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ABSTRACT Fusobacterium is a bacterium associated with colorectal cancer (CRC)
tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer
membrane galactose-binding lectin that mediates Fusobacterium adherence to and
invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile
and identify microbial genomic features that correlate with the cancer-associated
bacterial virulence factor Fap2. Here, we analyze genomes of Fusobacterium colon tumor
isolates and find that a family of post-translational modification enzymes containing
Fic domains is associated with Fap2 positivity in these strains. We demonstrate that
Fic family genes expand with the presence of Fap2 in the fusobacterial pangenome.
Through comparative genomic analysis, we find that Fap2*" Fusobacteriota are highly
enriched with Fic gene families compared to other cancer-associated and human gut
microbiome bacterial taxa. Using a global data set of CRC shotgun metagenomes, we
show that fusobacterial Fic and Fap2 genes frequently co-occur in the fecal microbiomes
of individuals with late-stage CRC. We further characterize specific Fic gene families
harbored by Fap2* Fusobacterium animalis genomes and detect recombination events
and elements of horizontal gene transfer via synteny analysis of Fic gene loci. Exposure
of a F. animalis strain to a colon adenocarcinoma cell line increases gene expression
of fusobacterial Fic and virulence-associated adhesins. Finally, we demonstrate that Fic
proteins are synthesized by F. animalis as Fic peptides are detectable in F. animalis
monoculture supernatants. Taken together, our study uncovers Fic genes as potential
virulence factors in Fap2* fusobacterial genomes.

IMPORTANCE Accumulating data support that bacterial members of the intra-tumoral
microbiota critically influence colorectal cancer progression. Yet, relatively little is known
about non-adhesin fusobacterial virulence factors that may influence carcinogenesis. Our
genomic analysis and expression assays in fusobacteria identify Fic domain-containing
genes, well-studied virulence factors in pathogenic bacteria, as potential fusobacterial
virulence features. The Fic family proteins that we find are encoded by fusobacteria and
expressed by Fusobacterium animalis merit future investigation to assess their roles in
colorectal cancer development and progression.
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Fusobacterium is associated with colorectal cancer (CRC), the third leading cause of
cancer-related death worldwide (1-5). Numerous studies have linked the presence of
intra-tumoral Fusobacterium with CRC tumorigenesis (6), metastasis (7), and therapeutic
and preventative strategies (8-10). The majority of studies that investigate the molecular
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factors underlying fusobacterial virulence mechanisms have focused on its adhesins,
principally Fap2 and FadA (11-16).

Researching the virulence factors of Fusobacterium is an ongoing effort with the
goal of gaining mechanistic understanding of how this bacterium modulates colorectal
carcinogenesis and metastasis (17). Given the similarities between enteric pathogen-
mediated cytoskeletal reprogramming of the epithelium and the role of epithelial-
mesenchymal plasticity in the etiopathogenesis of CRC, identifying virulence factors
relevant to cellular cytoskeletal remodeling, as has been previously described with
some foodborne human intestinal pathogens, is of particular interest for unraveling the
mechanisms of CRC-associated bacteria (18, 19). Additionally, given that pathogens often
produce many virulence factors, some of which work together in a coordinated fashion,
it stands to reason that there may be co-occurrence relationships between well-studied
virulence factors in fusobacteria and candidate virulence features. Such prior biological
knowledge can inform analytical approaches for bacterial virulence factor discovery and
prioritization of potential virulence features for subsequent study. Microbial genomic
and pangenomic analysis are powerful tools that allow investigators to identify virulence
gene signatures of specific bacterial strains in cancer (17, 20). Fic family proteins are
encoded by a wide range of bacteria and secreted as toxins by specific bacterial
pathogens (21). Herein, we analyze genomic variations in CRC isolates of Fusobacterium
using a hypothesis-guided bioinformatic approach and delineate fusobacterial gene
features relevant to CRC tumorigenesis and metastasis with a focus on Fic proteins.

RESULTS

Increased frequency of Fic domain-containing genes in Fap2* fusobacterial
genomes

Building on previous findings linking Fap2-mediated fusobacterial enrichment in tumors
with CRC development and immune evasion (13, 22), we hypothesized that Fap2*
Fusobacterium colon-tumor isolates (CTIs) may harbor additional virulence features
implicated in the molecular pathogenesis of CRC and tumorigenesis. To study the
acquisition of potential virulence factors encoded by Fap2* CTls, we explored differences
in the patterns of gene family presence or absence between Fap2* CTI-1, 2, 6 and Fap2~
CTI-3, 5, 7 genomes (Fig. S1a). Using PPanGGOLIN’s expectation-maximization algorithm
for partitioning bacterial gene families into optimal core and accessory subsets (see
Materials and Methods), we found that Fap2* CTls encoded a relatively higher proportion
of accessory genes compared to Fap2™ CTls (Fig. S1b, left: Fisher’s exact test, Fap2*" "~
core vs Fap2*° ~ accessory genes, P = 7.50 x 1077% Fig. S1b, right: Fap2* accessory gene
families, 53.71%), which was consistent with our overall observation that the genome
sizes of Fap2* CTls (2.28 ~ 2.45 mbp) were relatively larger compared to Fap2™ CTls (2.14 ~
2.39 mbp).

