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Epithelial–mesenchymal transition (EMT) is a key process associated with the progression
of epithelial cancers to metastatic disease. In melanoma, a similar process of phenotype
switching has been reported and EMT-related genes have been implicated in promotion to
a metastatic state.This review examines recent research on the role of signaling pathways
and transcription factors regulating EMT-like processes in melanoma and their association
with response to therapy in patients, especially response to BRAF inhibition, which is ini-
tially effective but limited by development of resistance and subsequent progression. We
highlight studies implicating specific roles of various receptor tyrosine kinases (RTKs) in
advancing melanoma progression by conferring a proliferative advantage and through pro-
moting invasive phenotypes and metastasis. We also review the current knowledge of the
mechanisms underlying resistance to BRAF inhibition and the potential role of melanoma
phenotype switching in this process. In particular, we discuss how these important new
insights may significantly enhance our ability to predict patterns of melanoma progression
during treatment, and may facilitate rational development of combination therapies in the
future.
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INTRODUCTION
Malignant melanoma accounts for 75% of deaths from all skin
cancers in the U.S (1). Women have higher survival than men (2)
and the Caucasian population has a 10-fold greater risk than eth-
nic groups with deeply pigmented skin (3). The 5-year survival
rate is over 90% for localized melanoma but drops to 16% for
distant-stage disease (1), indicating that metastasis is the main
reason for poor outcome. The classic Clark model depicts step-
wise transformation of melanocytes to malignant melanoma and
subsequent development of invasion and metastasis (4), involving
tightly regulated switching of cellular phenotypes. This phenotype
switch bears resemblance to the epithelial–mesenchymal transi-
tion (EMT), a well-characterized process of phenotypic change
that is associated with metastatic progression in epithelial cancers.
This mini-review will focus mainly on the signaling and molecu-
lar events that lead to the invasive and metastatic phenotypes of

Abbreviations: EGF, epidermal growth factor; EMT, epithelial–mesenchymal tran-
sition; EMT-TF, epithelial–mesenchymal transition-transcription factors; FGF,
fibroblast growth factor; HGF, hepatocyte growth factor; IGF, insulin-like growth
factor; KIT, stem cell factor receptor; MAPK, mitogen-activated protein kinases;
MET, hepatocyte growth factor receptor; MITF, microphthalmia-associated tran-
scription factor; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; ROR, recep-
tor tyrosine kinase-like orphan receptor; RTK, receptor tyrosine kinases; STAT, signal
transducer and activator of transcription; TGF, transforming growth factor.

melanoma, and discuss the implications of phenotype switching
on the response to treatment.

CHARACTERISTICS OF EMT IN EPITHELIAL CANCERS
Epithelial–mesenchymal transition has been suggested to play an
important role in conferring metastatic properties in many solid
tumors by altering the integrity of cell–cell junctions, promot-
ing loss of polarity and epithelial markers, eventually resulting in
loss of contact between neighboring cells. Through this process,
tumor cells become more mesenchymal-like, exhibiting higher
migratory and invasive properties that allow them to interact with
the extracellular matrix and invade surrounding tissues (5). It
is generally accepted that the EMT process involves changes in
expression of epithelial and mesenchymal markers. The loss of E-
cadherin is a characteristic feature during EMT, which is detected
in the cells located at the invasive front of many solid tumors (6,
7). The expression of E-cadherin is tightly regulated by multiple
transcription factors that bind to and repress the activity of the
E-cadherin promoter (8, 9). The first characterized direct repres-
sor of E-cadherin was the zinc-finger transcription factor Snail1
(10, 11), which initiated intense efforts to understand the mole-
cular mechanisms of EMT and subsequently led to the discovery
of the E-cadherin repressors SNAI2 (also known as SLUG) (12),
ZEB1 and ZEB2 (13, 14). Other repressors of E-cadherin include
E47 (TCF3), TCF4 (15), and Twist (16), which participate in both
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developmental EMT and tumor progression. Beta-catenin/TCF4
binds directly to the ZEB1 promoter and activates its transcription,
conferring invasiveness in colorectal cancer (17).

A common signaling mechanism that induces EMT in a range
of cancers is activation of the MAPK/ERK pathway, which can
activate SNAI1 to repress E-cadherin expression and the epithe-
lial phenotype (18). In addition, EGF signaling can induce TWIST
through a JAK/STAT3 pathway in epithelial cancer cell lines and the
EGF–STAT3-positive correlation has been confirmed in primary
breast carcinomas (19). Receptor tyrosine kinases (RTK) signaling
activated through FGF, HGF, IGF, and other ligands, as well as the
serine/threonine kinase TGF-β superfamily, can also initiate EMT
and metastasis, through various mechanisms converging on the
induction of E-cadherin repressors (20, 21).

