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Alternative splicing (AS) is an important event that contributes to posttranscriptional gene regulation. This process leads to several
mature transcript variants with diverse physiological functions. Indeed, disruption of various aspects of this multistep process, such
as cis- or trans- factor alteration, promotes the progression of colorectal cancer. Therefore, targeting some specific processes of AS
may be an effective therapeutic strategy for treating cancer. Here, we provide an overview of the AS events related to colorectal
cancer based on research done in the past 5 years. We focus on the mechanisms and functions of variant products of AS that are
relevant to malignant hallmarks, with an emphasis on variants with clinical significance. In addition, novel strategies for exploiting

the therapeutic value of AS events are discussed.

Cell Death and Disease (2021)12:752 ; https://doi.org/10.1038/s41419-021-04031-w

FACTS

1. Pre-mRNA alternative splicing events increase the complex-
ity of gene regulation and transcript diversity

2. Variable cis-regulatory elements and alterations in splicing
trans-regulatory factors regulate alternative splicing events

3. Aberrant alternative splicing influences colorectal cancer
progression by regulating the cell proliferation, invasion,
and apoptosis, as well as angiogenesis and drug-
resistance

4. Antisense oligonucleotides and small molecule inhibitors
are therapeutic agents based on splicing alterations

5. Further studies are needed to enhance the targeting
efficiency of antisense oligonucleotides in CRC patients.

OPEN QUESTIONS

1. Alternative splicing is an important molecular event
contributing to post-transcription regulation. What kinds of
abnormal changes in splicing sequence and regulatory
factors lead to splicing variant alterations in colorectal
cancer?

2. Alterations of alternative splicing result in several products
that are carcinogenic. What role do the products play in
colorectal cancer?

3. Alternative splicing provides new targets for cancer treat-
ment. Does targeting the multi-steps of alternative splicing
provide important clinical value?

INTRODUCTION

Alternative splicing (AS) of precursor messenger RNA (pre-mRNA)
has been shown to influence physiological and pathological
processes. Pre-mRNA splicing was first discovered in 1977, and has
now been shown to play important roles in posttranscriptional
regulation of gene expression [1]. Notably, AS increases the
diversity of transcript variants and proteomic isoforms. A recent
analysis of the Encyclopedia of DNA Elements (ENCODE) project 1
(GRCh38, Ensembl79) and data from recent research have
revealed that the human genome consists of ~21,306 protein-
coding genes [2, 3], but the number of transcript variants and
protein isoforms is considerably higher because of AS [4].
Alternative and aberrant pre-mRNA splicing have the potential
to act as diagnostic and treatment targets, especially in primary
and metastatic tumors [5].

Colorectal cancer (CRC) has been reported to have the third-
highest mortality and morbidity rates in the latest epidemic
oncology study in the United States. Investigations into the
fundamental pathological mechanisms of CRC have revealed that
AS events can be exploited to offer more diagnostic and
treatment agents for cancer [6]. The first study on AS in CRC
revealed that c-Ki-ras (KRAS), a protein-coding gene, mutates at
splice acceptor site and produces two transcript variants with

'Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China. 2Department of Cardiothoracic Surgery, Jinling
Hospital, Nanjing Medical University, Nanjing, China. *Department of Medical Oncology, Jinling Hospital, First School of Clinical Medicine, Southern Medical University, Nanjing,
China. “Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China. *These authors contributed equally: Yanyan Chen, Mengxi Huang,

Xiaolong Liu. ®email: mhksfgb@126.com; leizengjie@163.com; chuxiaoyuan000@163.com

Edited by F. Pentimalli

Received: 30 November 2020 Revised: 12 July 2021 Accepted: 12 July 2021

Published online: 30 July 2021

Official journal of CDDpress

SPRINGER
CDDpress


http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04031-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04031-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04031-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41419-021-04031-w&domain=pdf
mailto:mhksfgb@126.com
mailto:leizengjie@163.com
mailto:chuxiaoyuan000@163.com
www.nature.com/cddis

Y. Chen et al.

exon 4A included or excluded in SW480 colon carcinoma cell lines
[7]. Accumulating evidence has confirmed that some agents
targeting AS events can effectively treat CRC by restoring aberrant
alternative splicing procedures, such as splice-switching oligonu-
cleotides (SSOs) targeting specific sequences and inhibitors like
indacaterol that targets splicing regulatory proteins in cancer.

