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Abstract

We have demonstrated that exposing human breast tumour xenografts to ultrasound-stimu-

lated microbubbles enhances tumour cell death and vascular disruption resulting from hyper-

thermia treatment. The aim of this study was to investigate the effect of varying the

hyperthermia and ultrasound-stimulated microbubbles treatment parameters in order to opti-

mize treatment bioeffects. Human breast cancer (MDA-MB-231) tumour xenografts in severe

combined immunodeficiency (SCID) mice were exposed to varying microbubble concentra-

tions (0%, 0.1%, 1% or 3% v/v) and ultrasound sonication durations (0, 1, 3 or 5 min) at 570

kPa peak negative pressure and central frequency of 500 kHz. Five hours later, tumours

were immersed in a 43˚C water bath for varying hyperthermia treatment durations (0, 10, 20,

30, 40, 50 or 60 minutes). Results indicated a significant increase in tumour cell death reach-

ing 64 ± 5% with combined treatment compared to 11 ± 3% and 26 ± 5% for untreated and

USMB-only treated tumours, respectively. A similar but opposite trend was observed in the

vascular density of the tumours receiving the combined treatment. Optimal treatment param-

eters were found to consist of 40 minutes of heat with low power ultrasound treatment micro-

bubble parameters of 1 minute of sonification and a 1% microbubble concentration.

Introduction

Hyperthermia (HT) therapy, defined as the moderate elevation of body tissues to temperatures

of 39–45˚C, has been used as a compelling treatment of cancers for centuries [1]. The hin-

drance to its adoption into regular clinical use has come from the lack of available technologies

delivering effective and homogenous heat to target sites, as well as limitations in temperature

monitoring techniques. More recently, however, with the development of improved tech-

niques, there has been a renewed interest in HT in oncology. HT is a valuable therapy because
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of its inherent tumour selective effect. At temperatures between 40–44˚C, tumour cells in vivo
are irreversibly damaged resulting in cell death while normal cells are seemingly spared [2].

Most normal tissues can withstand exposure to temperatures up to 44˚C for 1 hour without

permanent damage [2, 3]. Tumour sensitivity to HT is not well understood but can be largely

attributed to the abnormal physiology found in solid tumours. The chaotic vasculature found

in tumours often leads to areas of hypoxia and low pH, factors which render cells more ther-

mosensitive [2]. Tumour sensitivity can also vary depending on the cell cycle phase (dividing

cells in M and S-phase are more susceptible to heat-induced damage) [4] and maybe influ-

enced by the differential expression of heat shock proteins on tumour cell membranes [2, 5, 6].

HT has traditionally been most effective in cancer therapy as a sensitizing agent to other pri-

mary cancer therapies. The clinical use of HT to induce radiosensitization (mainly through

inhibition of DNA repair) and chemosensitization (through increased drug uptake, higher

intra-tumour drug concentrations due to increased blood flow, and enhanced drug toxicity) is

well documented [2, 7, 8]. As well, its effectiveness in treating a wide variety of tumour types

has been demonstrated clinically and includes head and neck, breast, brain, bladder, cervix,

rectum, lung, esophagus, vulva and vagina, non-melanoma and melanoma skin cancer, and

sarcomas [7]. The mechanisms for heat-induced cytotoxicity are thought to be vast and com-

plex. However, the critical event appears to be protein denaturation and aggregation, which in

turn can lead to inhibition of DNA repair, inhibition of de novo DNA synthesis, mitotic catas-

trophe, cytoskeleton damage, and loss of membrane integrity [5, 9, 10]. Another mechanism

influencing cell death is HT-induced antitumour immunity, tumour vascular damage resulting

in decreased blood flow, and increased generation of reactive oxygen species [5, 7, 10]. In addi-

tion to the direct cytotoxic effect, HT is also known to impacts the immune system. There has

been compelling evidence that HT can induce abscopal effects mediated by an activated

immune response [11]. HT-induced increased expression of T cells (CD3+ and CD8+ cells) is

known to evoke abscopal antitumour immune effects [12]. Clearly, hyperthermia’s pleiotropic

effects and favorable history substantiate its further investigation into clinical use.

A relatively newer approach that has seen promising advancement as a therapy in oncology

is the stimulation of microbubbles by ultrasound. Microbubbles injected intravenously can

flow freely through microvasculature because of their stability and small size (3–4μm), and

have been traditionally used as contrast agents in diagnostic ultrasound imaging. Studies have

indicated that exposing microbubbles to acoustic pressure at or near their resonant frequencies

results in bubble oscillations. Two types of bubble oscillations are known to occur namely sta-

ble cavitation and transient cavitation also known as the inertial cavitation. Stable cavitation

usually occurs at lower ultrasound pressures whereas inertial cavitation occurs at high acoustic

pressures. Under higher acoustic pressures, the size of microbubbles increases drastically fol-

lowed by a violent collapse fragmenting into several tiny bubbles. The cavitation phenomenon

of microbubbles can produce bioeffects on neighboring endothelial cells such as increasing the

permeability of the plasma membrane [13, 14]. The structural disruption to the plasma mem-

brane has been reported to cause increased vascular permeability, decreased vascular integrity

and endothelial cell death depending on the acoustic parameters used [13, 15]. In recent years,

ultrasound-stimulated microbubbles (USMB) mediated drug and gene delivery is receiving

considerable attention. Cavitation of microbubbles caused by ultrasound pulses leads to tran-

sient pore formation at the plasma membranes of cells facilitating the extravasation of drugs

and genes [16, 17]. This technique has also been applied for permeabilizing biological barriers

such as the brain tumour microvessels/capillaries and or the blood-brain barrier (BBB).