EVIDENCE OF EMT-LIKE PHENOTYPE SWITCHING IN
MELANOCYTES AND MELANOMA
Epithelial–mesenchymal transition is a critical step for embryonic
morphogenesis and a similar process is particularly important
for melanocyte lineage differentiation. It involves restructuring
of the cytoskeleton, cell membrane, and cell–cell junctions. This
developmental plasticity allows melanocytes to emerge from the
pluripotent neural crest cells (22). Phenotype switching with sim-
ilarities to the EMT program operates during development and
has a recognized role in acquisition of metastatic properties in
the vertical growth phase of melanoma (23). A comparison of the
features of primary cutaneous melanomas from the patients who
develop metastasis to those who do not, revealed differences in the
expression of the epithelial and mesenchymal phenotype mark-
ers (24). By gene expression profiling, loss of E-cadherin with
gain of N-cadherin and osteonectin (SPARC) was significantly
associated with development of metastasis (24). Further evidence
comes from the finding that both proliferative and invasive cells are
present within heterogeneous metastatic tumors, and the observa-
tion of switching between the two phenotypes during melanoma
progression in vivo (25).

INDUCERS OF EMT-LIKE PHENOTYPE SWITCHING IN
MELANOMA
Recently, the concept of an EMT spectrum has been introduced to
describe a progressive transition characterized by an intermediate
mesenchymal status and fluctuating expression of EMT mark-
ers, as reported in carcinomas of the breast, colon, and ovary
(26). Given the intermediate mesenchymal nature of melanoma,
fluctuating expression of EMT inducers are observed. Therefore,
the literature about phenotype switching in melanoma and about
EMT in many epithelial cancers is not always consistent.

The role of EMT transcription factors (EMT-TFs) in melanoma
phenotype switching and plasticity has recently been reviewed
(27). Induction of ZEB1 and SNAIL family members as discussed
by Vandamme and Berx, as well as repression of E-cadherin is
observed during melanoma progression. The traditional para-
digm in epithelial cancers is that the EMT-TFs SNAIL1/2, ZEB1/2,
and TWISTS act as repressors of E-cadherin, thereby inducing
EMT (9). However, unlike epithelial cancers, in melanoma ZEB1
and ZEB2 are reported to be differentially expressed in alternate
phenotypic states (28). Normal epidermal melanocytes from a

melanoma patient expressed low ZEB1 and high ZEB2 expres-
sion, whereas the melanoma cells at deep sites from the same
patient had high ZEB1 and low ZEB2 levels (28). Analysis of
a large patient series by immunohistochemistry revealed high
expression of ZEB1 and TWIST1, with low expression of ZEB2
corresponded with significantly reduced metastasis-free survival
(28). Another recent study analyzing a large cohort of patient
samples also confirmed that low expression of ZEB2 corresponded
to significantly reduced melanoma recurrence-free survival (29).
The study also demonstrated that loss of ZEB2 in melanocytes
resulted in dedifferentiation, and in melanoma cells resulted in
increased ZEB1expression, repressing E-Cadherin, and contribut-
ing to progression and metastasis (29). These studies suggest that
ZEB2 could function as a differentiation factor, through maintain-
ing E-Cadherin expression (29). Both studies also reported that
the melanoma differentiation marker microphthalmia-associated
transcription factor (MITF) was regulated by the switch in ZEB
expression. Down-regulation of MITF could lead to an invasive
phenotype, consistent with the previous literature on the role of
MITF in phenotype switching (25, 27). Gene expression profil-
ing comparing non-metastatic and metastatic patient samples,
previously revealed that loss of E-cadherin/gain of N-cadherin
was a major determinant of melanoma metastasis (24). The rele-
vance of this cadherin switch was established in early studies on
prostate and melanocytic cancers (30, 31), whereas SPARC was
found later to drive activation and sustain expression of SLUG
to promote melanoma cell invasion (32). SLUG was also identi-
fied in melanoma cell lines as a direct transcriptional activator of
ZEB1, resulting in repression of E-cadherin (33). Interestingly in
contrast, switching to a proliferative state was reported to occur
in aggressive uveal melanoma with up-regulation of E-cadherin.
However, the study revealed that this phenomenon was caused
by the loss of an E-Cadherin suppressor called Id2, and as a
result of down-regulation of Id2 there was increased anchorage-
independent growth of the cells (34). These studies suggest that the
interchange between epithelial-like and mesenchymal-like pheno-
types is context dependent in different types of melanoma, but
the ability to switch phenotype in various types of melanoma has
been implicated in conferring a higher risk of death due to metas-
tasis. The dynamic switch back and forth between proliferative
and invasive states is the model that is biologically reflective of
melanoma progression (35).

