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Abstract

Myeloid-derived monocyte and macrophages are key cells in the bone that contribute to

remodeling and injury repair. However, their temporal polarization status and control of

bone-resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In

this study, we focused on two aspects of monocyte/macrophage dynamics and polarization

states over time: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages

temporal profiles, 2) the contributions of pro- versus anti-inflammatory monocytes/macro-

phages in coordinating healing response. Bone healing is a complex multicellular dynamic

process. While traditional in vitro and in vivo experimentation may capture the behavior of

select populations with high resolution, they cannot simultaneously track the behavior of

multiple populations. To address this, we have used an integrated coupled ordinary differen-

tial equations (ODEs)-based framework describing multiple cellular species to in vivo bone

injury data in order to identify and test various hypotheses regarding bone cell populations

dynamics. Our approach allowed us to infer several biological insights including, but not lim-

ited to,: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-

inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in

osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation,

3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can

be explained by the anti-inflammatory macrophages-mediated inhibition phase between the

two waves. In addition, we further tested the robustness of the mathematical model by com-

paring simulation results to an independent experimental dataset. Taken together, this

novel comprehensive mathematical framework allowed us to identify biological mechanisms

that best recapitulate bone injury data and that explain the coupled cellular population

dynamics involved in the process. Furthermore, our hypothesis testing methodology could

be used in other contexts to decipher mechanisms in complex multicellular processes.
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Author summary

Myeloid-derived monocytes/macrophages are key cells for bone remodeling and injury

repair. However, their temporal polarization status and control of bone-resorbing osteo-

clasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused

on two aspects of monocyte/macrophage population dynamics: 1) the injury-triggered pro-

and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of

pro- versus anti-inflammatory monocytes/macrophages in coordinating healing response.

In order to test various hypotheses regarding bone cell populations dynamics, we have inte-

grated a coupled ordinary differential equations-based framework describing multiple cel-

lular species to in vivo bone injury data. Our approach allowed us to infer several biological

insights including: 1) anti-inflammatory macrophages are key for early osteoclast inhibition

and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are

involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast dif-

ferentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion

waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition

phase between the two waves. Taken together, this mathematical framework allowed us to

identify biological mechanisms that recapitulate bone injury data and that explain the cou-

pled cellular population dynamics involved in the process.

Introduction

The tightly-coupled relationship between bone-forming osteoblasts and bone-resorbing osteo-

clasts in bone remodeling and healing is well established [1]. Bone remodeling is initiated by

osteoclastic turnover of aged and compromised bone tissue. Molecular cues derived from

bone resorption subsequently drive mesenchymal precursor expansion and differentiation

into osteoblasts for formation of new bone [1]. Bone healing on the other hand begins with

osteoblastic bone callus deposition that is subsequently remodeled by osteoclasts [1]. Beyond

this classic paradigm of the bone modeling unit (BMU), studies are increasingly identifying

other cellular populations and factors that also contribute to the maintenance of bone. Macro-

phages of the myeloid lineage play critical roles in inflammation, wound healing and cancer

progression [2]. Recent studies have also shed light on their contribution to bone biology.

While osteoclasts have traditionally been known as the tissue resident macrophage of the

bone, more recent studies identified a novel population of bone-resident macrophages, osteo-

macs, which facilitate osteoblast bone formation [3,4]. Additionally, in the context of bone

healing, macrophages have been documented to rapidly infiltrate sites of bone injury to clear

cellular debris in a process called efferocytosis and elicit subsequent inflammatory response

and mineralized callus formation [1]. Monocytes and macrophages are major components of

the bone immune infiltrate following injury [1,5–7]. Recent studies using genetic or pharma-

cological depletion of macrophages demonstrated significantly delayed time to bone repair

[4,5,8–10]. The diversity of macrophage function owes to its versatility in polarizing and

responding to environmental cues [1,6–8]. These critical functions ensure the right temporal

sequence of events necessary for healthy and timely bone repair after injury. For instance, IL-4

and TNFα have been shown to promote different macrophage polarization states and impact

bone healing [11–12]. As an example, acute pro-inflammatory factors such as TNFα can

improve bone repair while prolonged administration has the opposite effect [11,12]. There are,

however, a number of gaps in our understanding of monocyte and macrophage population

and polarization behavior, including but not limited to: 1) the contributions of pro- versus
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anti-inflammatory macrophages in coordinating bone injury response, 2) whether macro-

phages are directly involved in control of osteoclasts and osteoblasts populations and activities

during bone injury, and 3) the main mechanisms that govern pro- and anti-inflammatory

macrophages population dynamics.

While in vitro and in vivo experimentation techniques can capture the behavior of indi-

vidual populations with high resolution, they do not allow for understanding the simulta-

neous interplay between multiple cell types whose numbers change over time. This obstacle

can be overcome with the integration of experimental data to computational approaches in

order to model the interactions occurring during bone injury repair. This type of approach

has already been applied to other disease contexts like cancer [13–22]. Amongst the possible

types of modeling approaches, agent-based models, such as discrete-continuum Hybrid Cel-

lular Automata can examine mechanisms at the cellular scale leading to emergence of non-

trivial macroscopic patterns [23]. One advantage of such an approach, is the possibility to

inform the model with experimentally measured parameters. However, these parameters,

such as macrophage polarization rate for example, can sometimes be exceptionally difficult

to measure in vivo or in vitro. On the other hand, systems of Ordinary Differential Equations

(ODEs) model individual populations over time under a well-mixed assumption and are

often used to estimate in vivo parameters. While they do not describe cellular mechanisms as

finely as agent-based models, their relative computational simplicity make them a conve-

nient tool to identify key parameters through data fitting [24–26]. Multiple mathematical

approaches have been used to study bone remodeling and repair [27–31]. The vast majority

use systems of ODEs to model bone cell populations in homeostatic bone remodeling and

bone disease such as osteoporosis and multiple myeloma [32–37]. Bone remodeling is a

physiological program that is tightly regulated spatially and temporally. Other groups have

considered the role of space in the process and represented cell population either as continu-

ous spatial field, describing the dynamics by a set of partial differential equations (PDE)

[38,39], or as individual agents by an agent-based model approach [22]. These models have

largely focused on the interaction between bone-building osteoblasts and bone-resorbing

osteoclasts, mostly ignoring the role of immune and inflammatory cells. Although these

models have addressed biologically and clinically relevant questions, very few studies, one of

which is from our group [40] have quantitatively compared predictions of bone injury

dynamics to longitudinal biological data. Some studies have included the role of inflamma-

tory cells like macrophages, but they remain theoretical and have not been experimentally

validated [41,42]. The role of inflammation, and that of macrophages in particular, is recog-

nized as being key for coordinating the bone injury response in vivo but, to date, how mono-

cyte/macrophage populations coordinate it and interact directly with osteoblasts and

osteoclasts (and vice versa) during bone remodeling has not been thoroughly examined

[1,6]. Here we use experimental, in combination with published data, to integrate osteo-

blasts, osteoclasts, bone, naïve, pro- and anti-inflammatory monocytes and macrophages

into a coupled ODE model of the bone ecosystem. This approach allowed for the interro-

gation of key hypotheses that explain the bone healing program, such as the polarization

and clearance dynamics of monocytes/macrophages, interactions between anti-inflamma-

tory macrophages and pro-inflammatory monocytes/macrophages, and how pro- and

anti-inflammatory monocytes/macrophages modulate osteoclast and osteoblast behaviors.

We posit this integrated approach can be used to uncover mechanisms driving bone

injury repair dynamics and to identify key strategies aimed at shortening bone healing

times.
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Results

Quantitative data of cell populations during bone injury repair dynamics

During non-critical bone injury healing, the following sequence of steps occur: early inflam-

mation and hematoma formation, direct intramembranous bone deposition into a mineralized

callus by osteoblasts [43–45], and callus remodeling by osteoclasts [1,3,9,46]. Bone-forming

osteoblasts and bone-resorbing osteoclasts are critical mediators of these steps, and their num-

bers shift accordingly during each phase of repair. In order to temporally quantitate bone cells

during injury, we extracted multi-cellular longitudinal data from an experimental model of

bone injury repair whereby non-critical epiphyseal fracture was generated in mice by direct

intratibial injection [40,46–49] (Fig 1A). In the injured tibias of the mice, bone volume and cell

populations numbers were quantified at baseline (day 0) and at day 1, 2, 3, 7 and 14 (n = 5/

time point) following injury. High-resolution μCT analysis of the site of bone injury demon-

strated changes in bone volume (BV/TV) subsequent to bone injury (Fig 1B). Bone volume

remained diminished over a 48-hour period prior to a five-day long expansion, beyond