Several review articles have shown that AS is related to
epigenetic events [8], therapeutic targets [9], and splicing variants
of particular classical molecules, such as B-Raf proto-oncogene
(BRAF) [10] and vascular endothelial growth factor A (VEGF-A) in
CRC [11]. In this review, we highlight recent advances (in the past
5 years) in the identification and characterization of AS events in
CRC. We also describe the roles of mRNA splicing and aberrant
regulation of AS in CRC. In addition, this review consolidates the
biological functions of AS and splicing products, as well as the
current efforts to develop its potential of clinical application in the
diagnosis or treatment of cancer.

SPLICING MACHINERY AND ALTERNATIVE SPLICING

A sophisticated spliceosome machinery is responsible for splicing
pre-mRNA by recognizing different splice sites. This machinery
catalyzes two fundamental transesterification reactions in the
nucleus [12]. The process of pre-mRNA splicing is regulated by
specific recognition between cis-regulatory elements (pre-mRNA
sequence) and trans-regulatory factors (proteins in splicing
process). This is followed by cutting and joining of ribonucleotide
base sequences [13]. In the review, we discuss the mechanisms by
which the spliceosome routinely removes introns and joins exons
to generate a mature mRNA and the classical types of AS.

The spliccosome machinery

The core spliccosome comprises small nuclear ribonucleoprotein
(sSNRNP) complexes (U1, U2, U4/U6, and U5 snRNP) that carry
functional uridine-rich small nuclear RNAs (U1, U2, U4/U6, and
U5 snRNA), respectively [14], together with over 50 intrinsic
proteins [15, 16]. It also contains specific extrinsic non-
spliceosomal RNA-binding proteins that regulate protein-RNA
crosslink sites and splicing, such as the canonical heterogeneous
nuclear ribonucleoproteins (hnRNPs) [17], serine-arginine amino
acid-rich proteins (SR proteins) [18] and other tissue-specific
splicing factors [19]. The intrinsic complexes and regulatory
proteins act as trans-regulation factors of RNA splicing.

The cis-regulatory elements consist of direct binding sites and
indirect regulatory sites that participate in fundamental and
complex steps of pre-mRNA splicing modification (Fig. 1A). Three
consensus sequence elements directly bind to trans-regulatory
factors and promote the transesterification reactions of splicing,
including the 5’ splice site (5’ SS, also called donor site), branch
point sequence (BPS) and 3’ splice site (3’ SS, also called acceptor
site) [20]. Certain cis-regulatory elements that occur in exonic
splicing enhancer (ESE), exonic splicing silencer (ESS), intronic
splicing enhancer (ISE), and intronic splicing silencer (ISS)
sequences are crucial elements in the regulation of splicing [21].
Overall, SR proteins recognize and bind to splicing enhancer
elements (ESEs and ISEs), whereas hnRNPs target splicing silencer
elements [22].

The main splicing process, which includes several key mechan-
isms, such as RNA-protein interactions, splicing factors with ESE,
ESS, IES, and ISS interactions, RNA-RNA base-pairing interactions,
and chromatin-based effects, is accompanied by spliceosome
assembly, activity, and disassembly cycle (Fig. 1B) [22]. The initial
splicing procedure begins with recognition of the 5 SS GU
ribonucleotide by U1 snRNP and recognition of the branch point
sequence (BPS) by Splicing Factor 1 (SF1) that forms the first
spliceosome complex E. The U2 Auxiliary Factor 2 (U2AF2) binds to
polypyrimidine tract (Py-tract) or U2 Auxiliary Factor 1 (U2AF1)
binds to 3’ SS [23]. Afterward, U2 snRNP and the preassembled U4/
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U6/U5 tri-snRNP occupy and then are substituted in turns among
splicing process, and final transesterification reactions form a
mature mRNA with a lariat (detail illustrated in Fig. 1B) [24-26].

The common types of alternative splicing

Alternative sites that possess similar sequences to the consensus
splice elements are spliced by spliccosome to generate a variety
of mature mRNAs because of attenuated affinity between
consensus splice site and snRNPs. High-throughput RNA sequen-
cing and analysis revealed that 90-95% of human multi-exon
genes produce transcript variants through AS [27]. The common
types of AS include cassette exon skipping, intron retention,
mutually exclusive exon, alternative 5" splice site, alternative 3’
splice site, alternative first and last exon (AFE and ALE,
respectively), and alternative promoters (Fig. 1C). Moreover,
cassette exon skipping and intron retention are predominant in
human AS types [5, 28]. Variable AS events not only produce
thousands of variants, but also exhibit tissue or pathological
specificity, and provide new targets for diagnosis and treatment of
cancer [5, 29].