USMB-induced disruption of BBB allows the administration of therapeutic agents that can be

used to treat various neurological disorders [17–19]. USMB can also be employed to selectively

deliver therapeutic agents across the extracellular matrix (ECM). In most solid tumours
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targeting chemotherapeutics across the ECM remain challenging due to the chaotic network

of extracellular macromolecules and increased interstitial fluid pressure (IFP). Ultrasound

combined with microbubble can overcome this limitation by lowering the content of IFP and

subsequently allowing the penetration of therapeutic drugs deeper into dense ECM. USMB

has also been used as drug and gene delivery carriers. Microbubbles used as carriers of thera-

peutic agents are burst by an ultrasound beam at the targeted area. Drug or gene-loaded ultra-

sound-targeted microbubbles technique has been utilized successfully for the treatment of

various diseases [20–23]. Also, USMB as the carrier transport for proteins and lipids has

shown enhanced tumour response in an in vivo model [24]. Furthermore, oxygen-carrying

microbubbles are used to enhance the effect of various cancer treatment modalities [25]. The

use of USMB for delivering oxygen to the hypoxic region in tumour microenvironment has

shown exceptional outcomes paving the way to clinical trials. More recently, several groups

have evaluated the efficiency and effectiveness of ultrasound and microbubble-mediated drug

delivery in three dimensional (3D) tumour spheroids models. The spheroids models are of

great clinical significance because they can accurately mimic the complexity of the human

solid tumour biology and microenvironment such as the vasculature and ECM. Studies suggest

that USMB can enhance the penetration of several drugs and localized the release of drugs into

the target tissue of spheroids models. Grainger et al demonstrated 6–20 fold increase in pene-

tration of nanoparticles in breast cancer 3D in vitro tumour spheroids. The study showed that

prolonged ultrasound pulses and increased ultrasound exposure led to greater particle penetra-

tion [26]. Additionally, doxorubicin-liposome-loaded USMB has shown to internalized deeper

into the layers of the 3D tumour spheroid thereby reducing the number of viable tumour cells

[27]. Thus, the implementation of USMB in 3D tumour spheroids holds great promise to

improve the delivery of chemotherapeutics agents that may have the potential for successfully

treating various clinical diseases in the future. Recent research in radiation oncology has dem-

onstrated that microbubbles mediated membrane-damage can also significantly enhance the

effectiveness of radiation therapy [15]. Pre-clinical experiments have shown a synergistic

response in tumour cell death and vascular disruption when USMB are administered in com-

bination with radiation therapy [15]. The potentiation of radiation damage has been attributed

to endothelial perturbation stimulating activation of specific genetic pathways, which sensitize

the tumour to subsequent therapeutic application. This phenomenon is evidenced to work

through the ceramide-mediated acid sphingomyelinase (ASMase) signaling pathway leading

to endothelial apoptosis [15, 28–30]. Some studies have also examined the combinational effect

of USMB and chemotherapy. Exposure to USMB is known to create transient pores on the cell

membrane resulting in enhanced cell permeability that elevates the uptake of various drugs

used for cancer treatment. Several preclinical studies have confirmed increased tumour

response followed a combination of USMB and chemotherapy. One of the mechanisms lead-

ing to enhanced tumour response followed these two therapies is known to be a result of the

rapid shutdown of tumour blood flow subsequently resulting in secondary cellular events. A

study conducted with the PC3 xenograft model demonstrated a significant reduction in

tumour perfusion within 24 hours followed by an increase tumour cell death combining doce-

taxel and USMB [31]. Similar results were reported in breast tumour xenograft when metro-

nomic cyclophosphamide drug was used in combination with USMB [32]. Some report

suggests that both USMB and chemotherapy have vascular disrupting properties. Work by

Czarnota and group has shown USMB to cause extensive tumour vascular endothelial damage

leading to enhanced tumour response. Similarly, in vitro studies performed with paclitaxel and

docetaxel have shown to inhibit the proliferation of endothelial cells resulting in overall vascu-

lar density reduction [33]. Thus, the combination of USMB with radiation and or chemother-

apy has shown to be a potential treatment strategy by targeting tumour vasculature. These
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studies introduce an adjunctive cancer therapy that can be spatially targeted by confining the

acoustic fields to the tumour, thereby sparing normal tissues.

Whereas current translational research continues to optimize the USMB radiosensitization

effect, the study here aims to investigate whether USMB-mediated tumour response also

enhances HT cancer therapy. Combining the spatial targeting of USMB treatment with the

tumour selective toxicity of HT treatment creates a novel therapy regimen desirable for sparing

healthy tissue. The study here investigates this new combination therapy in a well-vascularized

tumour model. Human breast cancer line MDA-MB-231 xenografts were grown in the hind

limbs of mice and exposed to USMB treatment alone, HT treatment alone, or a combination

of USMB and HT. The parameters of each treatment were modulated in order to optimize the

treatment approach, giving rise to a large range of experimental conditions. Animals were first

exposed to USMB followed with HT after 5 hours. The selection of a 5 hours time interval

between these two treatments was based on our previous finding. Enhanced tumour response

was observed when two treatment modalities were separated by more than 5 hours. [15].

Tumours were analyzed 24 hours after treatment using histological assessment to determine

levels of tumour cell death and vascular disruption.