To gain further insights into the genetic variations associated with Fap2*® CTls,
we performed a comparative k-mer search implemented in the Neptune subtractive
sequence signature detection program (23). We identified genetic loci harboring protein
open reading frames (ORFs) that contain conserved Fic motifs in Fap2* CTls (Fig.
1a), which have been reported to catalyze protein post-translational modifications
via nucleotidyl-monophosphate transfer (NMPylation) reactions such as UMPylation,
GMPylation, and AMPylation (24). We expanded our analysis of Fic domain containing
(Fic family) genes to include 622 publicly available fusobacterial genomes. To perform
gene co-occurrence analysis, we genotyped these strains using the blastp algorithm
(e-value threshold of 107) for the presence of Fap2 homologs in combination with the
Prokka pipeline’s whole-genome annotation and its hierarchical protein homolog search
through a custom list of HMMER databases (25). For each fusobacterial genome, we then
computed Fic family gene copy numbers normalized by genome sizes in Mbp as well as
BLAST percent identities of Fap2 homologs. Using linear regression analysis, we found
that normalized Fic gene copy numbers in fusobacterial genomes co-varied with Fap2
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FIG 1 Quantitative pangenomic analysis identifies expansion of Fic gene families with Fap2" fusobacterial strains. (a) K-mer-based subtractive genomic

signature detection by Neptune’s algorithm using draft-level assemblies of Fusobacterium CTls. Inclusion and exclusion genomes are Fap2* Fna CTI-1, 2, 6 and

Fap2™ CTI-3, 5, and 7, respectively. Neptune's signature scores are a sum of BLAST identity-based sensitivity and specificity of a genomic signature matching

inclusion genome regions. Each dot represents a bacterial genome fragment that contains open reading frame(s). (b) Analysis of genome length-adjusted

Fic gene copy number from 622 publicly available fusobacterial genomes by Fap2 protein coverage (left, scatterplot; ~3 kbp Fap2 alignment length) or Fap2

genotype (right, boxplot). Fnavp (F. nucleatum, animalis, vincentii, polymorphum) in red and non-Fnavp species in black. (c) Abundance of Fic gene families in

colorectal cancer-associated bacterial strains stratified by genus and species-level taxa. Enterotoxigenic B. fragilis (ETBF) strains are positive for fragilysin (bft)

genes. Polyketide synthase-positive Escherichia coli (pks" E. coli) strains are defined by the presence of one or more clb cluster genes (i.e., clbA, clbB, cIbS, c/bQ) in

their genomes. Unless otherwise noted, minimum BLAST identity threshold for protein annotation in classifying bacterial genotype is 50%. NTBF, non-toxigenic

B. fragilis. Plus symbols represent mean values.

BLAST identities (Fig. 1b, scatterplot) as well as by Fap2 genotype (50% protein BLAST
identity threshold; Fig. 1b, boxplot; Wilcoxon rank-sum test, P = 1.24 x 107%),

Given that colonic intra-tumoral enrichment of Fusobacteriota in humans is well-
established along with other gut-oral bacterial taxa (3, 4, 26), we asked if the genomic
expansion of Fic family proteins is restricted to members of the Fusobacteriota and/or
other gastrointestinal cancer-associated bacterial genera and species. We searched
ORFs for Fic motifs in 6,685 bacterial strains belonging to the following taxa: Helico-
bacter, Bacteroides fragilis, Escherichia coli, Peptostreptococcus, Parvimonas, Porphyromo-
nas, Gemella, and Hungatella. We genotyped strains of Helicobacter species, B. fragilis,
and E. coli by the presence of well-known toxin-coding ORFs and ranked these taxa by
the order of average normalized Fic gene copy number variations (Fig. 1c). We found
that Fap2* strains from Fusobacteriota have a propensity to harbor Fic family genes as
compared to those from other cancer-associated taxa (Fig. 1¢; Wilcoxon’s rank-sum test,
Fap2* Fusobacteriota vs all, g = 9.34 x 107°® ~ 5.78 x 107%). In addition, we annotated
50,553 draft and complete GenBank assemblies of core and pathogenic taxa from the
human microbiome and confirmed that Fap2* Fusobacteriota strains encoded one of the
highest densities of Fic family proteins among human gut-associated bacterial strains
(Fig. S2a).

Metagenomic associations of fusobacterial Fic genes with locally advanced
and metastatic Fap2* colorectal tumors

We next examined whether Fic gene family expansion is correlated with colorectal
tumorigenesis in humans. We constructed a global cross-sectional shotgun metage-
nomic data set comprising non-redundant taxon-resolved fecal microbiome gene
family profiles from patients diagnosed with colorectal adenomas and adenocarcino-
mas (Ncontrol = 934; Nadenoma = 211; Nadenocarcinoma = 903) (3, 4, 26-35). Using this
microbiome gene family abundance matrix, we tested if there were microbiome-wide
differences in Fic family gene abundance but found no overall shift by case-control
labels across studies (Fig. S3). Using a taxonomy-guided approach, we performed
targeted abundance analysis of fusobacterial Fic gene families and Fap2 homologs,
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which revealed significant co-occurrence patterns in clinical samples (R*°""' = 0.144, P
=73 x 107%; g¥denoma = 0136, P = 2.1 x 10°% R*%C = 0.401, P = 2.3 x 107'% Fig. 2a,
rug scatterplot). In line with data from previous metagenomic marker gene surveys of
CRC-associated gut microbiomes, our differential abundance analysis demonstrated a
co-linear relationship of fusobacterial Fic and Fap2 genes in CRC consistent with our
genome-based analysis (Fig. 2a, marginal boxplots). Focusing our analysis on Fusobac-
teriota mOTUs* metagenomes (approximately 56.9%, 68.2%, and 28.3% of control-,
adenoma-, and CRC-associated stool metagenomes, respectively, were negative for
Fusobacteriota metagenomic Operational Taxonomic Units [mOTUs]), we determined
that patients whose gut microbiomes are double-positive for fusobacterial Fic and Fap2
genes, possibly encoded by specific Fusobacterium species that frequently colonize CRC
tumor tissues, are at an elevated risk of having CRC diagnoses not only at early but
potentially also at late stages, relative to those that are negative for either one or both of
these fusobacterial genes (Fig. 2b).

