 5a showed the image of binding score matrix 
A
∗ =

(

A∗
ij

)

 according to the sorted target proteins in Y-axis and n = 77 top ranked meta-drug agents in X-axis. We con-

sidered potential drug agents with a binding score of − 7.3 or less as better compounds against 14 targets. Therefore, we 
selected 10 top-ranked compounds (Docetaxel, Temsirolimus, Paclitaxel, Everolimus, Vincristine, Vinorelbine, cabazitaxel, 
Lapatinib, Irinotecan, Imatinib) as the possible candidate drug agents, possibly inhibiting the all proposed receptors for 
CC and these ten drugs are approved by U.S. Food and Drug Administration (FDA).

To validate our offered candidate drug agents by docking analysis with the already published targets related with CC 
infections, we picked up 54 papers on CC infections, those provided hub-genes and found only 10 hub-genes (ASPM, 
DTL, MMP1, TOP2A, PCNA, CCNB1, MCM2, AURKA, CDK1, CDC45) in which each of them was common within 4 articles 
out of 54 (see Table S1). We considered 10 targets corresponding to these 10 hub-genes to validate our selected drug 
agents against CC infections through docking analysis. From these 10 hub-genes, we observed that 3 genes (TOP2A, 
CDK1, CCNB1) were common with our selected hHubGs. So, the 3D structures of remain 6 hub-genes (DTL, MMP1, AURKA, 
PCNA, CDC45, MCM2) were downloaded from PDB with IDs 6qc0, 1cge, 1mq4, 1u76, 5dgo, 4uuz, respectively. The remain 
3D structure of ASPM target was downloaded from UniProt [123] with sources ID of Q8IZT6. Then we performed docking 
analysis between top-ranked 30 drugs and published top-ranked 10 targets associated with CC infections. Their binding 
affinities (kcal/mol) were pictured in Fig. 5b. We accomplished that top-ranked 9 candidate drugs were common with our 
proposed top-ranked 10 candidate drugs. Finally we considered, the top-ranked 6 candidate drugs (Docetaxel, Temsiroli-
mus, Paclitaxel, Vincristine, Everolimus, Vinorelbine) with binding affinities − 7.4 kcal/mol ≤ against the 7 published targets.

Fig. 4  TFs-genes- miRNAs 
interaction network with 
hHubGs. The highlighted 
green color nodes represent 
the hHubGs, orange color 
nodes represent the miRNAs, 
and other cyan color nodes 
represent TFs. The network 
consists of 400 nodes and 583 
edges
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We considered top-ranked three docked complexes for protein-drug interaction profiling (see Table 2). As shown in 
Fig. 6a, CDK1_Docetaxel complex showed five hydrogen bonds with Leu83, Ile10, Gly11, Gln132, and Phe80 residues. 
Though the ligand formed major hydrophobic interactions with only two (Ala145, Leu135) residues, and three residues 
(Asp86, Phe80, Phe82) showed electrostatic interactions with the ligand. In Fig. 6b, CHEK1_Temsirolimus complex exposed 
two hydrogen bonds with Thr255, Pro250 residues, and the ligand formed electrostatic interactions with two (Glu187, 
Pro250) residues. In the case of the TOP2A_Paclitaxel complex, Paclitaxel showed six hydrogen bonds with Tyr82, Arg241, 
Arg241, Gln310, Ser320, and Gln310 residues. Paclitaxel also formed hydrophobic interactions with Ile311, Trp62, Tyr72 
residues. Furthermore, Paclitaxel also formed electrostatic interactions with Glu379 residue (see Fig. 6c).

3.7  Screening drugs with proposed hHubGs for CC treatment via DGIdb

For the corss validation, Drug Gene Interaction Database (DGIdb) web resource [124] was used to retrieve drugs that 
interact with top-ranked 10 hHubGs. We found 9 out of the 10 genes have 456 interactions with drugs (see Fig. 7 and 
Supplementary Table S5). We found that, five drugs (Paclitaxel, Vincristine, Everolimus, Vinorelbine, Irinotecan) were 
common with our proposed top-ranked 10 drugs. BRCA1 has the highest number of inhibitory interactions among all 
genes with 5 drugs such as everolimus, vinorelbine, paclitaxel, and irinotecan. TOP2A can be inhibited by two drugs 

Fig. 5  a Image of binding affinities based on the top-ordered 30 meta-drug agents out of 77 against the ordered 15 receptors, where red 
colors indicated the strong binding affinities, and the single star (*) indicated common receptors (published and proposed). b Image of 
binding affinity scores based on the ordered proposed 30 candidate-drugs in X-axis and Top-ordered 10 published proteins corresponding 
to CC in Y-axis
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such as vincristine and paclitaxel. TYMS also can be inhibited by two drugs such as vincristine and irinotecan. CDK2 can 
be inhibited by paclitaxel.