Materials and methods

Cell tissue culture

MDA-MB-231 breast cancer cells were obtained from the American Type Culture Collections

(ATCC, MD, USA), and cultured in RPMI–1640 medium (Wisent BioProducts) supple-

mented with 10% fetal bovine serum (Sigma-Aldrich) and 1% penicillin/streptomycin antibi-

otic (ThermoFisher Scientific). The cells were incubated at 37˚C in 5% CO2 and once�80%

confluency was reached cells were trypsinized using 0.05% Trypsin-EDTA (Wisent BioPro-

ducts) and split for continuing passage or prepared for injection. For injection, cells were cen-

trifuged and re-suspended in Mg+/Ca+ Dulbecco’s Phosphate Buffered Saline (DPBS) at a

concentration of 5 x 106 cells/ 100 μL.

Animal model

Female SCID-B17 mice were obtained from Charles River Canada. A cell suspension of 100μL

containing 5 x 106 cells was injected subcutaneously in the hind limbs using a 27 gauge needle.

During injection, mice were anesthetized with 2% isoflurane in an O2 flow of 1.5 L/h to elimi-

nate any pain perception. Xenograft tumours developed in a 4 to 6 week period, and would be

exposed to therapy once they had reached 5–10 mm in diameter. Prior to treatment, mice

were anesthetized briefly with isoflurane, followed by an intraperitoneal injection mixture of

ketamine (100 mg/kg) and xylazine (5 mg/kg) at a volume of approximately 100 μL or adjusted

to body weight. Throughout the treatment time, mice were visually monitored and body tem-

perature was regulated with heat lamps and heat pads.

All animal experiments were conducted in compliance with local animal welfare laws,

guidelines and policies approved by the Sunnybrook Research Institute Institutional Animal

Care and Use Committee.

Experimental design

This study aimed to investigate the biophysical parameters of USMB and HT for enhancing

tumour response in the breast tumour xenograft model. Different microbubble concentra-

tions, ultrasound exposure time, and HT duration were incorporated in the study. A peak neg-

ative pressure of 570 kPa was used for the disruption of microbubbles possibly achieved
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through inertial cavitation. Mice were first exposed to USMB treatment followed with HT

after 5 hours. The work used 200 tumour-bearing mice. To elucidate whether USMB treat-

ments have a similar enhancement-of-treatment effect with HT comparable to radiation ther-

apy, six conditions were investigated; control (no treatment), USMB only (3% (v/v)

microbubble concentration, 5 minutes ultrasound exposure), HT alone (10 minutes or 50 min-

utes), and USMB combined with HT (10 minutes or 50 minutes) for a total of 54 animals. In

order to investigate the optimization of HT parameters, six different heating durations were

carried out (10, 20, 30, 40, 50, 60 minutes), with and without USMB for a total of 14 conditions

with inclusion of control and USMB alone groups (93 animals). In order to optimize USMB

parameters, three different microbubble concentrations (0.1%, 1%, 3% v/v) and three different

ultrasound exposure durations (1, 3, 5 minutes) were combined with 40 minutes of HT for 9

new parameter combinations and a total of 11 conditions after including control and HT only

groups (53 animals). A table displaying all the permutations and number of animals per treat-

ment conditions is included in Fig 1.

Ultrasound-stimulated microbubble treatments

Preparation of microbubbles. Definity1microbubbles, (Lantheus Medical Imaging,

Inc., North Billerica, MA, USA) comprised of a liposome shell surrounding perfluoropropane

gas, were used in this study. Before treatment, bubbles were warmed to room temperature and

subsequently activated using a Vialmix1 device (Lantheus Medical Imaging, Inc.) at 3000 rpm

for 45 seconds. The microbubble vial was kept inverted to encourage a slight separation of

bubble sizes such that bubble size would be relatively uniform when withdrawn from the first

few millimeters of the inverted cap. Microbubble concentrations were calculated in accordance

to mean mouse blood volume estimated by the animal body weight. Three different concentra-

tions of microbubbles were used in these experiments– 0.1%, 1%, or 3% (v/v), prepared

through saline dilutions.

Ultrasound and microbubble exposure

The ultrasound treatment system consisted of a wave-form generator (AWG520, Tektronix),

an amplifier (RPR4000, Ritec), a digital acquisition system (Acqiris DC440/PXI8570, Agilent

Fig 1. Schematic overview of the experimental design. (A) Diagram depicting experiments carried at each time

point. Animals were first exposed to USMB consisting of different concentrations of microbubble (0.1%, 1%, and 3%)

and different sonication times (1, 3, and 5 min) at constant peak negative pressure of 570 kPa. Five hours after USMB

treatment mice were exposed to 43˚C water bath HT for 10, 20, 30, 40, 50, and 60 minutes. Tumour sections were

collected for histological assessment at 24 hours followed treatment. Tables (B), (C), and (D) display different

parameters incorporated in the study. Ctrl = Control; USMB = ultrasound-stimulated microbubbles;

MB = microbubble; HT = hyperthermia; min = minutes; h = hour.

