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ABSTRACT Fusobacterium is a bacterium associated with colorectal cancer (CRC) 
tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer 
membrane galactose-binding lectin that mediates Fusobacterium adherence to and 
invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile 
and identify microbial genomic features that correlate with the cancer-associated 
bacterial virulence factor Fap2. Here, we analyze genomes of Fusobacterium colon tumor 
isolates and find that a family of post-translational modification enzymes containing 
Fic domains is associated with Fap2 positivity in these strains. We demonstrate that 
Fic family genes expand with the presence of Fap2 in the fusobacterial pangenome. 
Through comparative genomic analysis, we find that Fap2+ Fusobacteriota are highly 
enriched with Fic gene families compared to other cancer-associated and human gut 
microbiome bacterial taxa. Using a global data set of CRC shotgun metagenomes, we 
show that fusobacterial Fic and Fap2 genes frequently co-occur in the fecal microbiomes 
of individuals with late-stage CRC. We further characterize specific Fic gene families 
harbored by Fap2+ Fusobacterium animalis genomes and detect recombination events 
and elements of horizontal gene transfer via synteny analysis of Fic gene loci. Exposure 
of a F. animalis strain to a colon adenocarcinoma cell line increases gene expression 
of fusobacterial Fic and virulence-associated adhesins. Finally, we demonstrate that Fic 
proteins are synthesized by F. animalis as Fic peptides are detectable in F. animalis 
monoculture supernatants. Taken together, our study uncovers Fic genes as potential 
virulence factors in Fap2+ fusobacterial genomes.

IMPORTANCE Accumulating data support that bacterial members of the intra-tumoral 
microbiota critically influence colorectal cancer progression. Yet, relatively little is known 
about non-adhesin fusobacterial virulence factors that may influence carcinogenesis. Our 
genomic analysis and expression assays in fusobacteria identify Fic domain-containing 
genes, well-studied virulence factors in pathogenic bacteria, as potential fusobacterial 
virulence features. The Fic family proteins that we find are encoded by fusobacteria and 
expressed by Fusobacterium animalis merit future investigation to assess their roles in 
colorectal cancer development and progression.
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F usobacterium is associated with colorectal cancer (CRC), the third leading cause of 
cancer-related death worldwide (1–5). Numerous studies have linked the presence of 

intra-tumoral Fusobacterium with CRC tumorigenesis (6), metastasis (7), and therapeutic 
and preventative strategies (8–10). The majority of studies that investigate the molecular 
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factors underlying fusobacterial virulence mechanisms have focused on its adhesins, 
principally Fap2 and FadA (11–16).

Researching the virulence factors of Fusobacterium is an ongoing effort with the 
goal of gaining mechanistic understanding of how this bacterium modulates colorectal 
carcinogenesis and metastasis (17). Given the similarities between enteric pathogen-
mediated cytoskeletal reprogramming of the epithelium and the role of epithelial-
mesenchymal plasticity in the etiopathogenesis of CRC, identifying virulence factors 
relevant to cellular cytoskeletal remodeling, as has been previously described with 
some foodborne human intestinal pathogens, is of particular interest for unraveling the 
mechanisms of CRC-associated bacteria (18, 19). Additionally, given that pathogens often 
produce many virulence factors, some of which work together in a coordinated fashion, 
it stands to reason that there may be co-occurrence relationships between well-studied 
virulence factors in fusobacteria and candidate virulence features. Such prior biological 
knowledge can inform analytical approaches for bacterial virulence factor discovery and 
prioritization of potential virulence features for subsequent study. Microbial genomic 
and pangenomic analysis are powerful tools that allow investigators to identify virulence 
gene signatures of specific bacterial strains in cancer (17, 20). Fic family proteins are 
encoded by a wide range of bacteria and secreted as toxins by specific bacterial 
pathogens (21). Herein, we analyze genomic variations in CRC isolates of Fusobacterium 
using a hypothesis-guided bioinformatic approach and delineate fusobacterial gene 
features relevant to CRC tumorigenesis and metastasis with a focus on Fic proteins.

RESULTS

Increased frequency of Fic domain-containing genes in Fap2+ fusobacterial 
genomes

Building on previous findings linking Fap2-mediated fusobacterial enrichment in tumors 
with CRC development and immune evasion (13, 22), we hypothesized that Fap2+ 

Fusobacterium colon-tumor isolates (CTIs) may harbor additional virulence features 
implicated in the molecular pathogenesis of CRC and tumorigenesis. To study the 
acquisition of potential virulence factors encoded by Fap2+ CTIs, we explored differences 
in the patterns of gene family presence or absence between Fap2+ CTI-1, 2, 6 and Fap2– 

CTI-3, 5, 7 genomes (Fig. S1a). Using PPanGGOLiN’s expectation-maximization algorithm 
for partitioning bacterial gene families into optimal core and accessory subsets (see 
Materials and Methods), we found that Fap2+ CTIs encoded a relatively higher proportion 
of accessory genes compared to Fap2– CTIs (Fig. S1b, left: Fisher’s exact test, Fap2+ or – 

core vs Fap2+ or – accessory genes, P = 7.50 × 10−70; Fig. S1b, right: Fap2+ accessory gene 
families, 53.71%), which was consistent with our overall observation that the genome 
sizes of Fap2+ CTIs (2.28 ~ 2.45 mbp) were relatively larger compared to Fap2– CTIs (2.14 ~ 
2.39 mbp).