Fig 1. Experimental quantification of osteoblast, osteoclast, bone volume, and monocyte-macrophage over time

during bone injury. a schematic summarizing the experimental system and the time course and different

measurements performed. b from left to right: Decalcified bones were stained and quantified for OCL by tartrate-

resistant acid phosphatase (TRAcP) staining (top left panel; red). Temporal quantification of OCL population was then

assessed (bottom left panel); Decalcified bones were stained and quantified for OBL by RUNX2 immunofluorescence

staining (second top panel; red). Temporal quantification of OBL population was then assessed (bottom left panel);

micro-computed tomography revealed trabecular bone status. Representative images (third top panel) and

corresponding quantitative analyses of bone volume on the top panel (BONE; BV/TV, second bottom panel). Flow

cytometry was to gate and quantify monocytes-macrophages by the use of CD11b, Ly6C, Ly6G markers (Top right

panel). Temporal quantification of naïve, pro-inflammatory and anti-inflammatory monocytes-macrophages

populations was then assessed (bottom right panel).

https://doi.org/10.1371/journal.pcbi.1009839.g001
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baseline levels. By day 14, the bone volume returned toward homeostasis. Consistent with

other published observations, the overall bone volume dynamics were accompanied by corre-

sponding sequential waves of osteoblast and osteoclast numbers [49–51] (Fig 1B). Interest-

ingly, the overlaid data reveal alternating waves of osteoblasts and osteoclasts. In the same

longitudinal study, the contralateral tibia from each mouse was additionally subject to flow

cytometry to derive dynamics of total and polarized myeloid populations [2,4,5,7,52–105] (Fig

1B). The myeloid dataset shows that pro-inflammatory monocytes and macrophages spiked

within the first 48 hours while anti-inflammatory macrophages were observed between 24 and

72 hours (Fig 1B). Importantly, a fainter but prolonged secondary wave of pro-inflammatory

monocytes-macrophages was noted, an observation which is in line with past studies in other

inflammatory contexts [51,106–108].

Mathematical modeling reveals key insights into myeloid behaviors during

bone injury repair

In order to shed light on monocyte-macrophage dynamics, we interrogated hypotheses regard-

ing population dynamics, differentiation, lifespan and plasticity. To this end we built a coupled

ordinary differential equations-based framework describing seven cell populations as well as

the bone volume temporal dynamics. The cell populations we considered in the model were

bone-building osteoblasts, bone-resorbing osteoclasts, naïve monocytes, pro-inflammatory

monocytes, naïve macrophages, pro and anti-inflammatory macrophages. To properly inte-

grate cell population temporal data into this framework, we first curated common literature

observations and hypotheses regarding osteoblasts, osteoclasts, monocyte and macrophage

behavior during tissue injury healing (Table 1). In the model, the initial dynamics (osteoblast

expansion, osteoclast decrease, macrophage polarization, monocyte infiltration) are triggered

by injury factors [106]. We assume that the amount of factors released from an injury are pro-

portional to the bone damage induced and are the primary driver of myeloid response. Mye-

loid cells are known to infiltrate the bone and polarize into pro-inflammatory status to clear

cellular debris when exposed to injury-associated factors (Table 1) [1]. Therefore, an injury var-

iable was included in the model that drives the initial pro-inflammatory response by mono-

cytes/macrophages. In the model, this injury variable is being depleted by a decay rate term

that is proportional to the number of pro-inflammatory cells (Equations on S1 and S3 Figs).

Table 1. Reference sources of predominant mechanisms. Established biological behaviors and functions of bone cell populations. Framework for a comprehensive and

coupled 9-population ODE model is constructed based off of summarizing known published interactions between each population. Inclusion of select hypotheses for each

ambiguous aspect of myeloid biology is based on the prevalence of their corresponding publications (at least seven supporting references for each).

Description Fig 2 reference PMID

Anti-inflammatory macrophages suppress osteoclast activity (Fig 2A1) a1 [7,81,86,98,113,114,133,134]

Osteoclast and osteoblast activity are coupled (Fig 4A2 and 4A3) a2-3 [4,49,112,114,134–145]

Anti-inflammatory macrophages induce osteoblast expansion b1 [2–4,8–11,49,93,98,117,143,146]

Osteoblasts expand in response to bone injury and infection b2 [3,4,8–11,49,93,112,114,117,142,143]

Bone injury induces inflammation and monocyte and macrophage polarization c1-3 [4,7,11,69,94,111,140,141,143,147–150]

Anti-inflammatory cells suppress inflammation and pro-inflammatory cells c1-2 [10,11,68,76,89,94,96,134,139,150,151]

Pro-inflammatory drive anti-inflammatory polarization of naïve myeloid cells c2 [7,68,76,86,89,96,149]

Pro-inflammatory myeloid cells can repolarize to anti-inflammatory state c3 [7,68,86,89,96,147,148]

Pro-inflammatory osteal macrophages induce inflammatory monocyte recruitment c3 [4,8,11,73,76,84,89,94,95,139,142,143,147,152]

Polarized myeloid cells remove cellular debris, apoptotic cells and clear infection - [2,95,148,153,11,58,76,84,87,89,93,94,96,139,146,149,154]

Monocyte/macrophage are osteoclast precursors - [4,8,81,111,112,116,134,135,137–140,143,155,156]

Bone injury recruits inflammatory monocytes from circulation - [4,9–11,69,84,93,111,139,141,142,147,148,151,157]

https://doi.org/10.1371/journal.pcbi.1009839.t001
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Browsing existing literature (Table 1), we identified various hypotheses regarding mono-

cyte/macrophage control of osteoclast and osteoblast numbers, and the mechanistic relation-

ship between pro- and anti-inflammatory myeloid cells (Fig 2 and Table 1). These hypotheses

pertain to these three aspects of cell population dynamics:

1. Osteoclast dynamics

a. Pro-inflammatory monocytes/macrophages stimulate osteoclast expansion; Anti-inflam-

matory monocytes/macrophages inhibit osteoclast formation and life span

b. Pro-inflammatory monocytes/macrophages stimulate osteoclast expansion; Osteoblasts

inhibit osteoclast formation and life span

c. Osteoblasts stimulate osteoclast expansion; Anti-inflammatory macrophages inhibit

osteoclast formation and life span

2. Osteoblast dynamics

a. Anti-inflammatory factors stimulate osteoblast expansion

b. Injury factors stimulate osteoblast expansion

3. Monocyte-Macrophage dynamics

a. Injury factors drive both pro-inflammatory monocytes/macrophages and anti-inflam-

matory macrophages polarization; Anti-inflammatory macrophages suppress pro-

inflammatory macrophages

b. Injury factors drive pro-inflammatory monocytes/macrophages polarization; Pro-

inflammatory monocytes/macrophages drive anti-inflammatory macrophages polariza-

tion; Anti-inflammatory macrophages suppress pro-inflammatory macrophages

Fig 2. Comprehensive combinatorial modeling pipeline is built to identify relevant myeloid behaviors necessary

to recapitulate in vivo bone injury repair data. Literature curation reveals sets of well-established competing

biological mechanisms potentially governing modulation of osteoclast formation (a), regulation of osteoblast

formation (b), and relationships between pro- and anti-inflammatory myeloid cells (c). Model adopts all combinations

of hypotheses regarding these mechanisms to recapitulate in vivo data. Comparing model fits resulting from each

hypothesis combination reveals best-fitting models.

https://doi.org/10.1371/journal.pcbi.1009839.g002
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c. Injury factors drive resident pro-inflammatory macrophages polarization; pro-inflam-

matory macrophages repolarize into anti-inflammatory macrophages when phagocytos-

ing cellular debris; Anti-inflammatory macrophages naturally repolarize into pro-

inflammatory macrophages in absence of stimulus (plasticity); Pro-inflammatory mac-

rophages drive pro-inflammatory monocyte polarization.

Whereas evidence for all these mechanisms have been shown in vitro or in vivo, our goal here

is to identify the ones that can recapitulate in vivo dynamics, in order to define main mecha-

nisms that drive bone injury dynamics. We focus here on parsimonious hypothesis combina-

tions, where for a given cell dynamics aspect (a, b or c), one mechanism only is considered, e.g

c1 as opposed to c1&2.

We described the hypotheses using ordinary differential equations and integrated them

into a mathematical model framework to assess the ability of each hypothesis combination to

recapitulate the experimental data. This resulted in 18 ODE models, each describing a unique

combination of hypotheses. In each permutation, we assessed how well the model fitted to the

experimental data (Table 2). The models were ranked based on their goodness of fit, which

was measured by the Akaike Information Criterion (AIC, Table 2), and number of residuals

lower than 1 (Table 3). The fits to experimental data were obtained in two different ways, with

the choice of two different functionals to minimize, J2 and J1. Here we present the results

obtained with J1 but the conclusions remained the same with J2. Results indicate hypotheses

combination a3-b2-c2 (AIC of 39, Fig 3, equations presented in S1 Fig) shows the best fit to

experimental data. The second, third and fourth best fits were obtained by a3-b1-c2 (AIC of

42, S2 Fig), then a3-b1-c1 (AIC of 45, S4 Fig) and a3-b2-c1 (AIC of 46, S5 Fig). The AICs of

Table 2. Akaike information criterion (AIC) for comprehensive ODE of all 18 combinations of hypotheses.