https://doi.org/10.1371/journal.pone.0237372.g001
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Technologies Canada, Mississauga, ON, Canada) and a 2.85 cm unfocused planar ultrasound

transducer with 500 kHz central frequency (Valpey Fisher Inc., MA, USA). The transducer

was focused at 8.5 cm with a focal point -6 dB beam width of 31 mm. Before experiments, the

focal point of the ultrasound beam was adjusted using the digital acquisition system. To ensure

that the maximal signal was received at the focus, a reference needle was placed in front of the

transducer that was monitored through the system. For treatment, mice were anesthetized

using ketamine and xylazine and were immersed in a 37˚C water bath with only the lower

body and limbs submerged, and tail pointed up. The tumour-bearing limb was secured directly

in front of the middle of the therapy transducer at a distance calibrated for the maximal

focused signal (8 cm). Animals were injected with a 100 μL bolus of the microbubble dilution

followed by a 150 μL 0.2% heparin-saline flush through a tail-vein catheter. Immediately after

microbubble injection, animals were exposed to ultrasound for 1, 3, or 5 minutes. Tumours

were exposed to a 16-cycle tone burst over 50 milliseconds at 500 kHz with a 3 kHz pulse repe-

tition frequency (0.05 seconds total) followed by no ultrasound for 1.95 seconds to permit

blood vessels to refill with microbubbles for total pulse sequence duration of 2 seconds. This

pulsing sequence was continuously repeated over 1, 3, or 5 minutes exposure duration. All

treatments were carried out at a peak negative pressure of approximately 570 kPa which corre-

sponds to a mechanical index of approximately 0.8 at the focus as measured with a calibrated

hydrophone [15, 34, 35].

Hyperthermia treatments

The HT treatments were administered 5 hours after USMB exposure as preliminary work indi-

cated this is an appropriate time for a prominent vascular-related death effect [15]. For the HT

treatment, a water bath was heated to a controlled temperature of 43˚C. Mice were secured

upright in a ventilated tube such that only their tumour-bearing limb was submerged in the

water bath. The HT treatment durations investigated included 10, 20, 30, 40, 50, or 60

minutes.

Histology

Mice were euthanized 24 hours after USMB and HT treatment. Excised tumours were dis-

sected in half and fixed in 10% neutral buffered formalin for 48 hours at room temperature fol-

lowed by transfer to 70% ethanol to avoid over-fixation. Specimens were then embedded in

paraffin blocks, sectioned on glass slides, and stained with hematoxylin and eosin (H&E) for a

qualitative look at cell morphology. Tumour specimens were also labeled with terminal deoxy-

nucleotidyl transferase dUTP nick-end labeling (TUNEL), as an assay of cell death, and a clus-

ter of differentiation 31 (CD31) as an assay of the vascular index (Pathology Research

Program, University Health Network, Toronto, ON, Canada).

TUNEL detects DNA fragmentation. For the cell death assay, low-magnification images of

tumour slides were acquired with a light microscope (Leica MZ FL III, Leica Microsystems,

Concord, ON, Canada), and digitized for analysis. The percentage of cell death was quantified

from digitized TUNEL files using an in-house custom code developed in MATLAB. The per-

centage of cell death per tumour per experimental condition was averaged.

CD31 immunostaining targets a protein concentrated in the intercellular junctions of endo-

thelial cells. For the vascular index assay, 10–20 high-magnification (20x objective lens) images

of tumour slides were acquired with a light microscope in a consistent pattern for each tumour

(periphery and centre). The number of intact blood vessels were manually counted using Ima-

geJ (NIH, Bethesda, MD, USA) software and averaged per sample. The vascular index was

deemed as the mean number of viable blood vessels per tumour per experimental condition.
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Statistical analysis

Statistical tests consisted of one-way ANOVA and two-way ANOVA where applicable to

determine significant trends and factors. To determine statistical significance between groups,

a t-test with Welch’s correction was performed. All tests were carried out using Graph Pad

Prism software version 6 (Graph Pad Software, La Jolla, CA, USA).

Results

The aim of this study was two-fold: to investigate the potentiation ability of USMB treatment

in an HT therapy regimen, and to optimize the combined treatment parameters in an

MDA-MB-231 breast cancer xenograft model.

USMB combined with HT results in increased cell death and vascular

disruption in MDA-MB-231 xenografts

Results indicated that USMB alone, HT alone, and a combination of USMB/HT were effective

treatments for cell death in MDA-MB-231 xenografts. Histological evaluation of H&E

(Fig 2A) and TUNEL (Fig 2B) stained tumour sections were used to assess cell death. Large

areas of cell death, determined from coincident TUNEL and H&E stained sections, were

found in all treated tumours compared to controls. In areas negative for dark brown TUNEL

stain, the corresponding H&E regions appeared stained a dark purple due to the blue-purple

color of hematoxylin stained nucleic acids. In areas positive for TUNEL, the absence of a

homogenous hematoxylin nuclei stain, reminiscent of nuclear fragmentation in cell death, left

a paler pink pattern (Fig 2A&2B) consistent with cellular necrosis. Statistical analysis

(ANOVA) of the quantified TUNEL assay indicated a significant difference between groups

(p<0.001) (Fig 2C). The untreated controls indicated a central area of baseline tumour cell

death which, when quantified, represented 11 ± 3% of the total tumour area. Exposure to

USMB alone caused a significant increase in cell death compared to controls with an affected

area of 26 ± 5% (p<0.05). The heat only treatments of 10 minutes and 50 minutes at 43˚C

resulted in 31 ± 6% and 52 ± 5% cell death respectively, with increasing significance when

compared to control (p<0.05 and p<0.0001). Adding USMB to both HT groups increased the

cell death response to 37 ± 8% and 61 ±5%, respectively. Only the 50 minute HT groups, with

and without USMB, demonstrated a significant increase in cell death from the USMB alone

treatment. To uncover optimal heat duration, more HT groups were added and results are

described below.