3.8  Molecular dynamic simulation

Docetaxel, Temsirolimus, and Paclitaxel were the top-ranked three potential drugs out of all those suggested. Thus, these 
top-ranked 3 drug-agents were considered to analyze the stability through molecular dynamic simulations.

The RMSDs of three complexes and three apo form of proteins were determined from the simulation trajectories and 
plotted in Fig. 8a. From the figure, we observed that Paclitaxel-TOP2A obtained the highest RMSD values, while Docetaxel-
CDK1 attained the lowest RMSDs in the 100 ns simulation. The figure demonstrates that docetaxel-CDK1 displayed a more 
stiff conformation compared to the other two proteins, reached equilibrium at 2 ns, and remained stable after that. On 
the other hand, the apo form of CDK1 also reached at equilibrium after 2 ns and maintained RMSD values up to 1.95 Å 
for 100 ns. The temsirolimus-CHEK1 complex exhibited slight fluctuations between about 40000 ps and 55000 ps and 
stabilized in the remaining simulations, and the apo form of CHEK1 also exhibited slight fluctuations between about 
25000 ps and 50000 ps, after that it decreased to 1.4 Å and remained steady thereafter. On the contrary, the flexibility of 
paclitaxel-TOP2A complex increased dramatically, with RMSD values steadily increasing from 2 to 4 over time. The apo 
form of TOP2A reached at equilibrium after 3 ns and maintained RMSD up to 1.8 Å for 75 ns, after which the RMSD was 
seen to increase gradually. Here, we estimated the MM-PBSA binding energies for top-ranked 3 drugs with as mentioned 
previously. Figure 8b showed the binding energies for top-ranked 3 complexes (docetaxel-CDK1, temsirolimus-CHEK1, 

Fig. 6  The top-ranked three complexes obtained from molecular docking study and its 2D chemical interactions. The figure is generated by 
using discovery studio visualizers. Complexes: a indicated CDK1_Docetaxel, b indicated CHEK1_Temsirolimus, and c indicated TOP2A_Pacli-
taxel
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paclitaxel-TOP2A). The average binding energies of the docetaxel-CDK1, temsirolimus-CHEK1, paclitaxel-TOP2A com-
plexes were 10.23 kJ/mol, 26.65 kJ/mol, and 7.56 kJ/mol, respectively.

4  Discussion

CC is the most prevalent type of malignant tumor in women where its 5-year survival rate is only about 52%. Thus, for 
enhancing the survival rate and minimizing the mortality rate of CC patients it is required more studies to confirm the 
effective biomarkers and candidate drug agents [24]. For that, the target-based therapy for cervical cancer has become a 
hot spot in the medication system [125]. In recent years, multiple biomarkers for cervical cancer have been discovered (see 
Table S2). However, the complex and varied biomarkers of targeted therapy for cervical cancer also need to be properly 
uncovered and investigated [126]. In this study, we collected 255 hub genes/ study genes from 52 reputed published 
articles to find the independent meta-receptors which closely connected with CC disease. Among them, we detected 10 
hHubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the proposed hub/key genes with 
emphasis on their roles, regulatory mechanisms, and therapeutic candidates. The box-plots based on the expression 
profile of hHubGs through the GEPIA web server showed that hHubGs are significantly differentially expressed genes 
(DEGs) between CC disease and control samnples. It should be noted here that the GEPIA web server was developed 
based on the RNA sequencing expression profiles of tumors and normal (9,736 and 8,587)samples comprising the TCGA 
and the GTEx projects.