To gain further insights into the genetic variations associated with Fap2+ CTIs, 
we performed a comparative k-mer search implemented in the Neptune subtractive 
sequence signature detection program (23). We identified genetic loci harboring protein 
open reading frames (ORFs) that contain conserved Fic motifs in Fap2+ CTIs (Fig. 
1a), which have been reported to catalyze protein post-translational modifications 
via nucleotidyl-monophosphate transfer (NMPylation) reactions such as UMPylation, 
GMPylation, and AMPylation (24). We expanded our analysis of Fic domain containing 
(Fic family) genes to include 622 publicly available fusobacterial genomes. To perform 
gene co-occurrence analysis, we genotyped these strains using the blastp algorithm 
(e-value threshold of 10−9) for the presence of Fap2 homologs in combination with the 
Prokka pipeline’s whole-genome annotation and its hierarchical protein homolog search 
through a custom list of HMMER databases (25). For each fusobacterial genome, we then 
computed Fic family gene copy numbers normalized by genome sizes in Mbp as well as 
BLAST percent identities of Fap2 homologs. Using linear regression analysis, we found 
that normalized Fic gene copy numbers in fusobacterial genomes co-varied with Fap2 
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BLAST identities (Fig. 1b, scatterplot) as well as by Fap2 genotype (50% protein BLAST 
identity threshold; Fig. 1b, boxplot; Wilcoxon rank-sum test, P = 1.24 × 10−20).

Given that colonic intra-tumoral enrichment of Fusobacteriota in humans is well-
established along with other gut-oral bacterial taxa (3, 4, 26), we asked if the genomic 
expansion of Fic family proteins is restricted to members of the Fusobacteriota and/or 
other gastrointestinal cancer-associated bacterial genera and species. We searched 
ORFs for Fic motifs in 6,685 bacterial strains belonging to the following taxa: Helico­
bacter, Bacteroides fragilis, Escherichia coli, Peptostreptococcus, Parvimonas, Porphyromo­
nas, Gemella, and Hungatella. We genotyped strains of Helicobacter species, B. fragilis, 
and E. coli by the presence of well-known toxin-coding ORFs and ranked these taxa by 
the order of average normalized Fic gene copy number variations (Fig. 1c). We found 
that Fap2+ strains from Fusobacteriota have a propensity to harbor Fic family genes as 
compared to those from other cancer-associated taxa (Fig. 1c; Wilcoxon’s rank-sum test, 
Fap2+ Fusobacteriota vs all, q = 9.34 × 10−56 ~ 5.78 × 10−3). In addition, we annotated 
50,553 draft and complete GenBank assemblies of core and pathogenic taxa from the 
human microbiome and confirmed that Fap2+ Fusobacteriota strains encoded one of the 
highest densities of Fic family proteins among human gut-associated bacterial strains 
(Fig. S2a).

Metagenomic associations of fusobacterial Fic genes with locally advanced 
and metastatic Fap2+ colorectal tumors

We next examined whether Fic gene family expansion is correlated with colorectal 
tumorigenesis in humans. We constructed a global cross-sectional shotgun metage­
nomic data set comprising non-redundant taxon-resolved fecal microbiome gene 
family profiles from patients diagnosed with colorectal adenomas and adenocarcino­
mas (ncontrol = 934; nadenoma = 211; nadenocarcinoma = 903) (3, 4, 26–35). Using this 
microbiome gene family abundance matrix, we tested if there were microbiome-wide 
differences in Fic family gene abundance but found no overall shift by case-control 
labels across studies (Fig. S3). Using a taxonomy-guided approach, we performed 
targeted abundance analysis of fusobacterial Fic gene families and Fap2 homologs, 

FIG 1 Quantitative pangenomic analysis identifies expansion of Fic gene families with Fap2+ fusobacterial strains. (a) K-mer-based subtractive genomic 

signature detection by Neptune’s algorithm using draft-level assemblies of Fusobacterium CTIs. Inclusion and exclusion genomes are Fap2+ Fna CTI-1, 2, 6 and 

Fap2– CTI-3, 5, and 7, respectively. Neptune’s signature scores are a sum of BLAST identity-based sensitivity and specificity of a genomic signature matching 

inclusion genome regions. Each dot represents a bacterial genome fragment that contains open reading frame(s). (b) Analysis of genome length-adjusted 

Fic gene copy number from 622 publicly available fusobacterial genomes by Fap2 protein coverage (left, scatterplot; ~3 kbp Fap2 alignment length) or Fap2 

genotype (right, boxplot). Fnavp (F. nucleatum, animalis, vincentii, polymorphum) in red and non-Fnavp species in black. (c) Abundance of Fic gene families in 

colorectal cancer-associated bacterial strains stratified by genus and species-level taxa. Enterotoxigenic B. fragilis (ETBF) strains are positive for fragilysin (bft) 

genes. Polyketide synthase-positive Escherichia coli (pks+ E. coli) strains are defined by the presence of one or more clb cluster genes (i.e., clbA, clbB, clbS, clbQ) in 

their genomes. Unless otherwise noted, minimum BLAST identity threshold for protein annotation in classifying bacterial genotype is 50%. NTBF, non-toxigenic 