ABERRANT REGULATION OF ALTERNATIVE SPLICING
ASSOCIATED WITH CRC

Aberrant AS has resulted in great achievements in CRC treatment
with the advancement in sequencing technology, such as a cohort
study of 1231 CRC cases with targeting sequencing of 36 putative
CRC susceptibility genes, revealed that 8 genes of them generated
36 novel specific protein isoforms due to AS [30]. The dysregula-
tion mechanism can be ascribed to two common aspects: cis-
elements and trans-regulation factors (Fig. 2). The reasons for
aberrant AS and the generation of corresponding transcript
variants in CRC are discussed in the subsequent section.

Variable cis-regulatory elements

The cis-element sequence and structure contribute to the
regulation of AS. Generally, the velocity of splicing is dependent
on the speed of splicing machineries and nascent pre-mRNA
transcription elongation when splicing occurs co-transcriptionally
following the translocation of RNA polymerase Il (Pol II) [31]. Pre-
mRNA sequences carry splicing codes and influence protein
function, whereas chromatin structure like histone nail modifica-
tion and Pol Il transcription influence splicing by adjusting the
affinity of cis-elements to trans-regulatory factors and speed of
transcription [32]. The effect of cis-elements changes on AS can be
classified into three categories: single-base substitutions, translo-
cation, and alteration of chromatin or promoters. Additional
aberrant cis-regulation mechanisms are listed in Table 1.

Single base substitution. The integrated analyses of DNA and RNA
sequences revealed that somatic mutations at donor sites or
acceptor sites can increase the potential of aberrant splicing
events and new transcript variants [33, 34]. Single base substitu-
tion can adequately induce aberrant splicing events in patients
with CRC [35], especially when mutations occur at direct splice
sites or regulatory elements. A study of 369 patients with Lynch
syndrome cohort revealed that ~40% of patients carried the mutL
homolog 1 (MLH1) mutation, with the most common type of
mutation was direct splice site alterations [36], which was
consistent with the findings of computational analyses conducted
by Frey [32].

Specific single base mutations could create a new splicing site
as a competitor, such as mutations at the acceptor splice site of
MSH2 (c.212-1G>A), which induces activation of a new splice site
in exon 2 and generates truncated proteins (p.Gly71Valfs*2 and p.
Gly71Glufs*75), is identified in young patients with genetic
predisposition to colon cancer [37]. In addition, single base
substitution with offering novel splicing sites of other genes was
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presented in Table 1, such as BRF1 RNA polymerase llI
transcription initiation factor subunit (BRF1) germline mutation
of ¢.1459+2T>C [38], PMS1 homolog 2 (PMS2) mutation of
€.2002A>G [39].

Furthermore, loci of the mutations in ESE, ESS, IES, or ISS
elements are also key splicing regulators in CRC. The SNPs of ISS
sites between exon4 and 5 in O-GIcNAc transferase (OGT) can
increase mRNA intron retention variants by slowing down splicing
speed, which induces tumorigenesis [40]. Although numerous
studies on germline mutations are associated with AS in CRC, few

studies have reported the mechanisms of somatic mutations in
patients with CRC clearly.

Translocation. Translocation of sequences, including insertion or

deletion of a long or short gene fragment, is a primary regulatory
mechanism of splicing. These phenomena have been observed in
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patients with Lynch syndrome, an inherited condition that
increases the risk of colon cancer. Single base-pair deletion,
MSH2 (c.2635-3delC) lost the ability of the splicing acceptor site
promotes an aberrant variant with intron 15 retention, whereas
paracentric inversion AluY repeats brings novel splicing donor site
and acceptor site at exon 1 and exon 7, and then generates a
truncated isoform lacking exon2-6 [41, 42]. Details of other
translocations that are related to splicing in CRC are shown in
Table 1, such as germline mutation of 2 base-pair deletions at the
splice donor site of MLH1 exon 6 [43] and insertion-deletion
(indel) at codon 409 of APC [44].