Probing the relationship between stool fusobacterial gene abundance and CRC
tumor-lymph node-metastasis staging, we discovered that individuals diagnosed with
late-stage cancers had a proportionally higher number of fusobacterial double-positive
microbiomes than those at early stages (Fig. 2d; 46.8% and 79.0% of metagenomes
associated with small and large adenomas, as well as 26.5% and 26.3% of metagenomes
associated with early- and late-stage CRC, respectively, had no detectable abundance
of Fusobacteriota mOTUs). Fecal abundance of fusobacterial Fap2 was relatively higher
in patients diagnosed with premalignant or large adenomas as well as in patients with
early- and late-stage adenocarcinomas compared to those with small adenomas (Fig. 2c,
top marginal boxplot). Collectively, these observations may suggest a role for Fusobacte-
rium in the neoplastic progression of malignant cancer cells distinct from mechanisms of
fusobacterial Fap2-mediated binding to and signaling in tumor cells.
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FIG 2 Metagenomic quantification of fusobacterial Fic gene families and Fap2 in patients with colorectal adenomas and adenocarcinomas. Linear regression

analysis of Fusobacteriota taxon-specific abundance of Fic gene families and Fap2 in 2,088 fecal microbiomes by (a) case-control classes and (c) colorectal cancer

tumor-node-metastasis (TNM) staging. Lines in left and bottom marginal plots represent metagenomes that are negative for either fusobacterial Fap2, Fic, or

both. Metagenomic gene family abundance was normalized by sequencing depth and average microbial genome size. Analysis of fusobacterial Fic-Fap2 gene

prevalence in clinical samples stratified by (b) diagnostic groups and (d) TNM stages. A positive sample is defined as having non-zero metagenomic abundance

of a gene of interest. P-values from Fisher’s exact tests were adjusted by Benjamini-Hochberg (BH) step-up procedure; *q < 0.05; **q < 0.01; ***q < 0.001; ****q <

0.0001.
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FIG 3 Characterization of Fic family proteins from Fusobacterium colon tumor isolates and type strains. (a) Clustal Omega alignment of Fic family proteins
for identifications of conserved Fic motifs and their autoinhibitory domains. A phylogenetic tree was constructed using an identity matrix of aligned protein
sequences and the njs function from the ape R package. VopS and FICD are protein adenylyltransferases from V. parahaemolyticus serotype 03:K6 and Homo
sapiens/Mus musculus, respectively. X-axis denotes aligned amino acid coordinates. (b) AlphaFold2 structural predictions of six representative Fic enzymes
encoded by Fa7/1 (39). Protein structures are assigned with corresponding clade colors as in (a). Green, autoinhibitory loop. Light-gray, Fic motif. (c) Prevalence
of Fa7/1 Fic enzyme homologs having at least 50% BLAST identities in 146 publicly available Fnavp genomes stratified by Fap2 genotype. Fa, F. animalis; Fn,
Fusobacterium nucleatum; Fp, Fusobacterium polymorphum; Fv, Fusobacterium vincentii.

Expansion of specific Fic gene families in Fap2* Fusobacterium animalis (Fa)
strains

To glean insights into Fic enzymes from Fusobacterium CTls and select type strains, we
characterized their functional domains by generating a multiple sequence alignment
map and found several clades of fusobacterial Fic proteins with distinct motifs (Fig.
3a). Interestingly, none of these fusobacterial Fics were phylogenetic neighbors with
the well-studied bacterial cytotoxic effector VopS from Vibrio parahaemolyticus nor the
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mammalian protein FIC domain protein adenylyltransferase (FICD) from humans and
mice (18, 36, 37). The discovery of autoinhibitory sequence motifs, which have been
shown to interact with Fic domains to block their catalytic activities, enabled classifica-
tion of Fic enzymes into three distinct classes: class | with antitoxin, class Il and Ill with
autoinhibitory motifs (38). We observed that most Fusobacterium Fic enzymes belonged
to class Il or lll with either N- or C-terminal a-helices (Fig. 3a) (38). Among those that
lacked autoinhibitory motifs, e.g., Ficl, we located small hypothetical ORFs upstream
of Fic gene ORFs (Fig. S4a) which may encode antitoxins with previously undescribed
autoinhibitory residues that intermolecularly block catalytic activities of fusobacterial
Fic domains. Consistent with the clade-level classification of Fic protein sequences,
structural modeling with AlphaFold2 confirmed overall structural similarities between
closely related Fic clade representatives (Fic proteins of Fusobacterium animalis 7/1,
a strain with six representative Fic genes and previously described pro-tumorigenic
properties, hereafter referred to as Fa7/1; Fig. 3b) (6, 39-42). Specifically, predicted
protein structures showed the proper spatial positioning of active Fic ATP binding sites
(light-gray, Fig. 3b) sterically hindered by autoinhibitory loops (yellow-green, Fig. 3b).