Akaike information criterion (AIC) for comprehensive ODE of all 18 combinations of hypotheses. Left columns denote

the hypotheses from each of three mechanisms tested. The AIC scores resulting from J2 and J1minimization for each

model are shown on the right and vary dramatically across models. Comparing AICs reveal one best combination

(boxed in red) and the worst fitting model is highlighted in blue lines.

Mechanism Hypothesis J2 J1
a b c AIC Score AIC Score

1 1 1 79 73

1 2 3 77 68

1 1 3 78 67

1 2 1 79 73

1 1 2 89 70

1 2 2 115 65

2 2 1 81 76

2 1 1 103 79

2 1 2 78 69

2 1 3 78 66

2 2 2 88 78

2 2 3 128 113

3 1 1 58 45

3 1 3 76 56

3 2 1 57 46

3 2 3 86 59

3 1 2 51 42

3 2 2 44 39

https://doi.org/10.1371/journal.pcbi.1009839.t002

PLOS COMPUTATIONAL BIOLOGY Integrated computational framework deciphers macrophage biology during bone healing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009839 May 13, 2022 7 / 33

https://doi.org/10.1371/journal.pcbi.1009839.t002
https://doi.org/10.1371/journal.pcbi.1009839


the remaining combinations were substantially lower (Table 2). Looking to another metric of

goodness of fit, the number of residuals lower than 1, a3-b2-c2 is clearly the best combination,

with 25 residuals lower than one, and the rest of the models is far apart. With 15, 13 and 14

residuals lower than one, respectively, a3-b1-c2, a3-b1-c1 and a3-b2-c1 rank pretty low regard-

ing to the residuals metric (Table 3). Interestingly, some hypothesis combinations do better

than a3-b1-c2, a3-b2-c1 and a3-b1-c1 in term of number of residuals lower than 1, but worst

in term of AIC. In conclusion, combination a3-b2-c2 does substantially better than all other

combinations for both goodness of fit criteria (and for both J2 and J1 optimizations). Of note,

the best-fitting hypothesis a3-b2-c2 (Fig 3) assumes osteoblasts are the main osteoclastogenesis

driver (Fig 2 Hypothesis a3), and that anti-inflammatory macrophages play an important role

in suppressing osteoclasts and pro-inflammatory macrophages [91] (Fig 2 Hypothesis c2). It

also suggests that initial osteoblast expansion is driven by factors associated with the onset of

bone injury [106]. The coupled mathematical model also allows for the estimation of polariza-

tion rates over time for pro-and anti-inflammatory macrophages in these two scenarios

(Table 4). By comparison, some hypotheses combinations such as a2-b2-c3 yielded signifi-

cantly poorer fits (AIC of 113 for a2-b2-c3, the worst fitting one, Table 2 and Fig 4, AIC of 79

for a2-b1-c1, the second worst fitting one, Table 2 and S6 Fig). This last result demonstrates

that some cellular mechanisms and behaviors, though well-established in orthopedics (e.g.

osteoclast stimulation by pro-inflammatory monocytes/macrophages; osteoclasts inhibition by

osteoblasts through signals like OPG) are not able to recapitulate experimental observations in

specific physiological contexts. Taken together, these results show, through our integrative

hypothesis combination testing framework, the minimal set of cell-cell behaviors necessary to

recapitulate bone injury temporal dynamics.

Table 3. Residuals lower than one for comprehensive ODE of all 18 combinations of hypotheses. Estimated

parameters of the two best-fitting models. First column is the parameter notation used in the equations. Second col-

umn is the biological meaning of the parameter. Third and fourth columns are the parameter values for both models.

Fifth column is the parameter unit. Sixth column is the reference used for retrieving parameter value, when it was pos-

sible/available. Parameters for which no reported estimation could be found were estimated by fitting on experimental

data.

Mechanism Hypothesis J2 J1
a b c Residulas<1 Residulas<1

1 1 1 18/40 14/40

1 2 3 16/40 12/40

1 1 3 20/40 15/40

1 2 1 15/40 14/40

1 1 2 12/40 14/40

1 2 2 9/40 13/40

2 2 1 18/40 11/40

2 1 1 15/40 12/40

2 1 2 18/40 17/40

2 1 3 20/40 15/40

2 2 2 16/40 15/40

2 2 3 8/40 8/40

3 1 1 16/40 13/40

3 1 3 13/40 14/40

3 2 1 17/40 14/40

3 2 3 16/40 19/40

3 1 2 21/40 15/40

3 2 2 27/40 25/40

https://doi.org/10.1371/journal.pcbi.1009839.t003

PLOS COMPUTATIONAL BIOLOGY Integrated computational framework deciphers macrophage biology during bone healing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009839 May 13, 2022 8 / 33

https://doi.org/10.1371/journal.pcbi.1009839.t003
https://doi.org/10.1371/journal.pcbi.1009839


Model simulations are consistent with independent published experimental

data

Analysis of the literature reveals several factors that are important regulators of bone injury

repair, such as tumor necrosis factor alpha (TNFα), interleukin-4 (IL-4), interferon-γ (IFNγ)

and oncostatin M (OSM) [69,98,109–116]. For example, studies in mice genetically deficient

for OSM exhibited reduced bone formation and osteoblasts numbers at the non-critical bone

injury site [49,117]. OSM is produced by anti-inflammatory macrophages and promotes osteo-

blast expansion and activity [49,117–119]. To assess the robustness of our bone injury repair

mathematical model we simulated the effect of OSM depletion on osteoblast number and

determined if the model would recapitulate the qualitative temporal dynamics of osteoblast,

osteoclast population and bone volume as shown in an independent experimental dataset [49].

Fig 3. The best fitting hypothesis combination model integrates hypotheses a3, b2 and c2 (red boxes in a-c). a

mechanism a3 assumes that osteoblasts and anti-inflammatory macrophages promote and inhibit osteoclast

formation, respectively. b mechanism b2 assumes that injury factors promote osteoblast expansion. c mechanism c2
assumes that injury factors promote pro-inflammatory monocytes/macrophages polarization. Pro-inflammatory

monocytes/macrophages promote anti-inflammatory macrophages polarization, which in return drive depolarization

of monocytes/macrophages back to the naive state. d schematic representation of the model using a3-b2-c2 hypothesis

combination. Arrows represent positive (green) or negative (red) types of cellular interactions. e Temporal plots and

corresponding goodness of fit metrics (AIC and R2s) across all populations, obtained through J1minimization.

https://doi.org/10.1371/journal.pcbi.1009839.g003
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We found that reducing the effect of anti-inflammatory macrophages on osteoblast expansion

by 50%, mineralization activity by 50% and osteoclast inhibition by 80% yielded similar osteo-

blast, osteoclast and bone dynamics to those obtained from the OSM-deficient mice (Fig 5). Of

note, osteoblast and bone levels are below baseline osteoclast number and remain largely

unchanged between treatment and control in both the experimental data and model predic-

tions. While not examined in vivo by the independent study, our mathematical model addi-

tionally generated corresponding predictions of the effect of OSM depletion on monocyte/

macrophage dynamics (Fig 5). Interestingly, OSM depletion increased anti-inflammatory

macrophage population and transiently decreased pro-inflammatory populations. Collectively,

our model predictions are in qualitative accordance with this independent experimental data-

set. This suggests that the model can be used for understanding the roles of myeloid cells in the

bone ecosystem during bone injury healing and for developing therapies to accelerate and

improve the process.

Discussion

Much remains to be discovered about how cells in the bone ecosystem collectively orchestrate

the bone injury repair. Pharmacological and genetic experimental approaches can provide

Table 4. Parameter values of the best fitting model a3b2c2. Table showing biological description of each mathematical variable with data-derived initial conditions and

units. First column is the variable notation used in the equations for each parameter. Second column is the biological meaning of the variable. Third column is the initial

condition for each variable, typically an initial cell population level. Fourth column is the variable unit.