B. fragilis. Plus symbols represent mean values.
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which revealed significant co-occurrence patterns in clinical samples (R2,control = 0.144, P 
= 7.3 × 10−35; R2,adenoma = 0.136, P = 2.1 × 10−8; R2,CRC = 0.401, P = 2.3 × 10−102; Fig. 2a, 
rug scatterplot). In line with data from previous metagenomic marker gene surveys of 
CRC-associated gut microbiomes, our differential abundance analysis demonstrated a 
co-linear relationship of fusobacterial Fic and Fap2 genes in CRC consistent with our 
genome-based analysis (Fig. 2a, marginal boxplots). Focusing our analysis on Fusobac­
teriota mOTUs+ metagenomes (approximately 56.9%, 68.2%, and 28.3% of control-, 
adenoma-, and CRC-associated stool metagenomes, respectively, were negative for 
Fusobacteriota metagenomic Operational Taxonomic Units [mOTUs]), we determined 
that patients whose gut microbiomes are double-positive for fusobacterial Fic and Fap2 
genes, possibly encoded by specific Fusobacterium species that frequently colonize CRC 
tumor tissues, are at an elevated risk of having CRC diagnoses not only at early but 
potentially also at late stages, relative to those that are negative for either one or both of 
these fusobacterial genes (Fig. 2b).

Probing the relationship between stool fusobacterial gene abundance and CRC 
tumor-lymph node-metastasis staging, we discovered that individuals diagnosed with 
late-stage cancers had a proportionally higher number of fusobacterial double-positive 
microbiomes than those at early stages (Fig. 2d; 46.8% and 79.0% of metagenomes 
associated with small and large adenomas, as well as 26.5% and 26.3% of metagenomes 
associated with early- and late-stage CRC, respectively, had no detectable abundance 
of Fusobacteriota mOTUs). Fecal abundance of fusobacterial Fap2 was relatively higher 
in patients diagnosed with premalignant or large adenomas as well as in patients with 
early- and late-stage adenocarcinomas compared to those with small adenomas (Fig. 2c, 
top marginal boxplot). Collectively, these observations may suggest a role for Fusobacte­
rium in the neoplastic progression of malignant cancer cells distinct from mechanisms of 
fusobacterial Fap2-mediated binding to and signaling in tumor cells.

FIG 2 Metagenomic quantification of fusobacterial Fic gene families and Fap2 in patients with colorectal adenomas and adenocarcinomas. Linear regression 

analysis of Fusobacteriota taxon-specific abundance of Fic gene families and Fap2 in 2,088 fecal microbiomes by (a) case-control classes and (c) colorectal cancer 

tumor-node-metastasis (TNM) staging. Lines in left and bottom marginal plots represent metagenomes that are negative for either fusobacterial Fap2, Fic, or 

both. Metagenomic gene family abundance was normalized by sequencing depth and average microbial genome size. Analysis of fusobacterial Fic-Fap2 gene 

prevalence in clinical samples stratified by (b) diagnostic groups and (d) TNM stages. A positive sample is defined as having non-zero metagenomic abundance 

of a gene of interest. P-values from Fisher’s exact tests were adjusted by Benjamini-Hochberg (BH) step-up procedure; *q < 0.05; **q < 0.01; ***q < 0.001; ****q < 

0.0001.
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Expansion of specific Fic gene families in Fap2+ Fusobacterium animalis (Fa) 
strains

To glean insights into Fic enzymes from Fusobacterium CTIs and select type strains, we 
characterized their functional domains by generating a multiple sequence alignment 
map and found several clades of fusobacterial Fic proteins with distinct motifs (Fig. 
3a). Interestingly, none of these fusobacterial Fics were phylogenetic neighbors with 
the well-studied bacterial cytotoxic effector VopS from Vibrio parahaemolyticus nor the 

FIG 3 Characterization of Fic family proteins from Fusobacterium colon tumor isolates and type strains. (a) Clustal Omega alignment of Fic family proteins 

for identifications of conserved Fic motifs and their autoinhibitory domains. A phylogenetic tree was constructed using an identity matrix of aligned protein 

sequences and the njs function from the ape R package. VopS and FICD are protein adenylyltransferases from V. parahaemolyticus serotype O3:K6 and Homo 

sapiens/Mus musculus, respectively. X-axis denotes aligned amino acid coordinates. (b) AlphaFold2 structural predictions of six representative Fic enzymes 

encoded by Fa7/1 (39). Protein structures are assigned with corresponding clade colors as in (a). Green, autoinhibitory loop. Light-gray, Fic motif. (c) Prevalence 

of Fa7/1 Fic enzyme homologs having at least 50% BLAST identities in 146 publicly available Fnavp genomes stratified by Fap2 genotype. Fa, F. animalis; Fn, 

Fusobacterium nucleatum; Fp, Fusobacterium polymorphum; Fv, Fusobacterium vincentii.
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mammalian protein FIC domain protein adenylyltransferase (FICD) from humans and 
mice (18, 36, 37). The discovery of autoinhibitory sequence motifs, which have been 
shown to interact with Fic domains to block their catalytic activities, enabled classifica-
tion of Fic enzymes into three distinct classes: class I with antitoxin, class II and III with 
autoinhibitory motifs (38). We observed that most Fusobacterium Fic enzymes belonged 
to class II or III with either N- or C-terminal α-helices (Fig. 3a) (38). Among those that 
lacked autoinhibitory motifs, e.g., Fic1, we located small hypothetical ORFs upstream 
of Fic gene ORFs (Fig. S4a) which may encode antitoxins with previously undescribed 
autoinhibitory residues that intermolecularly block catalytic activities of fusobacterial 
Fic domains. Consistent with the clade-level classification of Fic protein sequences, 
structural modeling with AlphaFold2 confirmed overall structural similarities between 
closely related Fic clade representatives (Fic proteins of Fusobacterium animalis 7/1, 
a strain with six representative Fic genes and previously described pro-tumorigenic 
properties, hereafter referred to as Fa7/1; Fig. 3b) (6, 39–42). Specifically, predicted 
protein structures showed the proper spatial positioning of active Fic ATP binding sites 
(light-gray, Fig. 3b) sterically hindered by autoinhibitory loops (yellow-green, Fig. 3b).