To study the population-level frequency of Fic gene representatives from Fap2* Fa7/1
in Fa-related species, nucleatum, vincentii, polymorphum (Fnavp) (43), we used Prokka’s
implementation of the BLAST algorithm to search for protein homologs at 50% BLAST
identities in 146 draft and complete GenBank genomes of Fnavp. Among the Fnavp
species analyzed, we found that, in general, the frequencies of Fic2, 4, and 5 in Fa were
approximately twofold higher in Fap2* than Fap2™ strains (Fig. 3c). The frequency of Fic4
nearly tripled in Fap2* Fn compared to Fap2~ Fn strains. Differential prevalence of Fic5
was largely driven in part by Fap2 genotype across all four Fnavp species. Notably, Fic1
was frequently encoded by Fap2* Fa. In contrast, Fic3 and 6 were present in at least
50% of all Fnavp species regardless of Fap2 positivity, suggesting that these two Fics, in
particular, may have evolutionarily conserved functions in fusobacteria.

Insertions and deletions of gene blocks encoding Fic family proteins are
widespread among Fusobacterium animalis strains loci

Given the expansion we observed of specific Fic gene families in Fa genomes and
previous data supporting Fa dominance in colorectal tumors (20), we next characterized
the genetic architecture of Fic gene loci in Fa strains by mapping homologous regions of
Fa genomes against Fa7/1 Fic gene loci. The presence or absence of Fic2 and 5 correlated
with insertion or deletion of specific neighboring genes. Using the RepeatModeler2
pipeline (44), we observed overrepresentation of both intra- and inter-genic transposa-
ble element (TE) sequences in Fic1, 2, and 5 loci compared to Fic3, 4, and 6 (Fig. 4a; Fig.
S4), and long tandem repeat sequences primarily in the inter-genic regions of most Fic
loci (Fig. 4a; Fig. S4). With Promotech (45), we identified numerous intra- and inter-genic
promoter sequences with high confidence, demonstrating that gene regulatory control
in Fic loci regardless of Fap2 strain genotype may be as complex as any other genetic loci
in Fa.

Furthermore, in Fic5 loci, phage/mobile elements and genomic islands of small ORFs
were uniquely prevalent. Only Fic5 and 6 genes had adjacent pairs of toxin-antitoxin
ORFs with heat shock proteins located either immediately upstream or downstream.
tRNA modification enzymes were characteristic features of Fic2, 3, 4, and 6 loci. Fic1 loci
were distinct in that the presence or absence of Ficl genes was associated with rear-
rangement of large gene blocks upstream of Ficl coordinates, which had potential
bidirectional promoters (Fig. S4a and b). In Fic2 and 5 loci, there was an increased
propensity toward Fic gene block rearrangement for regions that had either relatively
high percent GC content or less well-conserved protein families. Overall, our synteny
analysis uncovered elements of horizontal gene transfer and recombination events,
which may drive the expansion and/or contraction of gene blocks associated with Fic
family protein functions in Fap2* Fa.

February 2025 Volume 16 Issue 2

mBio

10.1128/mbio.03732-24

6


https://doi.org/10.1128/mbio.03732-24

Research Article

T R R S T
g K i [ Y SRR PR Y W WU | O
3 —l——1— - L - P PR NS e
— L s S S B S T
5o 'l ! e s e e e e |
N I s e B DU R N IO TR
e e T e e R e e P S N
S LU g R T
0! & | | < s o T EEE |
10 — e ! ot e L
T T R R S e ¢ VIR S sy S s S

12 el !

13 el | ! Mgt ——dl Al

L

g e,

mBio

I S MR DYP GOcN T VB S MWW RRSLLY
[ N e S e
L P P T Kl
LIy demlalddidsbdda delpomibmbiionl ol chan—d. lamulh, 17!
D el W S
L e = ¥ e L
T I | [
Lo Lon dmiddiddeimahomblnblon ool lamln,
LI el Utk T

Ay — el ot

GC content Protein family
| Repeat sequence < :3 proteins < K1
| Predicted promoter @ =3 proteins

Coupled ORFs <

b

@ Fic5
<71 Phage/mobile element
4@l tRNA modification enzyme

| Fic2 4@ Heat shock protein
€| Toxin-antitoxin

<] Transferase

<

—n wl R Ly L

B d Al Mg —4 A

Lt

Lin ™, | o

Il

B e e (e < KL P

T B B B S e S 1 ML ) Sy ==

A7 —— o L e Mgl L L] e

— el U P I RN - TS PP rC P R N Sl

o m—nl LR L R ]|kl el e bl bttt | L e e T

P Y [t N NS NS SO o oo [ SRR S O A 1 LG

2 | aolmmal IcEE LM | Lot e LU amc e, L

prpe—] e e L vV | R O o < s 1

P Ay Npeve TS [ Vo I LI S [y R W R [ ¥ IS Y IS

24 || ' ol ! | N | S I L h—— ! R I o e Mt =M G S
1: GCA028743415 5: GCA002211645 9: GCA002884895 13: FaCTI-1 17: GCA022340105 21: GCA019552125
2: GCA000162355 6: GCA000234075 10: MGYG000001326 14: GCA000218645  18: GCA002573475  22: GCA019552105
3: GCA000400875 7: GCA028657925 11: Rep1351 15: GCA000158535  19: GCA001296145  23: GCA019552085
4: Fa7i 8: GCA902373855 12: Fa7/3 16: GCA000273605 20: GCA000242975  24: GCA001813745

FIG 4 Genetic architecture and evolution of Fic gene loci in Fusobacterium animalis strains. Synteny analysis of gene blocks in Fic2 and Fic5 loci by minimap2
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50% identity and coverage via MMseqs2 (46). Average percent GC was calculated over 50 bps sliding windows. Fic loci are segregated by line breaks per Fa strain.