Changes in the vascular index were evaluated using CD31 immunohistochemistry. High

magnification images of tumour sections revealed intact blood vessels as distinct, dark brown

stained endothelial cells (Fig 3A). It was noted that the intact vessels, positive for CD31, were

predominantly observed in the periphery of the treated tumours where there was an absence

of TUNEL stain in the corresponding slides. The vascular index, representing the average

number of intact vessels, was significantly lower compared to corresponding samples in all

groups treated with HT. The 10 minutes and 50 minutes HT treatments resulted in decreases

to 0.4 and 0.3 initial vascular indexes, respectively, compared to control (Fig 3B). The addition

of USMB to HT resulted in a further decrease in the vascular index in both cohorts. Similar to

the cell death assay, only the 50 minutes HT groups had a significantly reduced vascular index

when compared to the USMB only treatment. Taken together with the TUNEL assay data,

these results indicate that combining USMB with HT causes an increase in cell death in

tumours, which coincides with a decrease in vascular index.
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Fig 2. Gross tumour histological evaluation and quantification of cell death. Low magnification light microscopy

images of representative MDA-MB-231 xenograft sections stained with (A) H&E and (B) TUNEL. Groups were

treated with either nothing (control), USMB alone, HT at low (10 minutes) or high (50 minutes) heat durations, or a

combination of both USMB and HT. All treatments conferred varying amounts of detectable cell death (brown

TUNEL stain). The scale bar denotes 1mm. (C) The cell death assay was determined from TUNEL stained tumour

sections (Fig 2B) and is expressed as a percentage of the total tumour area. As treatment parameters were increased in

the intensity of anticipated cytotoxicity, there was an observed step-wise increase in cell death. Statistical significance,

determined by Welch’s corrected t-test, is indicated for each treatment condition compared to control with P values of

0.01–0.05 (�), 0.001–0.01 (��), 0.0001–0.001 (���), and<0.0001 (����). Error bars indicate standard error of the mean.

A total of 54 animals were included in this data set. Ctrl = Control; USMB = ultrasound-stimulated microbubbles;

HT = hyperthermia; min = minutes.

https://doi.org/10.1371/journal.pone.0237372.g002
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Fig 3. Histological evaluation of vasculature and quantification of the vascular index. (A) High magnification light

microscopy images of CD31 stained tumour sections. Groups were treated with either nothing (control), USMB alone,

HT at low (10 minutes) or high (50 minutes) heat durations, or a combination of both USMB and HT. Representative

images for each treatment condition show intact blood vessels as morphologically well-defined and stained brown.

Control samples showed a high density of intact blood vessels, while treated groups had decreased numbers. Images

were taken at a 20x objective lens, and the scale bar denotes ~50μm. (B) The vascular index was determined from

CD31 stained tumour sections and represents a mean number of intact blood vessels in tumour sections. The step-wise

trend for decreasing vascular index mirrors the increase in cell death as shown in Fig 2C. Statistical significance,

determined by Welch’s corrected t-test, is indicated for each treatment condition compared to control with P values of

0.01–0.05 (�), 0.001–0.01 (��), 0.0001–0.001 (���), and<0.0001 (����). Error bars indicate standard error of the mean.

A total of 54 animals were included in this data set. Ctrl = Control; USMB = ultrasound-stimulated microbubbles;

HT = hyperthermia; min = minutes.

https://doi.org/10.1371/journal.pone.0237372.g003
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Hyperthermia treatment dose curve plateaus early

In order to explore the dose-response relationship of MDA-MB-231 xenografts to the HT

treatment, further heat-experimental groups were added to include 20, 30, 40, and 60 minutes

duration at 43˚C alone or in combination with USMB. Histological assessment of H&E and

TUNEL (Fig 4A&4B) revealed large areas of cell death in all treated groups, with a tendency

for affected areas to be central and relatively unaffected areas (if any) to be peripheral. Quanti-

fying the tumour response to increasing durations of HT revealed an initial rise in cell death at

the shorter durations followed by a plateau with little added treatment effect in response to

longer durations (Fig 4C). The step-wise increasing cell death trend seen earlier in Fig 2C was

less definite with the addition of additional heating times. All groups, HT alone, USMB and

HT combined, resulted in significant increases in cell death when compared to control. The

addition of USMB to the HT treatments consistently increased cell death in all groups except

for the 20 minutes HT group. The largest increase in cell death from a baseline of 11 ± 3% in

controls to 64 ± 5% was observed with the application of USMB combined with 40 minutes of

HT (Fig 4C). When statistically comparing HT groups to the USMB only cohort, HT duration

of 40 minutes or longer produced consistently more cell death in both HT alone and when

combined with USMB. Therefore, further experimentation involved 40 minutes of heat as the

HT regimen.

The vasculature analysis displayed an inversed but similar trend to the cell death analysis,

with a rapid decrease and plateau of the vascular index as HT duration increased (Fig 5B).

High magnification images of CD31 labeled tumour sections exhibited prominent blood ves-

sels throughout the untreated control samples; however, blood microvessels appeared to be

fewer in number and less obvious in treated groups (Fig 5A). Statistical analysis using

ANOVA revealed a significant difference in the observed trend, with Welch’s t-test compari-

son indicating all HT and USMB combined with HT groups having a significantly lower vas-

cular index when compared to controls, with one exception (the 20 minutes combined group).

Increase in cell death at low USMB doses: HT treatment effect

In order to guide treatment implementation of the USMB, different ultrasound exposure, and

microbubble dosing conditions were also carried out. The 3% microbubble concentration and

5-minutes ultrasound exposure parameters used in the above experiments were based on the

“high” USMB values producing effective results in earlier work [15]. In order to elucidate the

optimal USMB treatment parameters, lower concentrations of 1% and 0.1% was combined

with lower sonification times of 3 minutes and 1 minute to include combinations of three

microbubble concentrations and three ultrasound exposure times. The qualitative and quanti-

tative cell death assessment revealed that at 40 minutes of HT, both low and high USMB doses

result in similar increases in cell death compared to controls (Fig 6A&6B). TUNEL quantifica-

tion indicated a significant increase in cell death from a baseline of approximately 4 to 6 times

with USMB/HT treatment (Fig 6C). Analysis by two-way ANOVA indicated microbubble

concentration as a significant factor influencing cell death (p = 0.0011). Further analysis

revealed that parameters of 1% microbubble concentration and 1-minute ultrasound exposure

resulted in a significant increase in treatment effect compared to 40 minutes of heat alone

(p = 0.0254). A corresponding decrease in the vascular index in all treatment groups once

again indicated an effective assault on the vasculature following USMB and HT (Fig 7A&7B).