To study the population-level frequency of Fic gene representatives from Fap2+ Fa7/1 
in Fa-related species, nucleatum, vincentii, polymorphum (Fnavp) (43), we used Prokka’s 
implementation of the BLAST algorithm to search for protein homologs at 50% BLAST 
identities in 146 draft and complete GenBank genomes of Fnavp. Among the Fnavp 
species analyzed, we found that, in general, the frequencies of Fic2, 4, and 5 in Fa were 
approximately twofold higher in Fap2+ than Fap2– strains (Fig. 3c). The frequency of Fic4 
nearly tripled in Fap2+ Fn compared to Fap2– Fn strains. Differential prevalence of Fic5 
was largely driven in part by Fap2 genotype across all four Fnavp species. Notably, Fic1 
was frequently encoded by Fap2+ Fa. In contrast, Fic3 and 6 were present in at least 
50% of all Fnavp species regardless of Fap2 positivity, suggesting that these two Fics, in 
particular, may have evolutionarily conserved functions in fusobacteria.

Insertions and deletions of gene blocks encoding Fic family proteins are 
widespread among Fusobacterium animalis strains loci

Given the expansion we observed of specific Fic gene families in Fa genomes and 
previous data supporting Fa dominance in colorectal tumors (20), we next characterized 
the genetic architecture of Fic gene loci in Fa strains by mapping homologous regions of 
Fa genomes against Fa7/1 Fic gene loci. The presence or absence of Fic2 and 5 correlated 
with insertion or deletion of specific neighboring genes. Using the RepeatModeler2 
pipeline (44), we observed overrepresentation of both intra- and inter-genic transposa­
ble element (TE) sequences in Fic1, 2, and 5 loci compared to Fic3, 4, and 6 (Fig. 4a; Fig. 
S4), and long tandem repeat sequences primarily in the inter-genic regions of most Fic 
loci (Fig. 4a; Fig. S4). With Promotech (45), we identified numerous intra- and inter-genic 
promoter sequences with high confidence, demonstrating that gene regulatory control 
in Fic loci regardless of Fap2 strain genotype may be as complex as any other genetic loci 
in Fa.

Furthermore, in Fic5 loci, phage/mobile elements and genomic islands of small ORFs 
were uniquely prevalent. Only Fic5 and 6 genes had adjacent pairs of toxin-antitoxin 
ORFs with heat shock proteins located either immediately upstream or downstream. 
tRNA modification enzymes were characteristic features of Fic2, 3, 4, and 6 loci. Fic1 loci 
were distinct in that the presence or absence of Fic1 genes was associated with rear­
rangement of large gene blocks upstream of Fic1 coordinates, which had potential 
bidirectional promoters (Fig. S4a and b). In Fic2 and 5 loci, there was an increased 
propensity toward Fic gene block rearrangement for regions that had either relatively 
high percent GC content or less well-conserved protein families. Overall, our synteny 
analysis uncovered elements of horizontal gene transfer and recombination events, 
which may drive the expansion and/or contraction of gene blocks associated with Fic 
family protein functions in Fap2+ Fa.
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Infection of murine colon adenocarcinoma tumorspheres by Fusobacterium 
animalis 7/1 upregulates fusobacterial Fic gene expression

To begin to determine environmental factors governing the gene regulation of Fa7/1 
Fic loci in CRC, we analyzed gene expression of Fa7/1 exposed to tumorspheres 
under anaerobic conditions, which were generated from 96-h cultures of Colon26 
cells, a murine colon adenocarcinoma cell line (47, 48). Although tumorspheres do 
not recapitulate the cellular heterogeneity and dynamic growth of in vivo tumors, 
studies have reported that they acquire metabolic phenotypes that align with those 
of primary and metastatic tumors (49, 50). After 6 h of Fa7/1 Colon26 anaerobic coculture 

FIG 4 Genetic architecture and evolution of Fic gene loci in Fusobacterium animalis strains. Synteny analysis of gene blocks in Fic2 and Fic5 loci by minimap2 

alignment of Fa7/1 Fic locus sequences against representative (a) Fap2+ and (b) Fap2– Fa genomes. Locus sequences are genomic regions covering at least 10 

kbp upstream and downstream of Fic genes. ORFs whose start and stop codons overlap or are within 5 bps apart are considered coupled ORFs. Repeat and 

promoter locus sequences were predicted by RepeatModeler2 and Promotech, respectively (44, 45). Locus-specific ORFs were clustered into protein families at 

50% identity and coverage via MMseqs2 (46). Average percent GC was calculated over 50 bps sliding windows. Fic loci are segregated by line breaks per Fa strain.
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(multiplicity of infection [MOI 10:1), we profiled the expression patterns of Fic1–6 by 
quantitative RT-PCR (RT-qPCR) relative to Fa7/1 overnight cultures re-grown in infection 
media and found significant differential gene upregulation by robust mean fold change 
analysis (RMFC, Fig. 5a); average RMFCs of Fic2, 3 and 6 were relatively higher (1.94–2.20, 
q = 4.49 × 10−7 ~ 4.27 × 10−6) than those of Fic1, 4, and 5 (1.70–1.78, q = 4.27 × 10−6 ~ 6.12 
× 10−3).