Infection of murine colon adenocarcinoma tumorspheres by Fusobacterium
animalis 7/1 upregulates fusobacterial Fic gene expression

To begin to determine environmental factors governing the gene regulation of Fa7/1
Fic loci in CRC, we analyzed gene expression of Fa7/1 exposed to tumorspheres
under anaerobic conditions, which were generated from 96-h cultures of Colon26
cells, a murine colon adenocarcinoma cell line (47, 48). Although tumorspheres do
not recapitulate the cellular heterogeneity and dynamic growth of in vivo tumors,
studies have reported that they acquire metabolic phenotypes that align with those
of primary and metastatic tumors (49, 50). After 6 h of Fa7/1 Colon26 anaerobic coculture
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(multiplicity of infection [MOI 10:1), we profiled the expression patterns of Fic1-6 by
quantitative RT-PCR (RT-qPCR) relative to Fa7/1 overnight cultures re-grown in infection
media and found significant differential gene upregulation by robust mean fold change
analysis (RMFC, Fig. 5a); average RMFCs of Fic2, 3 and 6 were relatively higher (1.94-2.20,
g =449 x 107 ~ 4.27 x 107°) than those of Fic1, 4, and 5 (1.70-1.78, g = 4.27 X 107° ~ 6.12
x 1073).

Next, we sought to determine if Fic genes were expressed not only at the RNA level
but also at the protein level. Given the complex mixture of proteins in bacteria-tumor-
sphere coculture supernatants, we transitioned to a simplified system for Fic protein
detection using Fa7/1 supplemented tryptic soy broth monoculture supernatant. After
analyzing mRNA expression of Fa7/1 Fic and virulence-associated genes across distinct
growth phases (Fig. S5) (51), we selected 24- and 48-h timepoints for Fic peptide
detection. Our proteomic analysis demonstrated the presence of fusobacterial peptides
mapping to Fic2, 4, and 5 at 24- and 48-h culture timepoints (Fig. 5b) as well as fragments
of FadA and Fap2 adhesins as has been previously described (Fig. S6a) (15). Our detection
of Fic proteins produced by Fa7/1 is also supported by our reanalysis of publicly available
proteomics data sets (Fig. S6b), wherein we found that fusobacterial Fic peptides
were detectable in different fractions of Fusobacterium mono-, dual-, and multi-species
cultures (Fig. S6¢). In addition, changes in Fa7/1 gene expression in response to Colon26
tumorspheres were not exclusive to Fic family genes, as we observed alterations in
several fusobacterial adhesins and virulence-associated genes (Fig. S7) (13, 17, 22, 43,
52). Overall, these data indicate that fusobacterial Fic genes are expressed at both the
RNA and protein level, and their expression may be modulated by exposure to colon
adenocarcinoma tumorspheres.

DISCUSSION

In this work, we have integrated microbial genetic, genomic, metagenomic, and
proteomic analyses of Fusobacterium species for virulence gene discovery relevant
to colorectal carcinogenesis. Our analysis of Fusobacterium CTls genomes reveals
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number. Relative gene expression values were normalized per experiment. Data represent seven independent experiments.
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a potential role for fusobacterial Fic proteins in Fusobacterium-mediated colorec-
tal tumorigenesis. Fic enzymes exhibit adenylyltransferase activities which transfer
monophosphates, including but not limited to guanosine monophosphates, uridine
monophosphates, and adenosine monophosphates (AMP; AMPylation), to specific
protein residues (24). Bacterial pathogens, such as V. parahaemolyticus, Legionella
pneumophila, and Bartonella spp., infect host eukaryotic cells by injecting Fic proteins
via their types lll, IV, and VI secretion systems (18, 53-55). AMPylation—addition of an
AMP moiety from ATP onto the hydroxyl side chain of a target protein—for example, has
been widely studied as a mechanism contributing to bacterial virulence and pathogen-
esis (38). These pathogens employ such cytosolic toxins or AMPylators (e.g., VopS) to
modulate activities of host cytoskeleton-modifying enzymes, such as Rho GTPases (18,
56). However, the identification of, let alone production and export of, any such proteins
by Fusobacterium species has been largely understudied, with a few exceptions (15, 57).
Our study provides statistical evidence suggestive of virulence effectors associated with
Fusobacterium Fap2-mediated enrichment and tumor potentiation in CRC. Mechanisti-
cally, the modulation of CRC tumorigenesis via post-translational modification of cancer
cell proteome by toxins released from tumor-homing fusobacterial species may be
biologically plausible and merits further investigation.