Phenotype switching in melanoma can be initiated by mecha-
nisms other than those characterized in EMT. In epithelial cancer
cell lines, increased LEF1 transcription activity by stable nuclear
beta-catenin expression can induce EMT, which is reversible by
removal of LEF1 (36). In melanoma, the beta-catenin interacting
factors LEF1 and TCF4 are both expressed in a phenotype-specific
manner and their expression is inversely correlated. Loss of LEF1
and gain of TCF4 expression is associated with tumor progression
involving a change from proliferative to an invasive phenotype
(37). The beta-catenin/LEF1 complex is regulated by Wnt sig-
naling and activates a melanocyte-specific gene encoding MITF
(38). MITF is a master regulator of melanocyte development
and has been reported to be critical for melanoma progression
(39, 40). MITF can control melanoma cell differentiation and
proliferation through cell cycle arrest (41, 42). It also regulates
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diaphanous-related formin Dia1, which promotes actin polymer-
ization and coordinates cytoskeletal networks at the cell periphery
resulting in morphological changes (43). Expression of MITF has
been used as a benchmark to distinguish melanoma cells in the
proliferative or invasive state (25). In addition, Wnt activation,
rather than acting via the classical Wnt pathway, can signal through
the Protein Kinase C pathway to mediate an EMT-like phenotype
switch and melanoma migration (44). These studies, as summa-
rized in Table 1, indicate that EMT-like phenotype switching can
be induced at both transcriptional level and through well-defined
canonical signaling pathways.

SIGNALING PATHWAYS INVOLVED IN MELANOMA
PHENOTYPE SWITCHING
Wnt and Notch signaling have well-characterized roles in devel-
opmental programs of neural crest cells (51, 52). These embryonic
signaling pathways are also implicated in tumorigenic functions
of melanoma cells (53). Notably, melanoma have a high frequency
of activating mutations within the MAPK pathway, as over 50%
metastatic melanomas are driven by the oncogenic BRAFV600E

mutation (54) and over 15% by the NRASQ61R mutation (55).
The MAPK and the PI3K signaling pathways are known to acti-
vate NF-kB, which further induces Snail to mediate a mesenchymal
phenotype in epithelial cells (56), but similar evidence for the NF-
kB/Snail mechanism in melanoma is lacking (57), although Snail
is a demonstrated inducer of the mesenchymal-like phenotype in
melanoma (58). However, this study may suggest that RTKs could
be a means of mediating NF-kB/Snail activation given that they
activate the MAPK and PI3K signaling pathways.

Additionally, there is abundant evidence that RTK signaling can
induce migratory, invasive, and metastatic properties in melanoma
cells. Knockdown of EGF in EGF over-expressing melanoma cells
results in reduced lymph node metastasis,which is considered a key
initial step of melanoma progression (59). FGF2 is a growth fac-
tor produced by melanoma cells but not by normal melanocytes,
that activates the FGFR1 receptor. FGF2 promotes melanoma cell

migration via down-regulation of focal adhesion kinase (FAK) and
subsequent loss of cellular adhesion (48). As previously discussed,
a cadherin switch is an important marker of EMT-like phenotype
switching in melanoma. By studying exogenously introduced HGF
ligand-induced activation of its receptor MET and pharmacolog-
ical inhibition of downstream MAPK and AKT signaling, HGF
signaling was shown to mediate the cadherin switch through up-
regulation of Snail and Twist (60). Additionally, HGF signaling can
also induce fibronectin matrix synthesis, which promotes malig-
nant transformation and migration of melanoma cells (49). IGF-1
can also induce migration, through increased production of IL-8
by melanoma cells (61). In patients with uveal melanoma, a sig-
nificant correlation was found between high expression of IGF-1
receptor and liver metastasis (50).