Next, we sought to determine if Fic genes were expressed not only at the RNA level 
but also at the protein level. Given the complex mixture of proteins in bacteria-tumor­
sphere coculture supernatants, we transitioned to a simplified system for Fic protein 
detection using Fa7/1 supplemented tryptic soy broth monoculture supernatant. After 
analyzing mRNA expression of Fa7/1 Fic and virulence-associated genes across distinct 
growth phases (Fig. S5) (51), we selected 24- and 48-h timepoints for Fic peptide 
detection. Our proteomic analysis demonstrated the presence of fusobacterial peptides 
mapping to Fic2, 4, and 5 at 24- and 48-h culture timepoints (Fig. 5b) as well as fragments 
of FadA and Fap2 adhesins as has been previously described (Fig. S6a) (15). Our detection 
of Fic proteins produced by Fa7/1 is also supported by our reanalysis of publicly available 
proteomics data sets (Fig. S6b), wherein we found that fusobacterial Fic peptides 
were detectable in different fractions of Fusobacterium mono-, dual-, and multi-species 
cultures (Fig. S6c). In addition, changes in Fa7/1 gene expression in response to Colon26 
tumorspheres were not exclusive to Fic family genes, as we observed alterations in 
several fusobacterial adhesins and virulence-associated genes (Fig. S7) (13, 17, 22, 43, 
52). Overall, these data indicate that fusobacterial Fic genes are expressed at both the 
RNA and protein level, and their expression may be modulated by exposure to colon 
adenocarcinoma tumorspheres.

DISCUSSION

In this work, we have integrated microbial genetic, genomic, metagenomic, and 
proteomic analyses of Fusobacterium species for virulence gene discovery relevant 
to colorectal carcinogenesis. Our analysis of Fusobacterium CTIs genomes reveals 

FIG 5 Fa7/1 Fic expression in vitro. (a) RT-qPCR analysis of Fusobacterium Fic gene expression at 6 h in Fa7/1 cocultures 

with Colon26 tumorspheres under anaerobic conditions. MOI, 10:1, Fa7/1 colony forming units (CFUs) to Colon26 cancer cells 

number. Relative gene expression values were normalized per experiment. Data represent seven independent experiments. 

Each symbol is one independent experiment. Error bars are SEM. P-values from Wilcoxon’s rank-sum tests were adjusted by 

Benjamini-Hochberg (BH) step-up procedure; *q < 0.05; **q < 0.01; ***q < 0.001; ****q < 0.0001. (b). Liquid chromatography 

tandem mass spectrometry-based proteomic detection of Fic family proteins in Fa7/1 monoculture supernatants from distinct 

growth phases. Ion peaks of peptides matching Fa7/1 Fic protein sequences for Fic2, 4, and 5.
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a potential role for fusobacterial Fic proteins in Fusobacterium-mediated colorec­
tal tumorigenesis. Fic enzymes exhibit adenylyltransferase activities which transfer 
monophosphates, including but not limited to guanosine monophosphates, uridine 
monophosphates, and adenosine monophosphates (AMP; AMPylation), to specific 
protein residues (24). Bacterial pathogens, such as V. parahaemolyticus, Legionella 
pneumophila, and Bartonella spp., infect host eukaryotic cells by injecting Fic proteins 
via their types III, IV, and VI secretion systems (18, 53–55). AMPylation—addition of an 
AMP moiety from ATP onto the hydroxyl side chain of a target protein—for example, has 
been widely studied as a mechanism contributing to bacterial virulence and pathogen­
esis (38). These pathogens employ such cytosolic toxins or AMPylators (e.g., VopS) to 
modulate activities of host cytoskeleton-modifying enzymes, such as Rho GTPases (18, 
56). However, the identification of, let alone production and export of, any such proteins 
by Fusobacterium species has been largely understudied, with a few exceptions (15, 57). 
Our study provides statistical evidence suggestive of virulence effectors associated with 
Fusobacterium Fap2-mediated enrichment and tumor potentiation in CRC. Mechanisti­
cally, the modulation of CRC tumorigenesis via post-translational modification of cancer 
cell proteome by toxins released from tumor-homing fusobacterial species may be 
biologically plausible and merits further investigation.

By targeted differential gene family abundance analysis using CRC-associated fecal 
microbiomes, we further confirmed co-enrichment of fusobacterial Fap2 and Fic gene 
families in clinical samples. Specifically, we discovered a trend toward increased 
prevalence of samples double-positive for fusobacterial Fap2 and Fic genes in late-stage 
CRC. Cancer cells that acquire a mesenchymal phenotype undergo numerous changes, 
including morphological ones, in a process known as epithelial-mesenchymal transition 
(EMT) (58). In CRC, EMT correlates with tumor invasiveness, metastatic potential, and 
resistance to treatment (59). The biochemical function of bacterial Fic enzymes has 
only been characterized in intestinal pathogens and opportunistic microbes, such as 
Clostridioides difficile and Enterococcus faecalis (60–62), and has yet to be studied in tumor 
resident bacteria. Fic enzymes encoded by invasive intracellular Fusobacterium species 
in cancer might have the potential to modulate dynamics of cytoskeletal remodeling 
and contribute to EMT. Epigenetic modifications also contribute to EMT (63, 64). Coxiella 
burnetii infection of stem cells and macrophages can result in reversible AMPylation of 
histone H3 (65). Such epigenetic modification is hypothesis generating for how bacterial 
Fic enzymes may contribute to cancer progression.