By targeted differential gene family abundance analysis using CRC-associated fecal
microbiomes, we further confirmed co-enrichment of fusobacterial Fap2 and Fic gene
families in clinical samples. Specifically, we discovered a trend toward increased
prevalence of samples double-positive for fusobacterial Fap2 and Fic genes in late-stage
CRC. Cancer cells that acquire a mesenchymal phenotype undergo numerous changes,
including morphological ones, in a process known as epithelial-mesenchymal transition
(EMT) (58). In CRC, EMT correlates with tumor invasiveness, metastatic potential, and
resistance to treatment (59). The biochemical function of bacterial Fic enzymes has
only been characterized in intestinal pathogens and opportunistic microbes, such as
Clostridioides difficile and Enterococcus faecalis (60-62), and has yet to be studied in tumor
resident bacteria. Fic enzymes encoded by invasive intracellular Fusobacterium species
in cancer might have the potential to modulate dynamics of cytoskeletal remodeling
and contribute to EMT. Epigenetic modifications also contribute to EMT (63, 64). Coxiella
burnetii infection of stem cells and macrophages can result in reversible AMPylation of
histone H3 (65). Such epigenetic modification is hypothesis generating for how bacterial
Fic enzymes may contribute to cancer progression.

Our phylogenetic analysis indicated that fusobacterial Fic enzymes might have
followed evolutionary pathways and trajectories distinct from those of known mamma-
lian and bacterial pathogenic Fic enzymes. In Fa strains, known to be predominantly
enriched in CRC tumor tissues (20), we identified expansions of specific Fic gene families
located in genomic loci that had elements characteristic of horizontal gene transfer
(HGT). Specifically, the presence or absence of Fic2 and 5 genes was associated with
insertions and deletions of adjacent unidirectional overlapping genes, which may share a
single promoter for coupled translation and expression (66). Although highly speculative,
this could suggest that Fic2 and 5-containing gene blocks represent functionally coupled
units of co-transcribing and/or co-adapting genes transferred through the evolution
of Fa strains with host physiology, tissue pathology, and during tumorigenesis. The
variable gene content observed in Fic5 loci harboring small ORF islands coupled with
phage/mobile elements suggest prophage carriage in Fa (67, 68). The rearrangements
of gene blocks associated with Fic5 genes may be linked to lifecycle regulation of
lysogenic phages that contribute to strain competitiveness in response to host and
tumor tissues-induced stress signaling pathways in polylysogenic Fa strains (67-71).
Expansion of gene blocks containing Fic2 was associated with regional variations in
GC content. Bacterial accessory genomes correlate with low GC content and high GC
heterogeneity (72). Genomes of human gut-adapted anaerobes typically have heteroge-
nous distributions of GC content relative to those of aerobes (73). Fa's genomic evolution
during oral-to-gut transmission in humans as it establishes a CRC niche is a process
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that varies considerably among individuals (74). Increased genetic alterations in Fic2 and
5 loci relative to other Fic gene loci in Fa strains may be reflective of Fa's HGT-driven
adaptation along the human oral-gastrointestinal tract.

Using in vitro bacteria-tumorsphere cocultures, we began to explore what factors
may regulate Fic gene expression in a clinical Fa isolate that adheres to and invades
cancer cells and promote colonic tumorigenesis in vivo (6, 75). Our RT-gPCR analysis
of bacterial transcripts in these cocultures indicates exposure of fusobacteria to cancer
cells correlates with increased fusobacterial Fic gene expression, providing a glimpse into
the host-fusobacteria cross-talk in carcinogenesis. Using proteome profiling, we found
a detectable and non-negligible amount of Fic peptides in Fa monoculture superna-
tant potentially suggestive of Fic protein secretion. These data supporting in vitro Fic
expression by Fa in response to cancer cells, as well as during monoculture growth,
point to potential mechanisms of interactions between fusobacterial Fic proteins and
colon adenocarcinoma cells. Overall, our bioinformatic analyses together with our in vitro
findings shine a light on Fic proteins, which warrant investigation in fusobacterial CRC
etiopathogenesis.

Fusobacterial species are among a growing number of bacteria that are enriched in
adenomas, colorectal cancers, and their metastases (76-78). Unlike colibactin-producing
bacteria such as some strains of E. coli, fusobacteria do not harbor DNA damaging
genotoxins, nor do fusobacteria harbor a metalloprotease like Bacteroides fragilis toxin
that can increase colonic epithelial cell (CEC) proliferation, suppress CEC apoptosis,
and induce CEC epigenetic alterations, which can lead to DNA damage (79). While
the fusobacterial adhesins, Fap2, FadA, and RadD, all seem to enhance tumorigenesis
in preclinical tumor models via a multiplicity of signaling pathways that contribute to
tumorigenesis (78-80), questions still remain whether fusobacteria are truly oncogenic.
A highly regarded and current conceptualization of carcinogenesis by Hanahan includes
eight hallmarks of cancer: “acquired capabilities for sustaining proliferative signaling,
evading growth suppressors, resisting cell death, enabling replicative immortality,
inducing/accessing vasculature, activating invasion and metastasis, reprogramming
cellular metabolism, and avoiding immune destruction” (81). Many microbes possess
these characteristics themselves and some bacteria, such as certain fusobacterial species,
can confer these features on an evolving colon tumor in preclinical models. Limitations
in our knowledge of fusobacterial virulence factors and how fusobacteria may contribute
to oncogenesis motivated this investigation, and further studies are needed to unravel
how fusobacteria and other tumor-associated bacteria may contribute to the hallmarks
of cancer.