TGF-β is the most extensively studied inducer of EMT, with
established roles in regulating extracellular matrix remodeling and
in influencing cell phenotype (62, 63). Moreover, TGF-β can sig-
nal through SMAD3 and activate SNAI2/SLUG in a Rho-pathway
dependent manner (64). Enhanced TGF-β signaling is implicated
in mediating resistance to the inhibition of a range of onco-
genic signaling targets. Loss of MED12, a repressor of TGF–βR2
signaling, not only confers a mesenchymal phenotype, but also
results in resistance to inhibitors of ALK, EGFR, and BRAF in
multiple cancers including melanoma (65).

IMPLICATIONS OF PHENOTYPE SWITCHING ON RESPONSES
TO THERAPIES
Uncontrolled proliferation is a cancer hallmark, a result of acti-
vation and crosstalk of many signaling pathways. Advances in
genomic sequencing technology have enabled the successful iden-
tification of the key oncogenic events in melanoma, including
identification of the BRAFV600E mutation (54). Subsequent devel-
opments of highly selective and efficacious therapies such as vemu-
rafenib and dabrafenib that target mutant BRAF have achieved
remarkable responses in patients (66–68). However, ongoing clin-
ical studies have revealed that the therapeutic benefits are often

Table 1 | Inducers of phenotype switching in melanoma.

Phenotype switching inducers Outcome Study modela Type of melanoma Reference

↓ZEB2 ↓Metastasis-free survival Patient, in vivo and in vitro multiple (29)

↑ZEB1&TWIST/↓ZEB2&SLUG ↓Metastasis-free survival Patient and in vitro multiple (28)

↑MITF Differentiation In vitro and in vivo Cutaneous (45)

EGF/STAT3 Growth and Metastasis In vitro and in vivo Cutaneous (75)

WNT5A/↑ROR2 Invasion In vitro and in vivo Cutaneous (46)

MET/Exosome Metastasis Patient and in vivo Cutaneous (47)

↑TCF4/↓LEF1 Invasion In vitro Cutaneous (37)

↓MITF Invasion In vivo Cutaneous (25)

WNT5A/PKC Migration In vitro Cutaneous (44)

FGF2/↓FAK Migration In vitro Cutaneous (48)

↓E-Cad/↑N-Cad Metastasis Patient Cutaneous (24)

↑E-Cad Invasion In vivo Uveal (34)

HGF/Fibronectin Migration In vitro Cutaneous (49)

IGF-1 Migration Patient and in vitro Uveal (50)

aIn vitro indicates melanoma cell lines in 2D culture, in vivo indicates xenograft models or mouse models and Patient indicates patient samples.
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short-lived with the majority of patients developing resistance and
disease progression (66). There are several reports on the mecha-
nisms of resistance to BRAF directed agents as reviewed by Sullivan
and Flaherty (69). Besides the intrinsically resistant clones, some
of the surviving drug-sensitive melanoma cells are able to adapt
to BRAF inhibition. Studies have revealed that the adaptation can
involve various phenotype changes including EMT-like processes,
altered glycolytic activity (70) and ER stress response-activated
cytoprotective autophagy (71). Hypoxia induced switching of the
expression of ROR1 and ROR2 through non-canonical WNT5A
signaling, resulting in an invasive phenotype of melanoma with
reduced sensitivity to BRAF inhibitors (46). Concurrent inhibi-
tion of BRAF and glycolysis or autophagy was demonstrated as
good methods to induce cell death or tumor regression, respec-
tively, in BRAFi-resistant melanoma (71, 72). However, to target
phenotypic-switching through therapeutic intervention remains
difficult. Thus, the remainder of this mini-review will emphasize
the involvement of phenotype switching in the context of emerging
and recently developed therapies.

Using BRAFV600E melanoma lines and BRAF inhibitors,
Caramel et al., demonstrated that the ZEB switch described
above, can be initiated and sustained by MAPK/ERK signaling
through FRA-1, an ERK-regulated component of the AP-1 com-
plex. Accordingly, the expression patterns of ZEB1/2 and TWIST
were reversed by pharmacological inhibition of BRAF/ERK sig-
naling (28). Together with the TGF-β/MED12 study that showed
changes of expression of phenotype markers concomitant with
development of drug resistance (65), these recent discoveries sup-
port the emerging understanding that the mechanisms of pheno-
type switching in melanoma may have broader implications with
respect to therapeutic responses in patients.