Parameter Description Value Unit Reference

a3 b2 c2
δMo Monocyte Lifespan 0,45 Day-1 [158]

δM Macrophage Lifespan 0,1 Day-1 [159]

δOB Bone-mediated Osteoblast lifespan 0,32 Day-1 Estimated

δOC Osteoclast lifespan 0,53 Day-1 [160]

γOB Macrophage-mediated Osteoblast Formation Rate 4.33 X 104 Cell mm-3 Day-1 Estimated

δB Per Bone Volume Unit Homeostatic Resorption Rate 5.99 X 10−7 Cell-1 Day-1 Estimated

PB Homeostatic Bone Apposition Rate 6.018 X 10−7 mm3 Cell-1 Day-1 Determined from δB

α Modulation of Resorption Rate by Pro-inflammatory Cell 0,0022 Cell-1 Estimated

β Modulation of Apposition Rate by Anti-inflammatory Cell 0,012 Cell-1 Estimated

HMo Homeostatic Monocyte Formation Rate 1.5 X 104 Cell Day-1 Estimated

HM Homeostatic Macrophage Formation Rate 1.8 X 104 Cell Day-1 Estimated

HOB Homeostatic Osteoblast Formation Rate 0,014 Cell Cell-1 Day-1 Determined from δOB

dOC Osteoblast-mediated Osteoclast Formation Rate 5.35 X 10−5 Cell-1 Day-1 Determined from δOC

InhibOC Macrophage-mediated Osteoclast inhibition 0,016 Cell-1 Estimated

InhibOC2 Macrophage-mediated Osteoclast inhibition 0,052 Cell-1 Estimated

δD Macrophage/Monocyte-mediated debris clearance 1.71 X 10−5 Cell-1 Day-1 Estimated

I1 Pro-Inflammatory cells-mediated monocyte recruitment 1.21 X 10−22 Cell Cell-1 Day-1 Estimated

I2 Injury signals-mediated monocyte recruitment 6.15 X 103 Cell mm-3 Day-1 Estimated

p31 Injury Factors-mediated Pro-inflammatory Monocytes Polarization Rate 6.094 X 10−73 mm-3 Day-1 Estimated

p32 Pro-inflammatory Cells-mediated Pro-inflammatory Monocytes Polarization Rate 3.42 X 10−5 mm-3 Cell-1 Day-1 Estimated

depol3 Pro-inflammatory Monocytes depolarization Rate 0,029 Cell-1 Day-1 Estimated

p11 Injury Factors-mediated Pro-inflammatory M Polarization Rate 5.86 X 10−9 mm-3 Day-1 Estimated

p12 Pro-inflammatory Cells-mediated Pro-inflammatory Macrophages Polarization Rate 4.69 X 10−4 mm-3 Cell-1 Day-1 Estimated

p2 Anti-Inflammatory Macrophages Polarization Rate 2.34 X 10−6 Cell-1 Day-1 Estimated

depol1 Pro-inflammatory Macrophages depolarization Rate 0,37 Cell-1 Day-1 Estimated

depol2 Anti-inflammatory Macrophages depolarization Rate 1.47 X 10−39 Day-1 Estimated

https://doi.org/10.1371/journal.pcbi.1009839.t004
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information as to the importance of key populations of cells, such as macrophages, but these

approaches seldomly address the direct and indirect effects of other cell types involved in bone

injury repair. Mathematical modeling has the advantage of being able to consider complex bio-

logical processes resulting from the interactions between several cellular populations, but their

relevance is limited by the availability of biological parameters and validation data. Here, by

combining experimental and mathematical models, we have investigated the interactions

between cell populations in bone that synchronously orchestrate the bone injury repair pro-

gram. To do so, we built a mathematical model that captures the dynamics of seven cell popu-

lations and the bone mass. Importantly, the system of equations is coupled so that each cell

Fig 4. Other hypotheses combinations fail to recapitulate in vivo data. The example of the worst fitting hypothesis

a2-b2-c1 fails to recapitulate in vivo data. a mechanism a2 assumes that pro-inflammatory monocytes/macrophages

and osteoblasts promote and inhibit osteoclast formation, respectively. b mechanism b2 assumes that injury factors

promote osteoblast expansion. c mechanism c1 assumes that injury factors promote pro-inflammatory monocytes/

macrophages and anti-inflammatory macrophages polarization. Anti-inflammatory macrophages drive depolarization

of monocytes/macrophages back to the naive state. d schematic representation of the model using a2-b2-c1 hypothesis

combination. Arrows represent positive (green) or negative (red) types of cellular interactions. e temporal plots and

corresponding goodness of fit metrics (AIC and R2s) across all populations, obtained through J1minimization.

https://doi.org/10.1371/journal.pcbi.1009839.g004
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type can regulate the activity of other cell types. This interplay between the different popula-

tions poses a challenge regarding the reconciliation between model dynamics and experimen-

tal data but gives credence to the novel insights it has allowed us to uncover. These include 1)

Anti-inflammatory macrophages drive early osteoclast inhibition and pro-inflammatory phe-

notype suppression 2) pro-inflammatory macrophages are involved in osteoclast activation

(bone resorptive activity), whereas osteoblastic cells promote osteoclast differentiation 3) Pro-

inflammatory monocytes/macrophages rise during two expansion waves, which can be

explained by the anti-inflammatory macrophages-mediated inhibition phase between the two

waves.

Experimentally, as described in our previous study [40], we observe a rapid expansion of

pro-inflammatory monocytes and macrophages in the first 24 hours with anti-inflammatory

macrophages emerging shortly thereafter and persisting for up 48 hours. Of the hypotheses

Fig 5. Bone repair dynamics in oncostatin M (OSM)-depleted bone predictions. a bone repair temporal data for

OCL, OBL and bone, in presence or absence of OSM, is retrieved and plotted from a murine in vivo bone fracture

healing study performed by Guihard P, et al [49]. on the top panel (solid line = WT, dashed line = OSM-null; http://

doi.org/10.1016/j.ajpath.2014.11.008). Reduction in OBL bone formation rate and mineralization activity, allow model

to qualitatively reproduce OBL, OCL and bone dynamics in OSM-null dataset (lower panel; solid line = unmodulated,

dashed line = OSM-/-). b. corresponding Myeloid populations predictions with reduced OBL formation rate and

mineralization activity (lower panel; solid line = unmodulated, dashed line = OSM-/-), for which no data was available

in Guihard P, et al [49]. Simulations were obtained with model a2-b2-c1, calibrated on the injury data (Fig 4) through

J1minimization.

https://doi.org/10.1371/journal.pcbi.1009839.g005
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tested by the model, a3-b2-c2 provided the best fit of model simulations to experimental

data. Under this set of assumptions, anti-inflammatory macrophages cause retraction of the

pro-inflammatory population and facilitates osteoblast expansion and mineralization/stabi-

lization of the injury site. With the natural depletion of the anti-inflammatory population,

the remaining injury-associated factors causes a second expansion of pro-inflammatory

macrophages and monocytes that in turn enhance osteoclast formation and activity. This

increased activity is essential for the resorption of the mineralized callus at the site of injury

and the return to bone homeostasis in the given time frame. To our knowledge very few

reports have proposed a role and mechanism for this second inflammatory wave during

bone healing. A role of MSCs and osteoblastic cells has been proposed for a second increase

in inflammatory cytokines like TNF [56]. However, this two waves pattern has been

observed in larger spectrum of inflammatory contexts, not only in bone [51,106–108], sug-

gesting that this temporal profile is not bone specific. Importantly, to our knowledge the

present study is the first to propose a mathematical framework of bone healing where bone

and immune cell populations are fully coupled and to inform such a model with experimen-

tal longitudinal data of all these populations.

Our hypothesis combination approach allowed us to explore the polarization properties of

monocytes/macrophages that can be difficult to determine in vivo. For example, the best fitting

ODE model, a3-b2-c2 allowed us to estimate the rates of pro- and anti-inflammatory macro-

phage polarization and indicates that pro-inflammatory macrophages do not re-polarize into

an anti-inflammatory phenotype given the time frame, which goes against studies suggesting

macrophage plasticity and reprogramming, at least in the context of bone injury repair. While

not disputing the possibility that macrophages can repolarize, our results suggest that, based

on the timing of the acquired experimental timing points, repolarization does not appear to be

the main mechanism that recapitulates macrophage polarization dynamics. Additional

insights provided by the ODE model include estimations on macrophage lifespan during the

healing process and the contributory roles of pro-inflammatory macrophages and monocytes

to the process. This information can be critical for therapies that target specific myeloid popu-

lations during bone injury repair in a bid to accelerate bone healing.

Another important result of our study is that the hypothesis combination that fit the best,

a3-b2-c2, implies that osteoblast and pro-inflammatory monocytes-macrophages have distinct

roles in osteoclast biology. According to this model, osteoblast drives osteoclast differentiation,

whereas pro-inflammatory monocytes-macrophages drive osteoclast resorptive activity. In

most studies, this distinction is not made and both cell types are assumed to contribute to both

osteoclast differentiation and resorptive activity. The data we present here suggest a distinction

in osteoclast supportive functions. This hypothesis combination has been also used to simulate

OSM depletion bone injury process. Model simulations were in accordance with experimental

data from an independent published study.

An important aspect of mathematical modeling is that it allows us to distill the key cell spe-

cies and molecules driving the bone dynamics. Of note, our model does not consider the

potential roles of other cell types in the bone ecosystem that could contribute, such as T cells.

Our results suggest that that integrating myeloid populations into the model provides enough

resolution to explain the process of non-critical bone injury repair. Our mathematical frame-

work is flexible enough, however, that the effects of other immune cells such as T cells could be

included. Additionally, we are aware the hypotheses we have identified throughout this study,

while the most common, do not cover exhaustively all myeloid behaviors described in litera-

ture. However, the hypothesis testing pipeline we have devised enables us to efficiently adapt

our model to reflect any additional hypotheses. Another important aspect that our model cur-

rently neglects is that of bone quality which requires a different set of data acquisition

PLOS COMPUTATIONAL BIOLOGY Integrated computational framework deciphers macrophage biology during bone healing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009839 May 13, 2022 13 / 33

https://doi.org/10.1371/journal.pcbi.1009839


techniques and further refinement of the mathematical approach. Moreover, bone healing is a

spatially regulated process and having this aspect included in the model would be an exciting

refinement in order to explore further mechanistic aspects of bone structure and regeneration.