While most treated groups were different from control, negligible differences in vascular index

existed between treatment groups when compared to each other. Therefore, the efficacy of

USMB and HT to cause cell death and vascular disruption can be achieved even at low doses
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Fig 4. Analysis of tumour cell death response with the addition of more HT groups. Low magnification light

microscopy images of tumour sections with added heat groups to encompass 10, 20, 30, 40, 50, and 60 minutes HT

treatment durations and the combined treatment (USMB and HT) complements. Also shown are representative

images for control and USMB only groups. (A) Tumour sections stained with H&E and their corresponding TUNEL

stained sections (B). All treatment groups including HT (alone or in combination with USMB) appeared to have large

areas of cell death. The scale bar denotes 1mm. (C) Quantification of tumour cell death revealed a plateau in the

cytotoxicity response to HT treatment occurring as early as 10 minutes at 43˚C. Statistical significance, determined by

Welch’s corrected t-test, is indicated for each treatment condition compared to control with P values of 0.01–0.05 (�),

0.001–0.01 (��), 0.0001–0.001 (���), and<0.0001 (����). Error bars indicate standard error of the mean. A total of 93

animals were included in this data set. Ctrl = Control; USMB = ultrasound-stimulated microbubbles;

HT = hyperthermia; min = minutes; n/a = not applicable.

https://doi.org/10.1371/journal.pone.0237372.g004
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of USMB therapy with an optimal effect observed when 1% microbubble concentration and

1-minute sonification exposure is combined with 40 minutes of HT.

Discussion

This study investigated the use of USMB in combination with HT as a therapy to treat breast

cancer xenografts in vivo. Histological evaluation was used to determine treatment effects on

cell death and vascular changes. The results from this study demonstrate that USMB and HT

when combined act as a potent modality in causing tumour and vascular cell death. Previous

studies have investigated the USMB enhancement effect upon radiation therapy in vitro and in

Fig 5. Analysis of tumour vasculature with the addition of more HT groups. (A) High magnification images of

tumour sections stained for CD31. The vasculature becomes less evident in the treated groups, with decreasing

numbers of stained blood vessels. Images were taken at a 20x objective lens, and the scale bar denotes ~50μm. (B)

Calculation of the vascular index from CD31 analysis revealed a similar reduction in intact blood vessels in all groups

exposed to HT or USMB and HT. Statistical significance, determined by Welch’s corrected t-test, is indicated for each

treatment condition compared to control with P values of 0.01–0.05 (�), 0.001–0.01 (��), 0.0001–0.001 (���), and

<0.0001 (����). Error bars indicate standard error of the mean. A total of 93 animals were included in this data set.

Ctrl = Control; USMB = ultrasound-stimulated microbubbles; HT = hyperthermia; min = minutes.

https://doi.org/10.1371/journal.pone.0237372.g005
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Fig 6. Analysis of tumour cell death response with the addition of more USMB groups. Low magnification light

microscopy images of tumour sections with varying microbubble and ultrasound therapy parameters. (A)

Representative H&E stained tumour sections and corresponding (B) TUNEL stained sections. Treated groups showed

large amounts of cell death compared to controls. (C) Cell death was quantified from TUNEL analysis and indicated

that low, medium and high USMB parameters all result in similar amounts of cell death. Statistical significance,

determined by Welch’s corrected t-test, is indicated for each treatment condition compared to control with P values of

0.01–0.05 (�), 0.001–0.01 (��), 0.0001–0.001 (���), and<0.0001 (����). Error bars indicate standard error of the mean.

A total of 53 animals were included in this data set. Ctrl = Control; MB = microbubble; HT = hyperthermia;

min = minutes.

https://doi.org/10.1371/journal.pone.0237372.g006
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vivo in multiple cell lines [15, 28, 36–38]. Czarnota et al. demonstrated that USMB treatment

followed by subsequent radiation exposure (2 Gy or 8 Gy) resulted in a synergistic cell death

effect in prostate cancer mouse xenografts. The combined treatments demonstrated a supra-

additive effect compared to single treatments alone reaching 40–60% cell death measured 24

Fig 7. Analysis of tumour vasculature with the addition of more USMB groups. (A) High magnification images of

representative tumour sections stained for CD31. The vasculature becomes less evident in the treated groups, with

decreasing numbers of stained blood vessels. Images were taken at a 20x objective lens, and the scale bar denotes

~50μm. (B) Vascular index quantified from the analysis of CD31. All treated groups showed a similar decrease in the

vascular index compared to untreated controls. Statistical significance, determined by Welch’s corrected t-test, is

indicated for each treatment condition compared to control with P values of 0.01–0.05 (�), 0.001–0.01 (��), 0.0001–

0.001 (���), and<0.0001 (����). Error bars indicate standard error of the mean. A total of 53 animals were included in

this data set. Ctrl = Control; MB = microbubble; HT = hyperthermia; min = minutes.

https://doi.org/10.1371/journal.pone.0237372.g007
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hours after exposure. A similar synergistic enhancement of radiation therapy was observed in

bladder [37] and breast [38] xenograft experiments when USMB treatment was used in combi-

nation with radiotherapy. These studies demonstrated the mechanism of action for this syn-

ergy to be microbubble-induced ceramide-facilitated endothelial cell death. Stimulating the

circulating microbubbles with ultrasound causes the endothelial cells to be perturbed through

biomechanical effects such as the activation of pro-apoptotic genetic pathways. An observed

increase in ceramide in these experiments was attributed to the activation of pro-apoptotic

pathways associated with membrane damage [39, 40]. The resultant endothelial cell death and

vascular disruption reduced blood flow to the tumour area as well as caused increased sensitiv-

ity to subsequent radiation exposure.