Aberrant chromatin and promoters. Splicing events are influ-
enced by the chromatin features, such as epigenetic modification
of DNA methylation and histone acetylation. In HCT 116 cells,
inhibition of histone deacetylase (HDAC) that specifically increases
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Fig. 1 Components of the splicesome machinery and the common types of alternative splicing. The figure shows an outline diagram of
splicesome components and clinical treatment targets with experimental evidence. A The elements that participate in pre-mRNA splicing. The
U1, U2, U3, U4, and U5 are small nuclear ribonucleoprotein (snRNP) complexes that directly bind to splicing sites by recognization between
snRNAs and pre-mRNA. The 5’ splice site (5' SS), the branch point sequence (BPS) and the 3’ splice site (3’ SS) are relatively conserved
sequences recognized by snRNPs. The major spliceosome splices introns containing GU at the 5’ SS and AG at the 3’ SS. The typical sequence
of BPS is YNYYRAY (Y: pyrimidine; N: any nucleotide; R: purine; A: adenine). The classical/canonical hnRNPs (Heterogeneous nuclear
ribonucleoproteins) and SR proteins (serine/arginine amino acid-rich proteins) regulate splicing by binding to the splicing cis-regulatory
elements, including exonic splicing enhancer (ESE), exonic splicing silencer (ESS), intronic splicing enhancer (ISE), and intronic splicing silencer
(ISS) sequences. B The major splicing process is accompanied by the interaction between cis-elements and trans-factors with spliceosome
assembly cycle. The gray box shows the stepwise interaction of the small nuclear ribonucleoprotein (snRNP) particles changes with the
removal of an intron from a pre-mRNA. The first step of splicing is trans-elements bind to the conserved sequence of introns, including U1
binding to 5'SS, SF1 binding to BPS and U2AF2 binding to Py-tract and U2AD1 binding to 3'SS, which forms the first spliccosome complex E.
Then U2 will replace SF1 and interact with BPS, forming the splicecosome complex A. And U4/U5/U6 tri-snRNP substitutes U1, with U5 binding
to 5'SS and U6 binding to U2. After that, U4 dissociates from the B complex and some regulatory splicing proteins are recruited, forming the
early B act complex (B¥). Two steps of transesterification complete splicing progress. U6/U2 catalyzes transesterification reactions by making
the BPS ligate to 5-end of the intron and form a lariat, and the 5'ssite is cleaved, resulting in the formation of the lariat. This is followed by a
5'SS-mediated attack on the 3'SS, leading to the removal of the intron lariat and the formation of the spliced RNA product. The proteins are
recycled and used in the next splicing process (showed as dotted lines). C Common models of alternative splicing and the corresponding
transcript variants. The solid and dashed lines denote different alternative splicing models. Cassette exon skipping: an intervening exon
between two other exons can be either included or skipped. Intron retention: an intron remains in the mature mRNA instead of being spliced.
Mutually exclusive exon: only one out of two exons (or one group out of two exon groups) is retained with the other one is spliced out.
Alternative 5'SS: a potential 5'SS replaces the consensus 5SS and is joined to 3'SS. Alternative 3'SS: a potential 3'SS replaces the consensus
3'SS and is joined to 5'SS. Alternative first exon: the first exon is replaced by the identical boundaries in the second exon and is exclusive.
Alternative last exon: the last exon is substituted by the penultimate with a similar splicing site and exclusive. Alternative promoter: alternative
transcription initiation sites also affect the splicing pattern of downstream exons.
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Fig.2 The mechanism of aberrant splicing in colorectal cancer. The diagram shows the classifiable explanation of abnormal splicing in CRC.
Splicing occurs co-transcriptionally on nascent RNA, which is attached to chromatin by RNA polymerase Il (showed in the left figure). Both
alterations of cis-elements and trans-regulatory factors would cause abnormal splicing events and products. New recognized sites are created
by mutation of cis-elements like single base substitutions, translocation, and alternative promoters (the first diagram on the right). Alteration
of chromatin would influence affinity between splicing factors to splicing sites by conformational change or speed of transcription elongation
with changed time of splicing factors loading on cis-elements (the second diagram on the right). In addition, the expression and post-
modification of trans-regulatory alter the splicing by infecting recognization between splicing factors and splicing sites.

K (lysine) acetyltransferase 2B (KAT2B) occupancy and histone3/4
acetylation nucleosome can increase exon 2 exclusion in myeloid
cell leukemia sequence 1 (MCL1) transcript variant [45]. Inhibition
of HDAC resulted in hyperacetylation of H3K4me3 nucleosomes
and increased the rate of elongation through these regions, which
did not leave sufficient time for the loading of SRSF1 onto exon 2.
The absence of SRSF1 and other splicing factors at exon 2 resulted
in increasing the MCL1 exon 2 exclusion [45]. And the trimethyla-
tion of H3K36me3 accelerated transcription elongation and
reduced the removal of intron 2 of disheveled segment polarity
protein 2 (DVL2) [46]. In addition, different transcriptional initiation
sites can alter splicing with additional splicing sequences. The
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prominent promoter 2 of hepatocyte nuclear factor 4 alpha
(HNF4a), rather than promoterT, is transcribed into P2-HNF4a pre-
mMRNA with extra exon 1D and provides more splicing sites, which
results in increased pro-proliferation HNF4a7/8 splice variants
[47, 48].