Through our hypothesis combination approach, we have integrated established biology

into a mathematical framework describing cell population dynamics during non-critical bone

injury repair. One potential application of our framework is to investigate how time to healing

subsequent to bone injury can be reduced. Existing studies have shown that bone healing

times can be impacted in modulating pro- and anti-inflammatory macrophages

[10,109,110,117]. While the model is parameterized with mouse data, there is much

overlap between mice and humans with respect to the phases of the bone injury repair

program. Thus, using our existing workflow, we can conceivably re-parameterize our model

with human patient-derived data to further its potential as a relevant prospective tool for the

clinic.

In conclusion, we have developed a coupled ordinary differential equation (ODE) system of

the bone ecosystem that models the interplay between 8 key cellular populations during bone

injury repair. The model yields several novel findings regarding macrophage dynamics and

macrophage impact on osteoblasts and osteoclasts dynamics. Further, the model can also pro-

vide novel insights into phenomena that are hard to measure in vivo such as rate of pro- or

anti-inflammatory polarization over time. A better understanding of bone healing will have

clinical translatability allowing, for instance, to accelerate the process and improve patient out-

comes. The model accounts for coupling between these population and will be useful in devel-

oping therapeutic strategies/interventions that shorten healing times. Further, the model has

broad applicability and can be used as a platform to examine other bone diseases such as osteo-

arthritis and skeletal malignancies such as bone-metastatic cancer.

Materials and methods

Ethics statement

Data from in vivo bone injury experiment were derived from our previous work [40]. In this

study, all animal studies were performed in accordance with Guidelines for the Care and Use

of Laboratory Animals published by the National Institutes of Health, and approved by the

Animal Care and Use Committee at the University of South Florida, under IACUC Protocol

R5857 (CCL). Male C57BL/6 mice (5–6 weeks old) were purchased from Jackson Laboratory.

Mice (n = 30) were subject to tibial bone injury by penetration of a 28-gauge (0.3062mm diam-

eter) syringe through the knee epiphysis to mid-shaft.

Intratibial bone injury model

Data from in vivo bone injury experiment were derived from our previous work [40]. In this

study, all animal studies were performed in accordance with Guidelines for the Care and Use

of Laboratory Animals published by the National Institutes of Health, and approved by the

Animal Care and Use Committee at the University of South Florida, under IACUC Protocol

R5857 (CCL). Male C57BL/6 mice (5–6 weeks old) were purchased from Jackson Laboratory.

Mice (n = 30) were subject to tibial bone injury by penetration of a 28-gauge (0.3062mm diam-

eter) syringe through the knee epiphysis to mid-shaft. Mice tibias at baseline and at days 1, 2,

3, 7 and 14 (n = 5/time point) were collected for analysis. Temporal population data was used

to parameterize subsequent mathematical models.
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Micro-computed topography

Bone volume data was derived from formalin-fixed tibias by micro-computed topography

(μCT) scanning using Scanco μ35 scanner. Endosteal trabecular bone volume was analyzed

100μm away from the tip of growth plate to clear the dense bone nature of the growth plate.

1000μm along the midshaft of each bone was then scanned and analyzed using built-in func-

tions (n = 30 bones; 5/time point).

TRAcP staining

After μCT analysis, tibia bones were decalcified using 14% EDTA for 3 weeks for further stain-

ing quantitation and analyses. Decalcified bones were sectioned at 4μm thickness. Sections

were enzymatically stained for tartrate-resistant acid phosphatase (TRAcP) for osteoclast num-

bers based on manufacturer’s protocol [120]. Stained slides were imaged using the Evos Auto

microscope to capture 20X photos which included injury site and its immediate periphery. All

TRAcP positive (red) multinucleated osteoclasts within 5μm radius from injury were counted,

and mathematically converted to osteoclasts / bone marrow volume (#OCL/μm3) for each

bone at each time point.

Immunofluorescence staining and quantitation

FFPE tibia bones were further sequentially sectioned and baked at 56˚C in preparation for

immunofluorescence staining of osteoblast (RUNX2 at 1:500; Abcam Cat. No. ab81357) and

nuclear staining (DAPI). Deparaffined and rehydrated slides were subject to heat-induced

antigen retrieval method. Sections were then blocked and incubated in primary antibodies

diluted in 10% normal goat serum in TBS overnight at 4˚C. Subsequently, slides were stained

with secondary Alexa Fluor 568-conjugated antibody at 1:1000 at room temperature for 1

hour under light-proof conditions. Stained slides were stained with DAPI for nuclear contrast

and mounted for imaging at 20X using Zeiss upright fluorescent microscope to include the

injury site as well as the immediate peripheral tissue. All runx2 positive cells (red staining colo-

calizing with DAPI) within 5μm radius from injury were counted and mathematically con-

verted to osteoblasts / bone marrow volume (#OBL/μm3) for each bone at each time point.

Flow cytometry and analysis

Harvested contralateral injured tibias (n = 30; 5/time point) had tips removed and were sub-

jected to centrifugation at 16,000g for 5 seconds for isolation of whole bone marrow for flow

cytometry staining and analysis. Red blood cells were lysed using RBC Lysis Buffer from Sigma

Aldrich (Cat. No. R7757-100ML) as per manufacturer’s guidelines. Live bone marrow cells

were subject to FcR-receptor blocking (1:3; BioLegend; Cat. No. 101319) and viability staining

(1:500; BioLegend; Cat. No. 423105). Samples were then stained by cell-surface conjugated

antibodies from BioLegend diluted in autoMACS buffer (Miltenyi; Cat. No. 130-091-221) for

phenotyping myeloid cells: CD11b-BV786 (1:200; Cat. No. 101243), LY-6C-Alexa Fluor 488

(1:500; Cat. No.128021) and LY-6G-Alexa Fluor 700 (1:200; Cat. No. 561236). Cells were then

fixed with 2% paraformaldehyde in dark prior to intracellular staining. Fixed cells were per-

meabilized using intracellular conjugated antibodies to assess polarization status: NOS2-APC

(1:100; eBioscience; Cat. No. 17-5920-80) and ARG1-PE (1:100; R&D; Cat. No. IC5868P).

Appropriate compensation and fluorescence-minus-one (FMO) controls were generated in

parallel either with aliquots of bone marrow cells or Rainbow Fluorescent Particle beads (BD

Biosciences; Cat. No. 556291). All antibody concentrations were titrated prior to injury study

using primary bone marrow cells to ensure optimal separation and detection of true negative
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and positive populations. Stained controls and samples were analyzed using BD Biosciences

LSR flow cytometer (S2 Fig).

Mathematical and computational methods

Comprehensive model structure. In order to efficiently describe the process of model

building regarding the different hypothesis combinations (Fig 2), we begin with a generic set

of coupled equations, using a formulation that is valid for all hypotheses combinations (S3

Fig). For all populations, homeostasis was described by a replenishment term and a clearance

term. For polarized monocytes/ macrophages, no replenishment was considered at homeosta-

sis, as the baseline measured by flow cytometry was close to zero. Here is the detailed descrip-

tion, equation by equation:

Equation 1: Naive monocytes.

dMo
dt
¼ HMo � dMoMoþ I M1 þMo1;Dð Þ � p3 D;M1;Mo1ð ÞMoþ depol3 M2ð ÞMo1

Naive monocytes are assumed to be replenished at a constant rate HMo, and to die at a rate

δMoMo. δMo, the lifespan parameter, was retrieved from literature (Table 4), and HMo was esti-

mated so that monocyte level at homeostasis would match experimentally measured monocyte

baseline. The term I(M1, Mo1, D) corresponds to the number of monocytes infiltrating the

bone marrow per unit of time due to injury factors and pro-inflammatory cells. It is equal to

I1(M1 + Mo1) + I2D. As indicated by the mathematical formulation, inflammation-associated

monocyte recruitment is driven by injury signals on one hand, and pro-inflammatory mono-

cytes/macrophages on the other hand. This reflects the fact that cellular debris and pro-inflam-

matory cells produce factors that help recruiting additional monocytes [1]. The term p3(D, M1,

Mo1)Mo represents the number of naive monocytes polarizing into pro-inflammatory mono-

cytes per unit of time, as a function of cellular debris and pro-inflammatory cells. The term

depol3(M2)Mo1 represents the number pro-inflammatory monocytes reverting back to a naive

state per unit of time, as function of anti-inflammatory macrophages.