The study here investigated whether a similar enhancement-of-treatment phenomenon

would occur when combining USMB with HT instead of radiation. Work done by [41] exam-

ining USMB and HT therapy in vitro in the mouse mammary tumour cell line 4T1 revealed

that the combination of the two therapies synergistically enhanced cell kill. However, the find-

ings displayed here in vivo in MDA-MB-231 xenografts indicate that USMB and HT alone or

together are an efficacious therapy but do not act synergistically. Since USMB is targeting

endothelial cell disruption in the tumour microvasculature, a physiological dependency, and

therefore differential response in vitro to in vivo, is not unexpected. Exposure to treatments of

USMB alone, 10 or 50 minutes of HT at 43˚C alone, or in combination with USMB all resulted

in significant increases in cell death compared to control samples (Fig 2C). Evaluation of

tumour vasculature indicated significant decreases in vascular index coinciding with the

increases in cell death in treated groups compared to control samples (Fig 3B). Whereas the

addition of USMB to the HT groups did indicate an increased treatment effect in almost every

case, but not all were significant. This further exemplifies the link between vascular disruption

and tumour cell death. MDA-MB-231 xenografts, being a highly vascularized tumour type,

may be particularly sensitive to the HT treatments, since the vasculature is markedly affected

when HT is given as a monotherapy or in combination with USMB. As well, the tumour cells

themselves may be particularly sensitive to heat treatment. Thompson et al. conducted a cell

sensitivity test to HT in three different breast cancer cell lines in vitro (MCF7, MDA-MB-231,

and MCF 10A), and found that compared to the other two cancer types, MDA-MB-231 had

the least resistance to heat exposure [42]. As human breast cancer types are highly heteroge-

neous genetically and phenotypically, the functional response to treatments will also be

heterogeneous.

The lack of synergism between the two treatment modalities here appears to come from the

potency of the HT treatment itself. Comparison with the work from Lai et al. in which

MDA-MB-231 xenografts were similarly grown in mice and exposed to USMB and radiation,

demonstrates the reproducibility of the USMB single treatment effect in the same cell line. The

study reported that control tumours displayed a baseline of 10 ± 2% cell death and treatment

with USMB resulted in an increased to 26 ± 5% [43]. In the study here, controls and USMB

only treated tumours presented with 11 ± 3% and a 26 ± 5% cell death effect, respectively.

However, the combination groups in the radiation experiments saw a 3.4-fold and a 2.3-fold

increase in effect when USMB combined with 2 Gy and 8 Gy respectively, while the combina-

tion groups in the HT experiments saw only a 1.2 fold increase in effect in both 10 and 50 min-

utes HT treatments. The HT treatment itself has the ability to produce substantial tumour cell

death and vascular disruption, and thus the addition of USMB to HT treatment increases the

effect albeit not in a synergistic manner.

In the experiments here, exposure to HT was modulated in order to elucidate an optimal

therapy regimen. It was observed that as hyperthermic exposure increased in duration in inter-

vals from 10 minutes to 60 minutes, a plateau in treatment effect was reached occurring even
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at short heating duration (Figs 4 and 5). The thermal dose is defined from the temperature and

exposure time to that temperature [44], and at 10 minutes and 43˚C, the thermal dose was suf-

ficient to cause significant cell death in MDA-MB-231 tumours. A consequence of different

cell lines having variable sensitivities to HT means there will exist thresholds for the thermal

dose necessary to trigger cell death unique to each tumour type [45], and the thermal dose has

been shown to vary by a factor of 10 between different cell lines [44]. Suggestions for future

work include exposure to HT in less than 10 minutes duration to see if the same level of cell

death and vascular disruption could be achieved in MDA-MB-231 tumours at lower exposure

durations.

Similar to the HT modulation, USMB treatment parameters were modulated in order to

determine an optimal treatment combination of microbubble concentration (0.1%, 1%, or 3%

v/v) and ultrasound exposure duration (1, 3, or 5 minutes). Assessment of tumour cell death

and vascular changes indicated that comparable results could be attained at both low and high

microbubble dose combinations (Figs 6 and 7). An interpretation of this data is that the

desired treatment effect is already saturated at the lower concentrations of microbubble and

sonification times. In accordance with this suggestion, [36] modulated the microbubble con-

centration and acoustic pressure parameters in combination with radiation doses, and found

that at sufficiently high pressure, such as 570 kPa used here, modulating the microbubble con-

centration had no effect. A similar trend was observed by Kim et al. [36] and suggests a satura-

tion effect resulting from higher pressures causing all bubbles to collapse. Therefore, the

destruction effect is saturated even at doses lower than the clinically recommended dose for

contrast imaging (8 uL/kg used for 0.01% v/v compared to the clinical imaging dose of 10 uL/

kg). Although lower doses did not differ from higher doses in terms of cytotoxicity, it was

observed that the least variability within groups existed when 1% microbubbles and 1-minute

sonification was implemented, producing an increase in cell death when combined with 40

minutes heat significantly more than 40 minutes of heat alone (p = 0.0254). Given this observa-

tion, the optimal USMB dose was, therefore, found for these conditions. However, if lower

doses of HT were to be investigated, the USMB parameters should be adjusted around the low-

est dose of HT that achieves a relevant therapeutic value.