Alterations of splicing trans-regulatory factors

In CRC, alternative splicing can be regulated by trans-regulatory
factors in form of mutations, dysregulated expressions or protein-
modifications of RNA-binding proteins (RBPs) that occur in
spliccosome components and splicing regulators [49, 50]. Altera-
tions that occur in trans-regulatory factors are shown in Table 2.

Cell Death and Disease (2021)12:752
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Altered expressions of trans-regulatory factors. Alterations in
expression levels of spliccosome components and splicing
regulatory proteins are attributed to transcriptional or posttran-
scriptional regulation, thereby controlling various aberrant spli-
cing events that are closely associated with CRC progression
(Fig. 2; Table 2). Splicing factor 3b subunit 1 (SF3B1), a core
spliceosome component that causes more than 2000 AS events, is
associated with most intron retention in CRC cells when it is
downregulated [51]. The elongation factor Tu GTP binding
domain containing 2 (EFTUD2), a component of the U5 snRNP,
is upregulated in colitis-associated cancer. EFTUD2 promotes
colitis-associated tumorigenesis by splicing regulation of
increased proportion of full-length variant of innate immune
signal transduction adaptor (MyD88), since the complete U5 is
required for retention of exon 2 [52, 53].

Serine and arginine-rich splicing factor 1 (SRSF1) is a key
member of SRs family. It is an oncogenic factor that promotes
tumorigenesis by regulating various AS events, such as splicing
of Rac Family Small GTPase 1 (RACT), Tyrosine-protein kinase
(SYK), Marker of proliferation Ki-67(MKI67) and heterogeneous
nuclear ribonucleoprotein L like (HNRPLL) [51, 54, 55]. In CRC,
SRSF1 has been found to be upregulated and is associated with
DNA damage and cell cycle progression [50]. Elevated SRSF1
binds 3'SS of DBF4B exon 6 in colon cancer cells to activate it
[54, 55]. Other splicing factors, such as SRSF3, SRSF6, SRSF7 and
SRSF10 also regulate the splicing of different targets in CRC as
oncogenes [56-61].

HnRNPs are primary splicing regulation factors that bind to ESS
and ISS elements. Heterogeneous nuclear ribonucleoprotein K
(HNRNPK) recognizes exon 3 of mitochondrial ribosomal protein
L33 (MRPL33) pre-mRNA. It upregulates MRPL33-L, an exon 3-
containing long isoform, through which it exerts its role in
maintaining tumorigenic phenotypes of the colon [62].

Other splicing regulatory factors, such as RNA-binding motif
protein 4 (RBM4), whose expression is suppressed in cancer, is a
tumor suppressor that dysregulates exon 4 skipping of NOVA
alternative splicing regulator 1 (NOVAT) and intron 11 retention
of PTB [58]. PTBP1 is upregulated by a more stable variant with
intron 11 retention and the upregulated PTBP1 is a marker of
poor survival outcomes [57, 63]. PTBP1 increases the ratio of the
PKM2/PKM1 variant by binding intron 8 of PKM and elevating the
PKM2 transcript variant with exon 9 skipping [64-66], thereby
enhancing the Warburg effect and promoting tumor progression
[67-69].

Posttranslational alterations of trans-regulatory splicing factors.
Protein modifications can modulate the splicing ability of
trans-regulatory splicing factors (Fig. 2; Table 2). PHD finger
protein 5A (PHF5A), a component of U2 snRNPs complex, can
be acetylated at lysine 29 by p300 to strengthen interactions
among components of U2 snRNPs during colorectal tumor-
igenesis. The tight complex reduces the retention of intron 3
variant of KDM3A, which triggers the degradation of abnormal
mRNAs with early stop codons [70]. Additionally, PHF5A-K29
acetylation is s poor prognostic marker for 3-year overall
survival rate [70]. Phosphorylation of the hnRNP A1 Ser6 site by
the S6K2 enzyme facilitates the binding of hnRNPA1 to the
splicing site of the PKM gene to enhance the generation of
PKM2 variants in CRC [71].