Equation 2: Naive macrophages.

dM
dt
¼ HM � dMM � dOC OB;M1;Mo1;M2ð ÞM � p1 D;M1;Mo1ð ÞM

� p21 D;M1;Mo1ð ÞM þ depol1 M2ð ÞM1 þ depol21M2

Naive macrophage are assumed to be replenished at a constant rate HM, and to die at a rate

δMM. δM, the lifespan parameter, was retrieved from literature (Table 4), and HM was esti-

mated so that macrophage level at homeostasis would match experimentally measured mac-

rophage baseline. The term dOC(OB, M1, Mo1, M2)M corresponds to the number of

macrophages differentiating into osteoclasts per unit of time, as a function of osteoblasts

(RANKL, OPG), pro-inflammatory macrophages (IL-1, TNF), pro-inflammatory mono-

cytes (IL-1, TNF) and anti-inflammatory macrophages (IL-10, TGF). The term p1(D, M1,

Mo1)M represents the number of naive macrophages polarizing into a pro-inflammatory

state per unit of time, as a function of injury factors and pro-inflammatory cells. The term

p21(D, M1, Mo1)M represents the number of naive macrophages polarizing into an anti-

inflammatory state per unit of time, as a function of injury factors and pro-inflammatory

cells. The term depol1(M2)M1 represents the number of pro-inflammatory macrophages that

revert back to a naive state per unit of time, as a function of anti-inflammatory macro-

phages. The term depol21M2 represents the number of anti-inflammatory macrophages that
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revert back to a naive state per unit of time. Of note, no influx or differentiation from mono-

cytes during inflammation were assumed, as macrophage population does not show evi-

dence of expansion in our obtained biological data.

Equation 3: Pro-inflammatory macrophages.

dM1

dt
¼ p1 D;M1;Mo1ð ÞM � depol1 M2ð ÞM1 � p22 Dð ÞM1 þ depol22M2 � dMM1

Pro-inflammatory macrophages are assumed to be absent of the bone marrow under homeo-

static conditions, as experimental al baseline level did not 0.3% across the replicates. The term

p1(D, M1, Mo1)M represents the number of pro-inflammatory macrophages generated (from

naive pool) per unit of time, as a function of injury factors and pro-inflammatory cells. The

term depol1(M2)M1 represents the number of pro-inflammatory macrophages that revert back

to a naive state per unit of time, as a function of anti-inflammatory macrophages. The term

depol22M2 represents the number of anti-inflammatory macrophages that reprogram into a

pro-inflammatory phenotype. The term p22(D)M1 represents the number of pro-inflammatory

macrophages that reprogram into an anti-inflammatory phenotype, as a function of injury

factors.

Equation 4: Anti-inflammatory macrophages.

dM2

dt
¼ p21 D;M1;Mo1ð ÞM þ p22 Dð ÞM1 � depol21M2 � depol22M2 � dMM2

Anti-inflammatory macrophages are assumed to be absent of the bone marrow under homeo-

static conditions, as experimental al baseline level did not exceed 0.07% across the replicates.

The term p21(D, M1, Mo1)M represents the number of anti-inflammatory macrophages gener-

ated (from naive pool) per unit of time, as a function of injury factors and pro-inflammatory

cells. The term p22(D)M1 represents the number of pro-inflammatory macrophages that repro-

gram into an anti-inflammatory phenotype, as a function of injury factors. The term depol21M2

represents the number of pro-inflammatory macrophages that revert back to a naive state per

unit of time. The term depol22M2 represents the number of anti-inflammatory macrophages

that reprogram into a pro-inflammatory phenotype.

Equation 5: Pro-inflammatory monocytes.

dMo1

dt
¼ p3 D;M1;Mo1ð ÞMo � depol3 M2ð ÞMo1 � dMoMo1

Pro-inflammatory monocytes are assumed to be absent of the bone marrow under homeo-

static conditions, as experimental al baseline level did not exceed 0.16% across the replicates.

The term p3(D, M1, Mo1)Mo represents the number of pro-inflammatory monocytes generated

(from naive pool) per unit of time, as a function of injury factors and pro-inflammatory cells.

The term depol3(M2)Mo1 represents the number of pro-inflammatory monocytes that revert

back to a naive state per unit of time, as a function of anti-inflammatory macrophages. The

term depol22M2 represents the number of anti-inflammatory macrophages that reprogram

into a pro-inflammatory phenotype. The term p22(D)M1 represents the number of pro-inflam-

matory macrophages that reprogram into an anti-inflammatory phenotype, as a function of

injury factors.
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Pro-inflammatory macrophages/monocytes and anti-inflammatory macrophages:

Hypothesis c1.

p1ðD;M1;Mo1Þ ¼ p11Dþ p12DðM1 þMo1Þ

depol1ðM2Þ ¼ depol1M2

p21ðD;M1;Mo1Þ ¼ 0

p22ðDÞ ¼ p2D

depol21 ¼ depol2
depol22 ¼ 0

p3ðD;M1;Mo1Þ ¼ p31Dþ p32DðM1 þMo1Þ

depol3ðM2Þ ¼ depol3M2

Both CD11b+Ly6C+ monocytes and CD11b+Ly6C- macrophages can polarize into a pro-

inflammatory phenotype [1], in response to injury signals or to factors produced by already

present pro-inflammatory cells [1]. In assumptions c1 and c2, monocytes and macrophages

polarize into pro-inflammatory monocytes and macrophages respectively through two terms.

The first is proportional to the amount of injury signals present and the second is proportional

to the amount of pro-inflammatory cells present. In the assumption c3, injury signals polarize

local resident macrophages, and those in turn promote polarization of pro-inflammatory

monocytes. In c3, pro-inflammatory macrophages repolarize into anti-inflammatory macro-

phages by the uptake of cellular debris/injury signals [121]. In this scenario, by plasticity, anti-

inflammatory macrophages naturally return to a pro-inflammatory phenotype in absence of

signals [122]. Polarization into anti-inflammatory macrophages was assumed to be propor-

tional to the amount of injury signals for assumption c1, proportional to the amount of pro-

inflammatory cells for assumption c2, and a transition term from pro-inflammatory macro-

phages for c3.

Pro-inflammatory macrophages/monocytes and anti-inflammatory macrophages:

Hypothesis c2.

p1ðD;M1;Mo1Þ ¼ p11Dþ p12DðM1 þMo1Þ

depol1ðM2Þ ¼ depol1M2

p21ðD;M1;Mo1Þ ¼ p2ðM1 þMo1Þ

p22ðDÞ ¼ 0

depol21 ¼ depol2
depol22 ¼ 0

p3ðD;M1;Mo1Þ ¼ p31Dþ p32DðM1 þMo1Þ

depol3ðM2Þ ¼ depol3M2

Both CD11b+Ly6C+ monocytes and CD11b+Ly6C- macrophages can polarize into a pro-

inflammatory phenotype [1], in response to injury signals or to factors produced by already

present pro-inflammatory cells [1]. In assumptions c1 and c2, monocytes and macrophages

polarize into pro-inflammatory monocytes and macrophages respectively through two terms.

The first is proportional to the amount of injury signals present and the second is proportional

to the amount of pro-inflammatory cells present. In the assumption c3, injury signals polarize

local resident macrophages, and those in turn promote polarization of pro-inflammatory

monocytes. In c3, pro-inflammatory macrophages repolarize into anti-inflammatory
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macrophages by the uptake of cellular debris/injury signals [121]. In this scenario, by plasticity,

anti-inflammatory macrophages naturally return to a pro-inflammatory phenotype in absence

of signals [122]. Polarization into anti-inflammatory macrophages was assumed to be propor-

tional to the amount of injury signals for assumption c1, proportional to the amount of pro-

inflammatory cells for assumption c2, and a transition term from pro-inflammatory macro-

phages for c3.

Pro-inflammatory Macrophages/Monocytes and Anti-inflammatory Macrophages:

Hypothesis c3.

p1ðD;M1;Mo1Þ ¼ p11D

depol1ðM2Þ ¼ 0

p21ðD;M1;Mo1Þ ¼ 0

p22ðDÞ ¼ p2D

depol21 ¼ 0

depol22 ¼ depol2
p3ðD;M1;Mo1Þ ¼ p32M1

depol3ðM2Þ ¼ depol3

Both CD11b+Ly6C+ monocytes and CD11b+Ly6C- macrophages can polarize into a pro-

inflammatory phenotype [1], in response to injury signals or to factors produced by already

present pro-inflammatory cells [1]. In assumptions c1 and c2, monocytes and macrophages

polarize into pro-inflammatory monocytes and macrophages respectively through two terms.

The first is proportional to the amount of injury signals present and the second is proportional

to the amount of pro-inflammatory cells present. In the assumption c3, injury signals polarize

local resident macrophages, and those in turn promote polarization of pro-inflammatory

monocytes. In c3, pro-inflammatory macrophages repolarize into anti-inflammatory macro-

phages by the uptake of cellular debris/injury signals [121]. In this scenario, by plasticity, anti-

inflammatory macrophages naturally return to a pro-inflammatory phenotype in absence of

signals [122]. Polarization into anti-inflammatory macrophages was assumed to be propor-

tional to the amount of injury signals for assumption c1, proportional to the amount of pro-

inflammatory cells for assumption c2, and a transition term from pro-inflammatory macro-

phages for c3.