MATERIALS AND METHODS
Microbial pangenomics and metagenomics database construction

GenBank assembly reports and taxonomy databases for bacterial genomes of interest
were retrieved using the taxizedb package in R (last accessed on 24 March 2024; see
Table S1 for fusobacterial genomes). We included non-redundant high-quality metage-
nome-assembled (MAGs) and isolate genomes from several human gut culturomics
and reference microbiome genome catalog studies (RMGC; PRJNA482748, PRINA903559,
PRJDB9057, PRINA544527, and other download links available through study-specific
repositories) (82-88). Microbial genomes were annotated using the Prokka pipeline
with additional hierarchical search databases (e-value = 107%; protein coverage = 0.8)
comprising BLASTp reference sequences (first pass) of Fap2, bft (89), and clb cluster
genes (90-92), and hidden Markov model (HMM) profiles of built-in HAMAP (release
2022_03; second pass) and the protein family database Pfam (v.35; third pass) (25,
93, 94). Bacterial Fic genes were identified by matching accession numbers from Pfam
(PF02661) and Clusters of Orthologous Genes (COG) (COG3177, COG2184) and UniProt
(Q9KOV1). The GTDB-Tk toolkit (v.2.1.0) was used to classify microbial genomes based
on the Genome Taxonomy Database tree (release 207_v2) (95, 96). mOTUs database was
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built with 18,018 isolate genomes and MAGs from the RMGC database using the mOTUs
extender (97), resulting in 442,317 single-copy marker genes and 6,343 mOTUs species.

Quantification of microbiome gene family abundance

Metagenomic reads from human fecal microbiomes, drawn from the following CRC
microbiome studies (3, 4, 26-35), were quality-trimmed using the Trimmomatic program
(v.0.39; options, illumina_adapters:2:36:7:1:TRUE leading:3 trailing:3 slidingwindow:4:15
minlen:36 tophred33) (98). Reads mapping to human chromosomes (CHM13v2) and
sequencing vector library (UniVec and EmVec) were removed using BWA-MEM (v.0.7.17-
r1188), Samtools (v.1.17), and Picard (v.2.27.5) (99-102). Quality-controlled reads were
aligned against a non-redundant microbial gene family catalog, which was created by
MMseqs2 clustering (October 2023 release; options: --min-seg-id 1, -c 1, --cov-mode 0) of
CDS nucleotide sequences from the RMGC genome collection and CTls Fap2 homologs
from 622 GenBank fusobacterial genomes (available as of 24 March 2024) annotated
by the Prokka pipeline (46). Gene family abundance was quantified using msamtools
subcommands (filter options: -p 95 -z 50 --besthit, profile options: --multi=propor-
tional—unit --unit=ab) and normalized to obtain copies per microbial genome by
incorporating average genome size estimates from the MicrobeCensus (v.1.1.0), as
previously described (103-105). We calculated genome length-adjusted units to describe
Fic gene copy number variations instead of absolute metrics due to gene counts biases
toward larger bacterial genomes (Fig. S2b).

Comparative genomics and genetics

We used Prokka's genome annotation data for Fusobacterium colon tumor isolates
(CTls-1, 2, 3, 5, 6, 7 with previously defined Fap2 phenotype [13]; see Table S1 for
GenBank fusobacterial genome accession numbers) to classify core and accessory genes
via the PPanGGOLIN approach (cluster options: --identity 0.9 --coverage 0.9 --mode 1)
(106). PPanGGOLIN’s gene presence-absence matrix and the pangenome graphs were
visualized using ape (njs function), ggtree packages in R (107, 108), and the Gephi
platform (ForceAtlas2 layout, scaling: 5,000-20,000, stronger gravity: yes, gravity: 2-5,
edge weight influence: 3-5) (109), respectively. Genomic signature sequences specific to
a group of Fap2* CTls were detected using the Neptune's subtractive k-mer matching
and aggregate BLAST scoring algorithms (options: --filter-length 0.5 --filter-percent 0.5)
(23). Fifty percent BLAST identity was used to determine the presence of Fap2 homologs
in fusobacterial genomes, as it sufficiently covers autotransporter domains of Fap2 (~1.5-
1.6 kbp of ~3 kbp Fap2 protein sequence) and has been previously shown to be a
threshold below which functional divergence in proteins rapidly increases (110, 111).
Sequence motif analysis was performed via multiple sequence alignment of Fic family
proteins from CTls and Fusobacterium type strains using the ClustalOmega algorithm
implemented in the msa R/Bioconductor package (112). Sequence heatmap and logos
were generated using the ggmsa and ggseqlogo packages in R (113, 114). Fic proteins
from Fnavp genomes were filtered by BLAST identity scores at 50% threshold against
Fa7/1 Fic1-6 for differential prevalence analysis. Protein structures of Fic enzymes were
predicted using the ColabFold software, a graphics processing unit (GPU)-accelerated
AlphaFold2 combined with MMseqs2 homology search, and visualized in open-source
PyMOL (v.3.0.0) (39, 40).

Genomic locus characterization and synteny

Locus sequences of Fa7/1 covering at least 10 kbp upstream and downstream of Fic
genes families were extracted using BEDTools and mapped against homologous regions
of Fnavp genomes using the Minimap2 aligner (v.2.21-r1071, options: -c -P -z5).115,
116 Pairwise mapping format (PAF) data from Minimap2 aligner were imported with
the parser function from pafr package and visualized using gggenomes package in R.
Average GC content was computed across 50 bps non-overlapping sliding windows
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using the Biostrings R/Bioconductor package. ORFs were considered to be coupled if the
start and stop codons overlap or are within 5 bps apart. MMseqs2 (options: --min-seq-id
0.5, -c 0.5, --cov-mode 0) clustering of locus-specific ORFs was performed to annotate
less well-conserved protein families. SeqgKit (v.2.6.0; sliding options -s 1 -W 40) was used
to generate overlapping k-mer sequences (k = 40; k - 1) (117), which served as input to
Promotech (v.1.0; options: -s -m RF-HOT) for the prediction of locus-specific promoters
(high-confidence probability cutoff = 0.8) (45). Low-complexity, tandem, or TE repeat
sequences were annotated using RepeatModeler2 with default options (44).