An important question raised by all the studies described
above is whether EMT-like phenotype switching has any value
as a therapeutic “target” in the treatment of melanoma. To date,
three major strategies have been proposed to address this impor-
tant question. Considering the aggressiveness of melanoma, the
first suggested approach is to directly reduce invasive potential.
Compounds such as the potent green tea catechin, Epigallocate-
chin gallate (EGCG), have been demonstrated to have inhibitory
effects on migration and invasion in the BRAF-mutant cell line
A375, with a reversal of EMT-like phenotypic changes orches-
trated by induction of E-cadherin and suppression of N-cadherin
(73). A second reported strategy is to use phenotype switch-
ing as a method to induce changes in melanoma to a specific
phenotype that reveals a “drug-targetable” state. As previously
discussed, high expression of MITF usually associates with a pro-
liferative phenotype in melanoma. The chemotherapeutic agent
methotrexate (MTX) causes an increase in MITF and its direct tar-
get TYR (tyrosinase) that inhibit invasiveness in melanoma. This
can provide an avenue for treatment with a tyrosinase-processed
antifolate pro-drug that was shown to mediate apoptosis selec-
tively in the MTX-treated cells with high expression of MITF
and tyrosinase (45). The third reported strategy is based on the
success of the approved and emerging therapies targeting the
BRAF/MAPK signaling in melanoma. Phenotype switching, cell
migration, and invasion occur instead of, or concomitantly with,

FIGURE 1 | A schematic diagram of the signaling and molecular
features of melanoma phenotype switching. The EMT-like phenotype
switching confers melanoma invasive functions. The EMT-associated
signaling in melanoma is also implicated in conferring resistance to BRAF
inhibition therapies in BRAF-mutant metastatic melanoma.

the development of drug resistance (65). Thus, the rationale
involves inhibition of phenotype switching and cell migration
in conjunction with a therapy such as vemurafenib that tar-
gets the oncogenic BRAF signaling that leads to growth arrest
or/and cell death. Studies reveal that combination of inhibitors
of TGFβR2 with vemurafenib overcomes the TGFβ-mediated
resistance to vemurafenib (65). Chronic inhibition of BRAF was
also found to result in elevated Wnt signaling and increased
expression of the EMT inducer, WNT5A, and knockdown of
WNT5A reversed resistance caused by chronic treatment with
vemurafenib (74).

Given that signaling by various RTKs can mediate phenotype
switching and promote migration through mechanisms distinct
from those enhancing BRAF/MAPK-dependent proliferation and
regulation of EMT-TFs, co-targeting of selected RTK signaling
pathways and oncogenic BRAF appears to be a logical combi-
nation. For example, EGF signaling confers resistance to BRAF
inhibition and induces melanoma invasion through Src pathways.
Inhibition of the EGF receptor and Src re-sensitizes treatment-
resistant BRAF-mutant melanoma cells to Vemurafenib and blocks
their invasiveness (75). HGF secreted by stromal cells in the tumor
microenvironment can activate the HGF receptor MET, initiating
MAPK and PI3K signaling to confer resistance to BRAF inhibi-
tion. Consistently, dual inhibition of either HGF or MET was
found to forestall the resistance (76). This may be of particu-
lar importance because melanoma-derived exosomes were able
to confer metastatic properties and a pro-vasculogenic pheno-
type on bone marrow progenitors through MET (47). Exosomes
are important export machinery that maintains normal com-
partmentalization of molecules. In a range of cancers including
melanoma, exosomes derived from melanoma cells contain onco-
genic drivers influencing EMT and metastasis (77). Interfering
with regulators of exosome formation and MET expression can
reduce metastasis (47).
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CONCLUSION
The EMT process is crucial for normal development and for initia-
tion of malignant transformation and metastasis in a wide range of
epithelial cancers. It involves activation of various signaling path-
ways, as well as repression of E-cadherin through transcription
factors. EMT-like phenotype switching is critical for melanocyte
lineage differentiation and initiation of melanoma transformation
and metastasis. While common EMT-TFs are implicated, their
expression during the switch of melanoma to a mesenchymal-like
invasive phenotype can differ from the role in classical EMT. In
addition to TGFβ and WNT5A signaling, EGF, FGF, MET, and IGF
signaling have established roles in conferring migratory and inva-
sive functions in melanoma (Figure 1). Importantly, these EMT-
associated signaling pathways also have roles in conferring resis-
tance to inhibitors of BRAF/MEK,hindering therapeutic outcomes
in patients with metastatic melanoma driven by BRAF mutations.
Therefore, integrating insights from this body of literature may aid
in the design of studies aiming to predict the patterns of melanoma
progression during treatment with targeted therapeutics and may
facilitate development of novel combination therapies.
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