Equation 6: Osteoblasts.

dOB
dt
¼ HOBOC þ gOB D;M2ð Þ � dOBOBB

Osteoblast are assumed to be replenished at a rate HOBOC, proportional to osteoclasts. This

reflects the ability of osteoclasts to produce osteogenic signals like transforming growth factor

β (TGFβ) and bone morphogenetic proteins (BMPs) [123]. Similar assumptions are consid-

ered in published works of homeostatic bone remodeling [32–34]. Osteoblasts are assumed to

die at a rate δOBOBB. δOB, the lifespan parameter, was retrieved from literature (Table 4), and

HOB was estimated so that osteoblast level at homeostasis would match experimentally mea-

sured osteoblast baseline. The term γOB(D, M2) represents the number of osteoblasts generated

per unit of time, as a function of injury factors and anti-inflammatory factors.

Osteoblast dynamics: Hypothesis b1.

gOBðD;M2Þ ¼ gOBM2
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The osteoblast clearance term was assumed to be proportional to the bone volume, in order to

account for osteoblast differentiation into osteocytes, when resorbing bone matrix [123]. A

similar assumption is made in the model developed by Ryser et al. that describes bone remod-

eling as a spatial evolutionary game [124]. During injury, an extra term for osteoblast expan-

sion is present, driven by anti-inflammatory macrophages (hypothesis b1) or injury factors

(hypothesis b2), both supported by literature [1,3,6,7,125].

Osteoblast dynamics: Hypothesis b2.

gOBðD;M2Þ ¼ gOBD

The osteoblast clearance term was assumed to be proportional to the bone volume, in order to

account for osteoblast differentiation into osteocytes, when resorbing bone matrix [123]. A

similar assumption is made in the model developed by Ryser et al. that describes bone remod-

eling as a spatial evolutionary game [124]. During injury, an extra term for osteoblast expan-

sion is present, driven by anti-inflammatory macrophages (hypothesis b1) or injury factors

(hypothesis b2), both supported by literature [1,3,6,7,125].

Equation 7: Osteoclasts.

dOC
dt
¼ dOC OB;M1;Mo1;M2ð ÞM � dOC M2;OBð ÞOC

Osteoclasts are assumed to be replenished at a rate dOC(OB, M1, Mo1, M2)M, which reflects dif-

ferentiation of macrophages into osteoclasts, as a function of osteoblasts, pro-inflammatory

macrophages, pro-inflammatory monocytes, anti-inflammatory macrophages [126–128]. This

reflects osteoclastic factors produced by osteoblasts (RANKL) and pro-inflammatory mono-

cytes/macrophages (IL-1, TNF), as well as anti-osteoclastic factors produced by osteoblasts

(OPG) and anti-inflammatory macrophages (transforming growth factor β (TGFβ), IL-10).

The term δOC(M2, OB)OC represents the number of osteoclasts dying per unit of time, as a

function of anti-inflammatory macrophages and osteoblasts. This reflects factors produced by

anti-inflammatory macrophages (IL-10, TGFβ) and osteoblasts (OPG) that reduce osteoclast

lifespan.

Osteoclast dynamics: Hypothesis a1.

dOC OB;M1;Mo1;M2ð Þ ¼
dOC þ dOC2ðM1 þMo1Þ

1þ InhibOCM2

dOCðM2;OBÞ ¼ dOCð1þ InhibOC2M2Þ

This osteoclast formation term was assumed to be proportional to osteoblasts for assumption

a3, reflecting the ability of osteoblastic cells to produce RANKL, which is an essential mediator

of osteoclast formation [123]. For the other assumptions, homeostatic osteoclast replenish-

ment was assumed to be constant. This term had an additional contribution from pro-inflam-

matory monocytes/macrophages for assumptions a1 and a2, representing the ability of pro-

inflammatory monocytes/macrophages to produce factors like IL-1 and TNF that favor osteo-

clast formation [123,129]. Osteoclast formation was divided by an inhibitory term, a linear

function of anti-inflammatory macrophages for assumptions a1 and a3, and a linear function

of osteoblasts for assumption a2. The first assumption reflects factors produced by anti-inflam-

matory macrophages, like IL-10, that disrupt osteoclast formation [86], whereas the second

reflects the ability of osteoblasts to produce osteoprotegerin (OPG), a RANKL decoy receptor

[123]. Moreover, this inhibition affects not only the ability of monocytes-macrophages to fuse

and form osteoclasts, but also their life span. Indeed RANKL is necessary for osteoclast survival
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since OPG produced by osteoblasts reduces their life span [130]. Similarly, anti-inflammatory

macrophages produce TGFβ, which is known to drive osteoclast apoptosis [131].

Osteoclast dynamics: Hypothesis a2.

dOC OB;M1;Mo1;M2ð Þ ¼
dOC þ dOC2ðM1 þMo1Þ

1þ InhibOCOB

dOCðM2;OBÞ ¼ dOCð1þ InhibOC2OBÞ

This osteoclast formation term was assumed to be proportional to osteoblasts for assumption

a3, reflecting the ability of osteoblastic cells to produce RANKL, which is an essential mediator

of osteoclast formation [123]. For the other assumptions, homeostatic osteoclast replenish-

ment was assumed to be constant. This term had an additional contribution from pro-inflam-

matory monocytes/macrophages for assumptions a1 and a2, representing the ability of pro-

inflammatory monocytes/macrophages to produce factors like IL-1 and TNF that favor osteo-

clast formation [123,129]. Osteoclast formation was divided by an inhibitory term, a linear

function of anti-inflammatory macrophages for assumptions a1 and a3, and a linear function

of osteoblasts for assumption a2. The first assumption reflects factors produced by anti-inflam-

matory macrophages, like IL-10, that disrupt osteoclast formation [86], whereas the second

reflects the ability of osteoblasts to produce osteoprotegerin (OPG), a RANKL decoy receptor

[123]. Moreover, this inhibition affects not only the ability of monocytes-macrophages to fuse

and form osteoclasts, but also their life span. Indeed RANKL is necessary for osteoclast survival

since OPG produced by osteoblasts reduces their life span [130]. Similarly, anti-inflammatory

macrophages produce TGFβ, which is known to drive osteoclast apoptosis [131].

Osteoclast dynamics: Hypothesis a3.

dOC OB;M1;Mo1;M2ð Þ ¼
dOCOB

1þ InhibOCM2

dOCðM2;OBÞ ¼ dOCð1þ InhibOC2M2Þ

This osteoclast formation term was assumed to be proportional to osteoblasts for assumption

a3, reflecting the ability of osteoblastic cells to produce RANKL, which is an essential mediator

of osteoclast formation [123]. For the other assumptions, homeostatic osteoclast replenish-

ment was assumed to be constant. This term had an additional contribution from pro-inflam-

matory monocytes/macrophages for assumptions a1 and a2, representing the ability of pro-

inflammatory monocytes/macrophages to produce factors like IL-1 and TNF that favor osteo-

clast formation [123,129]. Osteoclast formation was divided by an inhibitory term, a linear

function of anti-inflammatory macrophages for assumptions a1 and a3, and a linear function

of osteoblasts for assumption a2. The first assumption reflects factors produced by anti-inflam-

matory macrophages, like IL-10, that disrupt osteoclast formation [86], whereas the second

reflects the ability of osteoblasts to produce osteoprotegerin (OPG), a RANKL decoy receptor

[123]. Moreover, this inhibition affects not only the ability of monocytes-macrophages to fuse

and form osteoclasts, but also their life span. Indeed RANKL is necessary for osteoclast survival

since OPG produced by osteoblasts reduces their life span [130]. Similarly, anti-inflammatory

macrophages produce TGFβ, which is known to drive osteoclast apoptosis [131].

Equation 8: Bone volume.

dB
dt
¼ PB 1þ bM2ð ÞOB � dB 1þ a M1 þMo1ð Þð ÞOCB

Bone dynamics is described by two terms: a bone resorption term, which is the volume of

bone resorbed per unit of time and is assumed to be proportional to the number of osteoclasts,
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and a bone formation term, which is the volume of bone formed per unit of time and is

assumed to be proportional to the number of osteoblasts. Such assumptions have been broadly

used across a large variety of modeling studies [32–34]. δB(1 + α)OCB is the bone resorption

term and is the sum of the two terms δBOCB (homeostatic resorption) and α(M1 + Mo1)

δBOCB (pro-inflammatory monocyte/macrophage mediated resorption). As indicated by this

mathematical formulation, bone resorption was assumed to also be proportional to the bone

mass. This reflects the fact that more bone volume increases the likelihood for bone resorption.