Protein interactions between splicing factors regulate spli-
cing by blocking RNA-protein or spliccosome-protein interac-
tions (Fig. 2; Table 2). The HOXB-AS3 peptide competitively
binds arginine residues in the RGG motif of hnRNP A1, a
splicing regulatory factor that promotes PKM2 variant by
flanking 5'SS of exon 9, and thereby excluding exon 9. In CRC
cells, HOXB-AS3 has been found to be downregulated, and
subsequently, causes PKM2 upregulation that leads to
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metabolic disorders by antagonizing hnRNP A1 recognition of
PKM exon 9 [72].

ALTERNATIVE SPLICING IN CRC PROGRESSION

AS is involved in CRC progression and it plays a key role in
multiple malignant hallmarks, including sustaining proliferation,
inhibiting apoptosis, angiogenesis, aberrant metabolism, invasion
and metastasis. We reviewed the splicing variants that are
strongly associated with the malignant hallmarks of CRC, and
highlighted the variants with clinical relevance (Fig. 3A-E;
Supplementary Table 1). And some gene variants in CRC have
several malignant functions (Supplementary Table 1) are dis-
cussed with their main malignant function. For example, PKM2
variants promote proliferation and inhibit apoptosis, the CD44 v4-
10 variant promotes proliferation, the CD44 v6 variant promotes
invasion, the CD44 v9 variant inhibits invasion while the CD44 s
variant inhibits proliferation. PKM variants are majorly involved in
proliferation while CD44 variants are involved in both prolifera-
tion and invasion.

Sustaining proliferation

Sustaining proliferation is one of the malignant features of CRC
cells and tumor growth, which can be promoted through the
regulation of splicing with additional oncogenic splicing isoforms.
The CD44 gene is composed of 20 exons, the first exons 1-5 and
the last exons 16-20 are constant exons that encode for the N-
terminal and C-terminal regions of CD44, respectively. Middle
variable exons, respectively abbreviated as exons v1-v10, can be
alternatively spliced and translated into different isoforms [73].
Elevated expression of the CD44 v4-10 isoform, which comprises
constant and v4-v10 exons, can respond to HGF and Wnt-
mediated signals through interactions between the v6 exon and
HGF, thereby promoting tumor cell proliferation by maintaining
the stemness of cancer stem cells, a feature that is not exhibited
by CD44s [74, 75]. This leads to poorer survival rates as was
observed in transgenic Cd44"*'%V*1% mice, when compared to
CD44** mice [75].

The PKM protein has a switching effect on a specific
glycolysis metabolism. Classical splicing variants, PKM1 and
PKM2 contain exon 9 or exon 10 (with mutually exclusive exon),
respectively, which are under the regulation of hnRNPA1,
PTBP1, and SRSF3 [57]. When compared to normal epithelial
cells, PKM2 is upregulated by hnRNPA1 overexpression or
activation of phosphorylation, which facilitates the binding of
hnRNPA1 to the splicing site [57, 71]. Elevated expressions of
PTBP1 upregulate the PKM2 variant with exon 9 skipping
(mentioned in section “Altered expressions of trans-regulatory
factors”) [64-66]. Elevated levels of PKM2 promote aberrant
metabolism by increasing glycolysis and lactate generation
rather than the TCA cycle regardless of oxygen availability,
which in turn, accelerates cell proliferation and colon cancer
progression [72]. Clinically, univariate and multivariate Cox
regression analyses revealed that the expression of both PTBP1
and PKM2 is a significant risk factor for the overall survival of
patients with CRC [57, 63, 76].

A full-length variant containing DBF4B exon 6, which has been
found to be upregulated in tumors, binds SRSF1 to recognize the
3" SS of DBF4B. Both DBF4B full-length (DBF4B-FL) variant and
SRSF1 promote tumor cell proliferation and tumor growth while
the DBF4B-short (DBF4B-S) variant does not exhibit a similar
function. Moreover, patients with a low DBF4B FL/S ratios have
significantly longer median survival outcomes than patients with
increased DBF4B FL/S expression ratios [54]. Figure 3A shows
some of the proliferation-related gene variants, including HNF4a
[47, 48], TRA2B [77], and ID1 [78] with a detailed description in
Supplementary Table 1.
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Fig. 3 Alternative splicing is associated with tumor hallmarks. Five common tumor hallmarks related to alternative splicing include
proliferation, invasion and migration, apoptosis, angiogenesis, and drug resistance. The figure shows the hallmarks and the associated genes.
A The representative gene and their splicing variants show different functions in cell proliferation. B The representative gene and their
splicing variants show different functions in cell apoptosis. C The representative gene and their splicing variants show different functions in
angiogenesis. D The representative gene and their splicing variants show different functions in invasion and metastasis. E The representative
gene and their splicing variants show different functions in drug resistance. More details about the mechanism of splicing and clinical
application are listed in Supplementary Table 1.