According to the existing literature, CDK2 was a more promising therapeutic target for cervical cancer [37, 59]. CHEK1 
hub gene produced a high score expression value in CC tissues compared with normal tissues and was considered as 
a significant upregulated expressed gene (P < 0.01) [20, 44]. Yuan et al. revealed that MKI67 showed high expression in 
CC [44]. TOP2A is considered a potential biomarker to improve the diagnosis of CC [12, 13, 20, 24, 32, 40, 42, 44, 55, 56]. 

Fig. 7  Gene-Drug interactions based on DGIdb and the network consists of 467 nodes and 539 edges. It contains proposed top-ranked 10 
hHubGs (magenta color), drugs (deep sky blue) and the five drugs in light green (Paclitaxel, Vincristine, Everolimus, Vinorelbine, Irinotecan) 
indicated common drugs along with our proposed top-ranked 10 drugs
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CDK1 may play a significant role in regulating the genetic network associated with cervical cancer occurrence, develop-
ment, and metastasis [20, 25, 32, 40–42, 45, 57, 65]. PLK1 played a role in the occurrence and progression of CSCC [45]. 
To activate the JAK/STAT pathway BRCA1 increased the sensitivity of cervical squamous cell carcinoma (CSCC) patients 
to cisplatin-based CCRT with upregulated expression of STAT1 [54]. CCNB1 also enacted a key role in the development 
of CC under some signaling pathways [12, 25, 32, 53, 65]. Y. Liu et al. reported that the progression of CC is activated by 
the expression of CCNA2 [41]. Some researchers discovered that TYMS expression levels were elevated in cervical cancer 
and were positively connected with cervical cancer prognosis [13, 24, 57].

We considered the top five mutual GO terms including BPs, MFs and CCs, and KEGG pathways to explore the pathoge-
netic processes of hHubGs, those were significantly associated with cervical cancer disease based on the hub-DEGs and 
hHubGs. Among them the GO terms, the top five common BPs (DNA replication, cell division, G1/S transition of mitotic cell 
cycle, mitotic nuclear division, regulation of signal transduction by p53 class mediator) showed the significant association 
with CC which was supported by the previous individual studies [12, 13, 127, 128]. The top five common MFs (protein 
binding, chromatin binding, ATP binding, protein kinase binding, protein heterodimerization activity) were significantly 
associated with CC disease and that were also supported by some previous studies[12, 13, 129–132]. Similarly, top four 
Cellular Components (nucleoplasm, cytosol, nucleus, spindle pole, and cytoplasm) were significantly associated with CC 
disease which was existed by the different individual literatures [133–135]. We also found the top five common KEGG 
pathways (Cell cycle, Pathways in cancer, HTLV-I infection, Hepatitis B, and p53 signaling pathway) that were significantly 
enriched for CC, and it is reported by some others [12, 42, 136].

We introduced four transcriptional (TFs) and three post-transcriptional (miRNAs) regulatory factors in results sections as 
well as the TFs proteins (TEAD1, ZBTB33, RCOR2, and ZEB1) were used as the drug target receptors for predicting the drug 
agents. In literature review, the previous study suggested that TEAD1 was an significant biomarker for CC [137]. ZBTB33 was 
able to prevent cervical cancer cell proliferation and EMT [138]. RCOR2 was established to be functional in cancer stem cells, 
where it positively regulates stemness gene expression [139]. Chen J. X. et al. suggested that the effect of hypoxia-induced 

Fig. 8  a Time evolution of root-mean-square deviations (RMSDs) of backbone atoms (C, Cα, and N) for protein for top-ranked three com-
plexes. b Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis was used to determine the binding free energy (kJ/mol) 
of each snapshot, which represents the change in binding stability of each complex across simulations; positive values indicate better bind-
ing. Complexes: Dark blue docetaxel-CDK1, green temsirolimus-CHEK1, red paclitaxel-TOP2A, light blue apo-CDK1, light green apo-CHEK1, 
light red apo-TOP2A
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ZEB1-driven cancer cells induced macrophage infiltration into hypoxic area through the CCR2–NF-κB pathway showed poor 
connection of prognosis in CC [140].