Quantitative RT-PCR gene expression analysis of bacteria-tumorsphere
cocultures

Murine colon adenocarcinoma cells (Colon26) were seeded in v-bottom 96-well plates
(50,000 cells per well; Cepham Life Sciences, Fulton, MD) precoated with anti-adher-
ent solution (STEMCELL Technologies, Cambridge, MA) and grown for 4 days in RPMI
1640 media supplemented with GlutaMAX (Thermo Fisher Scientific, Waltham, MA) and
10% standard-filtered fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO) without
antibiotics. Fa7/1 was grown in filter-sterilized tryptic soy broth with hemin (5 pug/mL)
and menadione (1 pg/mL) at 37°C under anaerobic conditions in a vinyl chamber (Coy
Lab Products, Grass Lake, MI) (41). Tumorspheres (approximately 2.5-3.0 x 10° viable
cells) were rinsed three times with phenol red-free RPMI 1640 and infected with Fa7/1 at
multiplicity of infection of 10:1 (colony forming units or CFUs to cancer cells number) in
pre-reduced phenol red-free RPMI 1640 supplemented with L-glutamine in 15 mL Falcon
tubes for 6 h at 37°C under anaerobic conditions.

To enrich microbial RNA, tumorspheres were pre-treated with 0.0125% saponin
in Tris-buffered saline as previously described (118), and centrifuged at 5,000 g for
15 min to deplete cell-free RNA. Total RNA was then isolated using QIAzol Lysis Reagent
in combination with Max Bacterial Enhancement Reagent (Thermo Fisher Scientific,
Waltham, MA) and purified using the Direct-zol RNA Miniprep Kit with on-column DNA
digestion (Zymo Research, Irvine, CA) followed by double DNAse treatment with TURBO
DNA-free Kit (Thermo Fisher Scientific, Waltham, MA). Complementary DNA (cDNA) was
synthesized from 5 pug RNA using Maxima H Minus cDNA Synthesis Master Mix (Thermo
Fisher Scientific, Waltham, MA) and subjected to RT-gPCR analysis (40 ng per technical
duplicate) using the KAPA SYBR FAST Universal Kit (Roche) on an Agilent Mx3005P cycler.
Pan-Fusobacterium species-specific primers were designed using the PrimerQuest Tool to
target conserved regions of gene sequence templates that have high coverage across
Fnavp genomes as assessed by the Prider package in R (119). Specificities of primer
sequences were checked against the nt database using the Primer-BLAST algorithm
(120), and were further validated using Fusobacterium spike-in control DNA samples. Ct
values were normalized per experiment using the geometric mean of eubacterial 768,
fusobacterial rpoB and recA internal control genes relative to Fa7/1 overnight culture
inoculum (16 ~ 24 h; ~10° CFUs) in infection media (121). Robust mean fold change was
calculated by determining the average of all combinatorial pairs of fold change values
that fell between 20th and 80th percentile range (122). Primers used in this study are
listed in Table S2.

Proteomic analysis of bacterial monoculture secretome

Supernatants of Fa7/1 monocultures from 24- and 48-h growth timepoints were
filter-sterilized (100 mL; pore size of 0.22 pum), concentrated with Amicon Ultra Centri-
fugal 10 kDA Filter (Sigma-Aldrich, St. Louis, MO), and precipitated with methanol/chloro-
form (4:1) followed by solubilization in 8M urea. Proteins were analyzed on an SDS-PAGE
gel visualized with QC Colloidal Coomassie Stain (Bio-Rad, Waltham, MA), and bands
corresponding to predicted protein sizes of Fa7/1 Fic1-6 were excised and submitted to
the Harvard Center for Mass Spectrometry for peptide detection on a Q Exactive HF-X
Hybrid Quadrupole-Orbitrap mass spectrometry (MS) system (Thermo Fisher Scientific,
Waltham, MA).
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Raw MS data from the Thermo Orbitrap instrument were converted to mzML files
using the ThermoRawFileParser (v.1.4.3; options: -f = 1 -m = 1) (123). Non-redundant
fusobacterial pan-proteomics database was created via MMseqs2 clustering of protein
ORFs from 622 fusobacterial genomes (options: --min-seg-id 1, -c 1, --cov-mode 0).
Peptide identification from mzML data were performed using the MS-GF + MS/MS
proteomics database search tool (Release 20230112; options: -e 1 -inst 3 -m 3 -tda 1) with
specification for static modification (carbamidomethyl C) and dynamic modifications
(oxidation M, variable carbamidomethyl N-term, and acetylation protein N-term) (124).
MS/MS identification data (mzid) were quality-filtered by estimating false discovery rates
(FDR) of peptide identifications using the MSnID R/Bioconductor package. lon peaks
data from peptide-spectrum matches (FDR < 0.05) were normalized relative to mini-
mum peptide ion current intensities per proteome and visualized using the ggprotein
function in ggcoverage package in R (125). Publicly available Fusobacterium proteomes
(PXD004888, PXD008288, PXD008444, PXD037520) from the ProteomeXchange database
were reanalyzed accordingly (126-130).
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