Our phylogenetic analysis indicated that fusobacterial Fic enzymes might have 
followed evolutionary pathways and trajectories distinct from those of known mamma­
lian and bacterial pathogenic Fic enzymes. In Fa strains, known to be predominantly 
enriched in CRC tumor tissues (20), we identified expansions of specific Fic gene families 
located in genomic loci that had elements characteristic of horizontal gene transfer 
(HGT). Specifically, the presence or absence of Fic2 and 5 genes was associated with 
insertions and deletions of adjacent unidirectional overlapping genes, which may share a 
single promoter for coupled translation and expression (66). Although highly speculative, 
this could suggest that Fic2 and 5-containing gene blocks represent functionally coupled 
units of co-transcribing and/or co-adapting genes transferred through the evolution 
of Fa strains with host physiology, tissue pathology, and during tumorigenesis. The 
variable gene content observed in Fic5 loci harboring small ORF islands coupled with 
phage/mobile elements suggest prophage carriage in Fa (67, 68). The rearrangements 
of gene blocks associated with Fic5 genes may be linked to lifecycle regulation of 
lysogenic phages that contribute to strain competitiveness in response to host and 
tumor tissues-induced stress signaling pathways in polylysogenic Fa strains (67–71). 
Expansion of gene blocks containing Fic2 was associated with regional variations in 
GC content. Bacterial accessory genomes correlate with low GC content and high GC 
heterogeneity (72). Genomes of human gut-adapted anaerobes typically have heteroge­
nous distributions of GC content relative to those of aerobes (73). Fa’s genomic evolution 
during oral-to-gut transmission in humans as it establishes a CRC niche is a process 
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that varies considerably among individuals (74). Increased genetic alterations in Fic2 and 
5 loci relative to other Fic gene loci in Fa strains may be reflective of Fa’s HGT-driven 
adaptation along the human oral-gastrointestinal tract.

Using in vitro bacteria-tumorsphere cocultures, we began to explore what factors 
may regulate Fic gene expression in a clinical Fa isolate that adheres to and invades 
cancer cells and promote colonic tumorigenesis in vivo (6, 75). Our RT-qPCR analysis 
of bacterial transcripts in these cocultures indicates exposure of fusobacteria to cancer 
cells correlates with increased fusobacterial Fic gene expression, providing a glimpse into 
the host-fusobacteria cross-talk in carcinogenesis. Using proteome profiling, we found 
a detectable and non-negligible amount of Fic peptides in Fa monoculture superna­
tant potentially suggestive of Fic protein secretion. These data supporting in vitro Fic 
expression by Fa in response to cancer cells, as well as during monoculture growth, 
point to potential mechanisms of interactions between fusobacterial Fic proteins and 
colon adenocarcinoma cells. Overall, our bioinformatic analyses together with our in vitro 
findings shine a light on Fic proteins, which warrant investigation in fusobacterial CRC 
etiopathogenesis.

Fusobacterial species are among a growing number of bacteria that are enriched in 
adenomas, colorectal cancers, and their metastases (76–78). Unlike colibactin-producing 
bacteria such as some strains of E. coli, fusobacteria do not harbor DNA damaging 
genotoxins, nor do fusobacteria harbor a metalloprotease like Bacteroides fragilis toxin 
that can increase colonic epithelial cell (CEC) proliferation, suppress CEC apoptosis, 
and induce CEC epigenetic alterations, which can lead to DNA damage (79). While 
the fusobacterial adhesins, Fap2, FadA, and RadD, all seem to enhance tumorigenesis 
in preclinical tumor models via a multiplicity of signaling pathways that contribute to 
tumorigenesis (78–80), questions still remain whether fusobacteria are truly oncogenic. 
A highly regarded and current conceptualization of carcinogenesis by Hanahan includes 
eight hallmarks of cancer: “acquired capabilities for sustaining proliferative signaling, 
evading growth suppressors, resisting cell death, enabling replicative immortality, 
inducing/accessing vasculature, activating invasion and metastasis, reprogramming 
cellular metabolism, and avoiding immune destruction” (81). Many microbes possess 
these characteristics themselves and some bacteria, such as certain fusobacterial species, 
can confer these features on an evolving colon tumor in preclinical models. Limitations 
in our knowledge of fusobacterial virulence factors and how fusobacteria may contribute 
to oncogenesis motivated this investigation, and further studies are needed to unravel 
how fusobacteria and other tumor-associated bacteria may contribute to the hallmarks 
of cancer.