We considered top-ranked identified proteins and their regulation 4 important TF proteins as drug target proteins and 
conducted molecular docking analysis with 77 meta-drug agents to find viable candidate drug agents for the medication 
of CC (see Table S1). Then, we choose top-ranked ten drugs (Docetaxel, Temsirolimus, Paclitaxel, Vincristine, Everolimus, 
Vinorelbine, cabazitaxel, Lapatinib, Irinotecan, Imatinib) as the potential drugs for CC infections based on their binding 
affinity scores (kCal/mol) compared with all the target receptors (see Fig. 5a). On the other hand, we also confirmed that 
our proposed hHubGs suggested by others. Moreover, the hHubGs matched by previous articles in favour of 10 studies for 
TOP2A and CDK1, 5 studies for CCNB1, 3 studies for TYMS, 2 studies for CDK2 and CHEK1, and only single study for PLK1, 
CCNA2, BRCA1and MKI67 genes (see Fig. 9a). The suggested drugs of our study also reported by the other researchers such 
as Docetaxel [70, 91], Temsirolimus [72, 74, 88, 89], Paclitaxel [14, 70, 73, 80, 82, 87, 89, 91], Vincristine [14, 70, 91], Everolimus 
[89], Vinorelbine [14, 73, 91], cabazitaxel [90], Lapatinib [74, 86, 88, 89], Irinotecan [73, 91], Imatinib[88–90] for the treatment 
of CC infections (see Fig. 9b). On the other hand, we used DGIdb online database to screen the drugs that interact with our 
proposed 10 hHubGs for cross validation and found that five drugs (Paclitaxel, Vincristine, Everolimus, Vinorelbine, Irinote-
can) were common with our proposed top-ranked 10 drugs. Then, we also validated top-ranked 30 candidate-drugs against 
the top-ranked 10 published receptors (ASPM, DTL, MMP1, AURKA, PCNA, CCNB1, CDC45, MCM2, TOP2A, CDK1) associated 
with CC infections by molecular docking analysis and found their strongly significant binding affinity scores with top-ranked 
6 candidate-drugs (see Fig. 5b). Finally, we investigated the stability of top-ranked three drugs (Docetaxel, Temsirolimus, 
Paclitaxel) by using 100 ns MD-based MM-PBSA simulations for three top-ranked proposed receptors (CDK1, CHEK1, TOP2A), 
and observed their stable performance according to the laws of physics [141, 142]. Therefore, the proposed candidate drugs 
might be played a vital role in the treatment of CC infections.

Fig. 9  a Proposed CC-causing hub genes (hHubGs) with supporting references, where a specific color indicates the references for a specific 
hub-gene. b Proposed candidate drugs (FDA approaved) with supporting references, where a specific color indicates the references for a 
specific candidate drug
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5  Conclusions

The current work used a variety of well-known bioinformatics tools to discover hub of the HubGs (hHubGs) highlighting 
their regulatory factors and dysregulated molecular functions and pathways pathways that are responsible for CC devel-
opment. At first, we collected 255 HubGs/studied-genes that were published by the individual studies.. Among them, we 
selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the hHubGs by the PPI 
network analysis and validated their differential expression patterns between CC and normal samples through the GPEA 
database. The gene ontology (GO) and KEGG pathway enrichment analysis of HubGs revealed some crucial CC-causing 
BPs (DNA replication, cell division), MFs (protein binding, chromatin binding) and CCs (nucleoplasm, cytosol) by involv-
ing hHubGs. The gene regulatory network (GRN) analysis exposed four TFs proteins (TEAD1, ZBTB33, RCOR2, and ZEB1) 
and three miRNAs (hsa-miR-548d-5p, hsa-miR-146a and hsa-miR-559) as the key transcriptional and post-transcriptional 
regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 candidate drugs (Docetaxel, 
Temsirolimus, Paclitaxel, Vincristine, Everolimus, Vinorelbine, cabazitaxel, Lapatinib, Irinotecan, Imatinib) and validated 
them against the state-of-the-arts independent receptors by molecular docking analysis. Finally, we offered possible 
candidate drug agents, such as Docetaxel, Temsirolimus, Paclitaxel, and examined their stability performance by using 
100 ns MD-based MM-PBSA simulations for the top-ranked three proposed proteins (CDK1, CHEK1, TOP2A), and also 
detected their stable performance. Hence, the selected genetic biomarkers and candidate repurposing drugs derived 
from this study has merit for CC disease diagnosis and therapies.
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