Apoptosis that eventually lead to programmed cell death. Exon 6 of Fas
A typical characteristic of malignant tumors is evasion of encodes a transmembrane domain, but skipping of the exon
apoptosis, which is responsible for tumor formation and through regulation of SRSF7 splicing produces an mRNA
maintenance. The full-length Fas cell surface death receptor encoding a soluble Fas isoform called Fas-short. SRSF7 is
(FAS) protein, also referred to as CD95, is located on the upregulated in CRC cells and it increases the ratio of Fas-short
cytomembrane as a receptor. It initiates a cascade of events variant, resulting in the loss of function of apoptosis induction,
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thereby exhibiting the inverse feature of the Fas full-length
variant [60, 79].

BCL2 Like 1 (BCL2L1), a member of BCL2 Apoptosis Regulator
(BCL2) family, is spliced into two isoforms when regulated by
hnRNPA2B1 [80]. The BCL-xl isoform of BCL2L1 is 233 amino acids
in length and exhibits anti-apoptotic effects, while BCL-xs, which
lacks 63 amino acids in exon 2 compared to BCL-xl, is pro-
apoptotic [81]. The aberrance of hnRNPA2B1 can result in a switch
in the BCL2L1 gene from BCL-xl to BCL-xs in CRC [80]. In addition,
BCL2 Associated X (BAX), another key member of the BCL2 family,
has been found to have a pro-apoptotic variant (BaxA2) with exon
2 skipping. BaxA2 triggers apoptosis through a non-mitochondrial
pathway, while the Baxa variant promotes mitochondria-
dependent apoptosis [82, 83].

MAPK interacting serine/threonine kinase 2 (MNK2) can be
spliced by SRSF1 to generate two types of isoforms, MNK2a and
MNK2b. MNK2a comprises exon 14a, whereas MNK2b lacks exon
14a. In CRC cells, an imbalance exists between the two isoforms
because due to elevated SRSF1 expression, MNK2b is dominant
while the MNK2a isoform, which has a MAPK-binding domain, is
downregulated, thereby promoting cell growth and reducing cell
apoptosis by inhibiting the p38a-MAPK signaling pathway [84].

Angiogenesis

The clinical outcome of patients with CRC is strongly correlated with
angiogenesis, which is stimulated by the vascular endothelial growth
factor-A (VEGF-A) [85]. There are 7 major types of AS isoforms of
VEGF (angiogenic VEGF-xxxa and antiangiogenic VEGF-xxxb) gener-
ated by exon skipping in CRC [85-87]. The most studied isoforms are
VEGF165a and VEGF165b, which are regulated by SRSF6 and exhibit
reversed functions in angiogenesis. VEGF165a is upregulated in CRC
and promotes angiogenesis, vessel maturation and cell migration
[69]. However, VEGF165b is antiangiogenic and most studies have
revealed that it is a favorable prognostic factor in patients with CRC,
except for a study by Kotoula that revealed that VEGF165b was
associated with poor prognosis in patients with right-sided primary
tumors [85, 88-90]. In addition, VEGF receptors (VEGFRs) are
alternatively spliced and can regulate angiogenesis; for example,
VEGFR2 is expressed as two isoforms, membrane-bound VEGFR2
(mVEGFR2) and soluble VEGFR2 (sVEGFR2). VEGF promotes angio-
genesis by binding to membrane-bound vascular endothelial growth
factor receptor 2 (MVEGFR2), whereas sVEGFR2 sequesters VEGF and
is thus anti-angiogenic [91].

Invasion and metastasis

Antigen cell adhesion molecule 1 (CEACAM1) is a member of the
carcinoembryonic antigen (CEA) family that function as an
intercellular adhesion molecule that influence the recurrence of
colorectal liver metastasis after hepatectomy [92, 93]. AS of exon 7
by hnRNPL generates two variants, CEACAM1-long and CEACAM1-
short (without exon 7). In invasive tumor cells, there is a high
proportion of the CEACAMI1-short variant, which promotes
migration, invasion and proliferation, functions which are not
performed by CEACAM1-long [94, 95]. The high expression of
CEACAM1-S enhances tumor-initiating of CRC in a metastasis
induction model and is negatively correlated with five-year
recurrence-free survival rates, and overall survival rates of patients
with CRC [92].