MATERIALS AND METHODS

Microbial pangenomics and metagenomics database construction

GenBank assembly reports and taxonomy databases for bacterial genomes of interest 
were retrieved using the taxizedb package in R (last accessed on 24 March 2024; see 
Table S1 for fusobacterial genomes). We included non-redundant high-quality metage­
nome-assembled (MAGs) and isolate genomes from several human gut culturomics 
and reference microbiome genome catalog studies (RMGC; PRJNA482748, PRJNA903559, 
PRJDB9057, PRJNA544527, and other download links available through study-specific 
repositories) (82–88). Microbial genomes were annotated using the Prokka pipeline 
with additional hierarchical search databases (e-value = 10−9; protein coverage = 0.8) 
comprising BLASTp reference sequences (first pass) of Fap2, bft (89), and clb cluster 
genes (90–92), and hidden Markov model (HMM) profiles of built-in HAMAP (release 
2022_03; second pass) and the protein family database Pfam (v.35; third pass) (25, 
93, 94). Bacterial Fic genes were identified by matching accession numbers from Pfam 
(PF02661) and Clusters of Orthologous Genes (COG) (COG3177, COG2184) and UniProt 
(Q9K0V1). The GTDB-Tk toolkit (v.2.1.0) was used to classify microbial genomes based 
on the Genome Taxonomy Database tree (release 207_v2) (95, 96). mOTUs database was 
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built with 18,018 isolate genomes and MAGs from the RMGC database using the mOTUs 
extender (97), resulting in 442,317 single-copy marker genes and 6,343 mOTUs species.

Quantification of microbiome gene family abundance

Metagenomic reads from human fecal microbiomes, drawn from the following CRC 
microbiome studies (3, 4, 26–35), were quality-trimmed using the Trimmomatic program 
(v.0.39; options, illumina_adapters:2:36:7:1:TRUE leading:3 trailing:3 slidingwindow:4:15 
minlen:36 tophred33) (98). Reads mapping to human chromosomes (CHM13v2) and 
sequencing vector library (UniVec and EmVec) were removed using BWA-MEM (v.0.7.17-
r1188), Samtools (v.1.17), and Picard (v.2.27.5) (99–102). Quality-controlled reads were 
aligned against a non-redundant microbial gene family catalog, which was created by 
MMseqs2 clustering (October 2023 release; options: --min-seq-id 1, -c 1, --cov-mode 0) of 
CDS nucleotide sequences from the RMGC genome collection and CTIs Fap2 homologs 
from 622 GenBank fusobacterial genomes (available as of 24 March 2024) annotated 
by the Prokka pipeline (46). Gene family abundance was quantified using msamtools 
subcommands (filter options: -p 95 -z 50 --besthit, profile options: --multi=propor­
tional—unit --unit=ab) and normalized to obtain copies per microbial genome by 
incorporating average genome size estimates from the MicrobeCensus (v.1.1.0), as 
previously described (103–105). We calculated genome length-adjusted units to describe 
Fic gene copy number variations instead of absolute metrics due to gene counts biases 
toward larger bacterial genomes (Fig. S2b).

Comparative genomics and genetics

We used Prokka’s genome annotation data for Fusobacterium colon tumor isolates 
(CTIs-1, 2, 3, 5, 6, 7 with previously defined Fap2 phenotype [13]; see Table S1 for 
GenBank fusobacterial genome accession numbers) to classify core and accessory genes 
via the PPanGGOLiN approach (cluster options: --identity 0.9 --coverage 0.9 --mode 1) 
(106). PPanGGOLiN’s gene presence-absence matrix and the pangenome graphs were 
visualized using ape (njs function), ggtree packages in R (107, 108), and the Gephi 
platform (ForceAtlas2 layout, scaling: 5,000–20,000, stronger gravity: yes, gravity: 2–5, 
edge weight influence: 3–5) (109), respectively. Genomic signature sequences specific to 
a group of Fap2+ CTIs were detected using the Neptune’s subtractive k-mer matching 
and aggregate BLAST scoring algorithms (options: --filter-length 0.5 --filter-percent 0.5) 
(23). Fifty percent BLAST identity was used to determine the presence of Fap2 homologs 
in fusobacterial genomes, as it sufficiently covers autotransporter domains of Fap2 (~1.5–
1.6 kbp of ~3 kbp Fap2 protein sequence) and has been previously shown to be a 
threshold below which functional divergence in proteins rapidly increases (110, 111). 
Sequence motif analysis was performed via multiple sequence alignment of Fic family 
proteins from CTIs and Fusobacterium type strains using the ClustalOmega algorithm 
implemented in the msa R/Bioconductor package (112). Sequence heatmap and logos 
were generated using the ggmsa and ggseqlogo packages in R (113, 114). Fic proteins 
from Fnavp genomes were filtered by BLAST identity scores at 50% threshold against 
Fa7/1 Fic1–6 for differential prevalence analysis. Protein structures of Fic enzymes were 
predicted using the ColabFold software, a graphics processing unit (GPU)-accelerated 
AlphaFold2 combined with MMseqs2 homology search, and visualized in open-source 
PyMOL (v.3.0.0) (39, 40).

Genomic locus characterization and synteny

Locus sequences of Fa7/1 covering at least 10 kbp upstream and downstream of Fic 
genes families were extracted using BEDTools and mapped against homologous regions 
of Fnavp genomes using the Minimap2 aligner (v.2.21-r1071, options: -c -P -z5).115, 
116 Pairwise mapping format (PAF) data from Minimap2 aligner were imported with 
the parser function from pafr package and visualized using gggenomes package in R. 
Average GC content was computed across 50 bps non-overlapping sliding windows 
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using the Biostrings R/Bioconductor package. ORFs were considered to be coupled if the 
start and stop codons overlap or are within 5 bps apart. MMseqs2 (options: --min-seq-id 
0.5, -c 0.5, --cov-mode 0) clustering of locus-specific ORFs was performed to annotate 
less well-conserved protein families. SeqKit (v.2.6.0; sliding options -s 1 -W 40) was used 
to generate overlapping k-mer sequences (k = 40; k – 1) (117), which served as input to 
Promotech (v.1.0; options: -s -m RF-HOT) for the prediction of locus-specific promoters 
(high-confidence probability cutoff = 0.8) (45). Low-complexity, tandem, or TE repeat 
sequences were annotated using RepeatModeler2 with default options (44).