Furthermore, this formulation ensures bone mass stays strictly positive in the model. PB(1 +

β)OB is the bone formation term and is the sum of the two terms PBOB (homeostatic bone

formation) and βM2PBOB (anti-inflammatory macrophage mediated bone formation). Under

homeostasis, bone is formed at rate PBOB and resorbed at rate δBOCB. Resorption rate δB, as

well as as parameters α and β, were calibrated on bone volume dynamics, and bone formation

rate PB was then imposed by the relation PBOB0 = δBOC0B0, which ensures that bone volume

remains at homeostasis when osteoblasts and osteoclasts are at homeostatic levels. As indicated

by mathematical formulations, bone formation and resorption terms were assumed to linearly

increase with respect to anti-inflammatory and pro-inflammatory monocytes/ macrophages,

respectively. This accounts for the fact that anti-inflammatory macrophages typically produce

osteogenic factors like TGFβ or OSM, that are known to promote osteoblast expansion and

bone mineralization [3], and for the fact that pro-inflammatory monocytes/macrophages typi-

cally produce osteolytic factors like TNF and IL-1, that are known to promote osteoclast

resorptive activity [132].

Equation 9: Injury factors.

dD
dt
¼ � dD M1 þMo1ð ÞD

Injury factors dynamics consists in an exponential type of decay, with a decay rate δD (M1 +

Mo1) proportional to pro-inflammatory monocytes/macrophages number, which represents

how pro-inflammatory monocytes/macrophages uptake cellular debris, which in return

reduces pro-inflammatory signals.

Population homeostasis. In order to estimate the homeostatic cell replenishment param-

eters, we set them equal to the clearance term (lifespan) which was either based on literature

values or calibrated directly from experimental data (S1 Fig and Tables 1, 4 and 5).

ODE solver. The ODE45 function of Matlab was used to solve the differential equation

system. The experimental baseline values (time 0) were used as initial conditions.

Parameter estimation method. To estimate parameters for goodness of fit, we defined

the following objective function:

J2 að Þ ¼ max
1�j�8

X

i

N ðfjðti; aÞ � DijÞ
2

s2
i

J1 að Þ ¼ max
1�j�8

max
1�i�N

ðfjðti; aÞ � DijÞ
2

s2
i

Where i represents the time point index and j the variable index, α represents the parameter

set used to evaluate the model function f, Dij represents the experimental data of variable j at

time point i, σi represents the experimental standard deviation (over all the animals of a given

time point), and N represents the number of time points. The functional J2 corresponds to the

weighted least squares criterion. The functional J1 is the Tchebychev approximation, which

considers the maximal residual instead of the sum of the residuals. In both cases, the choice of
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the max over the observed variables of the sum of the squares of the residuals was motivated to

make sure that every variable was fitted with equal relative importance. Indeed, in the case of

the minimization of the sum of the squares over all the variables, it is sometimes possible to

find an optimum in minimizing certain variables at the detriment of others. This way, we

ensure that all variables are equally well fitted.

The reason for considering the objective function J1 in addition to the classical criterion J2
is to avoid neglecting any time point in the fit. The least squares functional allows sometimes

to find an optimum optimizing certain time points at the detriment of others. In this current

study, this is a potentially big issue, as the time sampling is not homogenous across the time

points, meaning that biological dynamics of importance might be ignored, while still produc-

ing a good fit under the least squares metric.

In order to minimize this function representing the error estimate between data and model,

we used the Matlab function fminsearch with a penalization term to stay in a parameter range

set with reasonable boundaries.

In order to rank the models in term of goodness of fit, we used AIC, that is defined as fol-

lows:

AICðaÞ ¼ 2pþ 2JðaÞ

where p is the number of parameters, and the functional J is either J2 or J1.

OSM knockout data. In order to retrieve data from the OSM knockout independent data-

set, we used webplotdigitizer to collect datapoint from the plot presented in Guihard et al [49].

Supporting information

S1 Fig. ODE equations for the best fitting model: Hypothesis combination a3b2c2 The

ODE systems govern behaviors of each population and are parameterized by published

values when available, such as the natural lifespan of monocytes (δMo in dMo/dt). Parame-

ters with no reference publication were estimated to obtain best possible fits to temporal

dynamics data (parameters in red) and are listed in Table 3. In all equations, black terms corre-

spond to homeostatic dynamics, whereas red terms correspond to injury dynamics.

(TIFF)

S2 Fig. Alternative hypotheses combination a3 b1 c2 (green boxes in a-c) computational

results. a Mechanism a3 assumes that osteoblasts and anti-inflammatory macrophages pro-

mote and inhibit osteoclast formation, respectively. b Mechanism b1 assumes that anti-

Table 5. Model variables description. Residuals lower than one for Mathematical model of all 18 combinations of hypotheses, resulting from J2 and J1minimization.

For each hypothesis combination, the table shows how many residuals are lesser than 1 over all 40 residuals, which equates how many times the model lies within the exper-

imental error bar.

Mathematical variable Biological variable Initial conditions Units

OB Osteoblasts 3,1×10^+04 Cell number

OC Osteoclasts 8,8×10^+04 Cell number

B Bone 0,3530 mm3

D Cellular debris/Injury factors 2,8 mm3

Mo Naive monocytes 1,4×10^+04 Cell number

M Naive macrophages 2,8×10^+04 Cell number

M1 Pro-inflammatory macrophages 0 Cell number

M2 Anti-inflammatory macrophages 0 Cell number

Mo1 Pro-inflammatory monocytes 0 Cell number

https://doi.org/10.1371/journal.pcbi.1009839.t005

PLOS COMPUTATIONAL BIOLOGY Integrated computational framework deciphers macrophage biology during bone healing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009839 May 13, 2022 23 / 33

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009839.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009839.s002
https://doi.org/10.1371/journal.pcbi.1009839.t005
https://doi.org/10.1371/journal.pcbi.1009839


inflammatory macrophages promote osteoblast expansion. c Mechanism c2 assumes that

injury factors promote pro-inflammatory monocytes/macrophages polarization. Pro-inflam-

matory monocytes/macrophages promote anti-inflammatory macrophages polarization,

which in return drive depolarization of pro-inflammatory monocytes/macrophages back to

the naive state. d Schematic representation of the model using a3b1c2 hypothesis combination.

Arrows represent positive (green) or negative (red) types of cellular interactions. e Temporal

plots and corresponding goodness of fit metrics (AIC and R2s) across all populations, obtained

through J1minimization.

(TIFF)

S3 Fig. Generic formulation of coupled ODE models, valid for all hypotheses combina-

tions. Each term (e.g formation rate, clearance, transition) is a functional form of other vari-

ables reflecting cellular interactions described in Fig 2. Black terms correspond to homeostasis,

red terms correspond to injury dynamics and are described in details in Mathematical and

Computational Methods.

(TIFF)

S4 Fig. Alternative hypotheses combination a3 b2 c1 (green boxes in a-c) computational

results. a Mechanism a3 assumes that osteoblasts and anti-inflammatory macrophages pro-

mote and inhibit osteoclast formation, respectively. b Mechanism b2 assumes that injury fac-

tors promote osteoblast expansion. c Mechanism c1 assumes that injury factors promote pro-

inflammatory monocytes/macrophages and anti-inflammatory macrophages polarization.

Anti-inflammatory macrophages drive depolarization of pro-inflammatory monocytes/macro-

phages back to the naive state. d Schematic representation of the model using a3b2c1 hypothe-

sis combination. Arrows represent positive (green) or negative (red) types of cellular

interactions. e Temporal plots and corresponding goodness of fit metrics (AIC and R2s) across

all populations, obtained through J1minimization.

(TIFF)

S5 Fig. Alternative hypotheses combination a3 b1 c1 (green boxes in a-c) computational

results. a Mechanism a3 assumes that osteoblasts and anti-inflammatory macrophages pro-

mote and inhibit osteoclast formation, respectively. b Mechanism b21assumes that injury fac-

tors promote osteoblast expansion. c Mechanism c1 assumes that anti-inflammatory

macrophages promote pro-inflammatory monocytes/macrophages and anti-inflammatory

macrophages polarization. Anti-inflammatory macrophages drive depolarization of pro-

inflammatory monocytes/macrophages back to the naive state. d Schematic representation of

the model using a3b2c1 hypothesis combination. Arrows represent positive (green) or negative

(red) types of cellular interactions. e Temporal plots and corresponding goodness of fit metrics

(AIC and R2s) across all populations, obtained through J1minimization.

(TIFF)

S6 Fig. Alternative hypotheses combination a2 b1 c1 (green boxes in a-c) produces the second

worst fit of all hypotheses combinations. a Mechanism a2 assumes that pro-inflammatory and

macrophages and osteoblasts promote and inhibit osteoclast formation, respectively. b Mecha-

nism b1 assumes that anti-inflammatory macrophages promote osteoblast expansion. c Mech-

anism c1 assumes that injury factors promote pro-inflammatory monocytes/macrophages

polarization and anti-inflammatory macrophages. The latter drive depolarization of pro-

inflammatory monocytes/macrophages back to the naive state. d Schematic representation of

the model using a2b1c1 hypothesis combination. Arrows represent positive (green) or negative
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(red) types of cellular interactions. e Temporal plots and corresponding goodness of fit metrics

(AIC and R2s) across all populations, obtained through J1minimization.

(TIFF)
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