The strength of the HT treatment and the observed lack of ability for USMB to greatly

enhance its effect can be understood in terms of treatment mechanism. The purpose of stimu-

lating the microbubbles with ultrasound is to mechanically disturb the tumour blood vessels,

thereby activating ceramide mediated stress response pathway leading to endothelial cell death

and consequent tumour vascular destruction [15]. Ceramide-dependent cell death signaling

mechanisms are triggered by the activation and translocation of ASMase enzyme in the endo-

thelial compartment [46, 47]. ASMase generated ceramide further stimulates the activation of

caspases finally leading to cell death [48, 49]. On the other hand, the mechanisms of heat-

induced cell death are plentiful and not well understood, however, many studies have deter-

mined that aside from its tumour cytotoxic effects, HT can affect tumour blood flow and vas-

culature [44, 50]. HT treatments with exposure to temperatures 42˚C and above are found to

cause extensive damage to the tumour vascular bed and alter blood flow in multiple tumour

types [44] [50]. HT in the range of 40˚C to 45˚C is known to induce thermotolerance and

induction of heat shock proteins (HSPs) [51–53]. Cells acquiring the state of thermotolerance

have shown to correlate with a higher level of HSPs expression. HT-induced protein denatur-

ation/aggregation which subsequently leads to cell death is hindered by the upregulation of

HSPs particularly HSP70. Also, HSP70 overexpressing cells are protected from HT-induced

ceramide generation and apoptosis. HSP70 inhibits the activity of caspase-3 and Jun N-termi-

nal kinase (JNK)-pathway that are key regulators of ceramide-induced cell death. Studies have

confirmed that elevating the level of ceramide can downregulate or disrupt HSP70 expression
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resulting in apoptosis [54]. At present, it remains unclear as to what mechanisms underlie the

enhancement of cell death and changes in vascular index observed in our study following

USMB and HT. As 43˚C was used in the work here, perhaps vascular destruction is the pri-

mary target of both USMB and HT, and ultimately tumour cell death is being modulated by a

shared mechanism. The slight increase in cell death observed in the combined USMB and HT

combination groups may be due to the first pass attack on vasculature creating tumour regions

of low pH, hypoxia, and nutrient deficiency, factors which are known to increase sensitivity to

thermal damage [50].

In summary, combining USMB exposure with HT treatment was demonstrated to increase

cell death and reduce vascular index in human breast (MDA-MB-231) tumour xenografts

when compared to HT alone. The effects of the HT treatment were maximized at 40 minutes

of exposure. Optimal effects of combining the 40 minutes HT treatment were observed with a

relatively low microbubble concentration of 1% v/v and a short ultrasound exposure time of 1

minute. Whereas this parameter combination provided optimal additive results, the interac-

tion between the two treatments suggests that further optimization can be achieved by reduc-

ing the HT dose to increase the contribution of the USMB treatment, further sparing healthy

tissue.

Our study here provides an insight into how tumours behave in vivo followed a treatment

of USMB and HT. The clinical application of this technique remains questionable, however,

the use of this combined modality can surely be confined to the targeted tumour volume spar-

ing nearby healthy tissue. USMB treatment can perturb the endothelial lining of the vascula-

ture and might pre-sensitize vascularized regions of the tumour to HT therapy. HT on the

other side can treat hypoxic areas within the tumour which otherwise might be difficult to

treat with USMB. Thus, the strengths of one treatment modality can overcome the weakness

of others. Recently, high intensity focused ultrasound (HIFU), an adaptation of conventional

HT has gained rapid clinical acceptance. A focused beam of ultrasound energy is deposited in

the targeted area resulting in thermal ablation. HIFU in combination with microbubble has

demonstrated to enhance the heating effects [55]. At present, several clinical trials are ongoing

combining HIFU and microbubbles. By using this combination, the use of heat and tempera-

ture to ablate tissues can be minimized. Thus, HIFU with microbubbles has shown to be a suc-

cessful treatment strategy for the treatment of various experimental tumours and hence it

might play a significant role in future clinical practice.

Limitations and future implications

The results presented here add to the body of work demonstrating the utility of vascular endo-

thelial disruption mediated by USMB to enhance various cancer treatment modalities. The

results revealed greater tumour cell death and reduced vascular index with the combination of

USMB and HT. Although promising outcomes were observed within 24 hours, this does not

necessarily mean that these techniques will have effective therapeutic responses. Further stud-

ies are needed to assess the long-term effectiveness of this combined treatment. There are also

limitations associated with this study that are worth noting. Firstly, the temperature uniformity

in tumours is a critical aspect for the activation of several cell death-related signaling pathways.

Therefore, incorporating technology that allows temperature mapping and homogenous

energy distribution in tumours may be beneficial. Secondly, when using HT as a multimodality

treatment, treatment sequencing and the time interval between the two treatments can impact

tumour response eminently. Therefore future studies focusing on the sequence, and the time

interval with HT treatment might help to understand the influence of these factors on tumours

in a better way. Other studies have pointed to the importance of ceramide in microbubble-
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induced effects and heat shock proteins in HT work but these were not studied here. Further-

more, the translation of these research findings to the clinical settings will require the optimi-

zation of these treatment combinations in larger tumours and or orthotropic tumour models.
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