Quantitative RT-PCR gene expression analysis of bacteria-tumorsphere 
cocultures

Murine colon adenocarcinoma cells (Colon26) were seeded in v-bottom 96-well plates 
(50,000 cells per well; Cepham Life Sciences, Fulton, MD) precoated with anti-adher­
ent solution (STEMCELL Technologies, Cambridge, MA) and grown for 4 days in RPMI 
1640 media supplemented with GlutaMAX (Thermo Fisher Scientific, Waltham, MA) and 
10% standard-filtered fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO) without 
antibiotics. Fa7/1 was grown in filter-sterilized tryptic soy broth with hemin (5 µg/mL) 
and menadione (1 µg/mL) at 37°C under anaerobic conditions in a vinyl chamber (Coy 
Lab Products, Grass Lake, MI) (41). Tumorspheres (approximately 2.5–3.0 × 106 viable 
cells) were rinsed three times with phenol red-free RPMI 1640 and infected with Fa7/1 at 
multiplicity of infection of 10:1 (colony forming units or CFUs to cancer cells number) in 
pre-reduced phenol red-free RPMI 1640 supplemented with L-glutamine in 15 mL Falcon 
tubes for 6 h at 37°C under anaerobic conditions.

To enrich microbial RNA, tumorspheres were pre-treated with 0.0125% saponin 
in Tris-buffered saline as previously described (118), and centrifuged at 5,000 g for 
15 min to deplete cell-free RNA. Total RNA was then isolated using QIAzol Lysis Reagent 
in combination with Max Bacterial Enhancement Reagent (Thermo Fisher Scientific, 
Waltham, MA) and purified using the Direct-zol RNA Miniprep Kit with on-column DNA 
digestion (Zymo Research, Irvine, CA) followed by double DNAse treatment with TURBO 
DNA-free Kit (Thermo Fisher Scientific, Waltham, MA). Complementary DNA (cDNA) was 
synthesized from 5 µg RNA using Maxima H Minus cDNA Synthesis Master Mix (Thermo 
Fisher Scientific, Waltham, MA) and subjected to RT-qPCR analysis (40 ng per technical 
duplicate) using the KAPA SYBR FAST Universal Kit (Roche) on an Agilent Mx3005P cycler. 
Pan-Fusobacterium species-specific primers were designed using the PrimerQuest Tool to 
target conserved regions of gene sequence templates that have high coverage across 
Fnavp genomes as assessed by the Prider package in R (119). Specificities of primer 
sequences were checked against the nt database using the Primer-BLAST algorithm 
(120), and were further validated using Fusobacterium spike-in control DNA samples. Ct 
values were normalized per experiment using the geometric mean of eubacterial 16S, 
fusobacterial rpoB and recA internal control genes relative to Fa7/1 overnight culture 
inoculum (16 ~ 24 h; ~108 CFUs) in infection media (121). Robust mean fold change was 
calculated by determining the average of all combinatorial pairs of fold change values 
that fell between 20th and 80th percentile range (122). Primers used in this study are 
listed in Table S2.

Proteomic analysis of bacterial monoculture secretome

Supernatants of Fa7/1 monocultures from 24- and 48-h growth timepoints were 
filter-sterilized (100 mL; pore size of 0.22 µm), concentrated with Amicon Ultra Centri­
fugal 10 kDA Filter (Sigma-Aldrich, St. Louis, MO), and precipitated with methanol/chloro­
form (4:1) followed by solubilization in 8M urea. Proteins were analyzed on an SDS-PAGE 
gel visualized with QC Colloidal Coomassie Stain (Bio-Rad, Waltham, MA), and bands 
corresponding to predicted protein sizes of Fa7/1 Fic1-6 were excised and submitted to 
the Harvard Center for Mass Spectrometry for peptide detection on a Q Exactive HF-X 
Hybrid Quadrupole-Orbitrap mass spectrometry (MS) system (Thermo Fisher Scientific, 
Waltham, MA).
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Raw MS data from the Thermo Orbitrap instrument were converted to mzML files 
using the ThermoRawFileParser (v.1.4.3; options: -f = 1 -m = 1) (123). Non-redundant 
fusobacterial pan-proteomics database was created via MMseqs2 clustering of protein 
ORFs from 622 fusobacterial genomes (options: --min-seq-id 1, -c 1, --cov-mode 0). 
Peptide identification from mzML data were performed using the MS-GF + MS/MS 
proteomics database search tool (Release 20230112; options: -e 1 -inst 3 -m 3 -tda 1) with 
specification for static modification (carbamidomethyl C) and dynamic modifications 
(oxidation M, variable carbamidomethyl N-term, and acetylation protein N-term) (124). 
MS/MS identification data (mzid) were quality-filtered by estimating false discovery rates 
(FDR) of peptide identifications using the MSnID R/Bioconductor package. Ion peaks 
data from peptide-spectrum matches (FDR < 0.05) were normalized relative to mini­
mum peptide ion current intensities per proteome and visualized using the ggprotein 
function in ggcoverage package in R (125). Publicly available Fusobacterium proteomes 
(PXD004888, PXD008288, PXD008444, PXD037520) from the ProteomeXchange database 
were reanalyzed accordingly (126–130).
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