Furthermore, CD44 v6 is another CD44 splicing variant, which
contains v6 exons by HNRNPLL splicing regulation, is highly
expressed in CRC [96]. CD44 v6 isoform can enhance EMT
progress, cell motility and invasion as an intercellular commu-
nicator when located on the cytomembrane or exosome [97, 98].
The high levels of CD44v6 can be used as a marker for predicting
poor prognosis in stage Il and stage lll sporadic CRC compared
with CD44s. In addition, high expression of CD44v6 is significantly
correlated with poor histological differentiation, deeper tumor
invasion, increased lymph node metastases, angiolymphatic
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invasion, and advanced pathological TNM (Tumor, Node, Metas-
tasis) staging in the clinical-pathological analysis of CRC [99].

Drug resistance

AS has been reported to influence the development of drug
resistance in malignant cancer cells. BCL-2-associated X (BAX) is an
apoptosis regulator that can be spliced into a unique Bax isoform
(BaxA2) in colon cancer cells because of BAX microsatellite G7/G7
alleles [83, 100]. BaxA2-positive cells can recruit caspase-8 into the
proximity for activation, and subsequently activate caspase-3 and
apoptosis independent of the mitochondrial pathway [83]. Over-
expression of BaxA2 can enhance sensitivity of tumor cells to
proteasome inhibitors, such as bortezomib and carfilzomib, which
could be a novel chemotherapeutic target for cancer treatment
[101].

Bevacizumab, normally recommended for the treatment of
patients with metastatic CRC patients with metastasis, targets
VEGF signaling. Bevacizumab response is associated with AS of
VEGF isoforms. For example, the VEGFA145b isoform may predict
resistance to bevacizumab in patients with left-sided primary CRC
[85]. Results of immunohistochemical analyses of CRC have
suggested that plasma VEGF-Axxxb levels could be an effective
biomarker of response to bevacizumab [90, 102]. Previous studies
also revealed that xenograft mice with a high ratio of VEGF165b
isoform were more sensitive to bevacizumab treatment and hence
had tumors with smaller volumes [89].

POTENTIAL TUMOR DIAGNOSIS AND TREATMENT TARGETS
FOR CRC
Aberrant splicing mechanisms and the corresponding products
are potential diagnostic markers and predictors of the survival of
the patients with CRC. The RAS family is significant for CRC
progression with several alternative splice variants, which are
associated with several clinicopathological features of CRC [103].
K-RAS4A, retaining extra exon 4A when comparing with K-RAS4B,
is associated with superior 5-year overall survival in KRAS wild-
type subgroup and clinicopathological features of left colon,
adenocarcinoma subtype. Nonetheless, KRAS4B overexpression is
significantly associated with larger tumor size and inversely
correlated with p27kip1 protein [104-106]. Beyond that, some
other variants, such as ZO-1 exon23 skipping isoform, CD44v6,
CEACAM1-Short isoform, A133p533 with inron4 retention were
negative survival markers in CRC [59, 92, 97, 98]. The VEGFA 165b
and high ratio of CD44v9/CD44s predicted good prognosis of
patients with CRC [85, 88-90](Supplementary Table 1).
Additionally, the complex mechanism of AS can provide novel
therapeutic targets for patients with CRC. The direct therapeutic
strategies of splicing alterations can be divided into 3 categories
based on splicing mechanism: (1) strategies targeting cis-elements
of splicing, (2) strategies targeting trans-regulatory factors of
splicing, including the spliceosome complex and splicing regula-
tion factors, especially the splicing regulation factors, and (3)
strategies targeting splicing variants and the downstream
mechanisms. Complex splicing mechanisms can be used to
develop multiple target therapies for patients with CRC (Fig. 4).
The common drugs for splicing intervention are antisense
oligonucleotides (ASOs) that target base sequences and small
molecules altering the activities of splicing regulatory factors.
Agents are listed in Table 3 with experimental evidence to confirm
as treatment targets by targeting AS.

Therapeutic approaches of antisense oligonucleotides

A more direct method of regulating a specific splicing event is by
exploring splice-switching oligonucleotides (SSOs), which belong
to ASOs with splicing intervention functions. Briefly, SSOs typically
consist of sequences of ~15-30 nucleotides that are chemically
modified to avoid degradation by exonucleases, and bind to a
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Fig. 4 The potential therapeutic strategies for treating patients with CRC by splicing alterations. Therapeutic strategies of splicing
alterations include both the direct nucleic acid sites and splicing regulatory factor. A An ideogram shows splice-switching oligonucleotides
(SSOs) targeting direct splicing site (5'SS or 3'SS), exon splicing enhancer (ESE) or inhibitor (ESI) and potential splicing sites. SSOs with
experimental evidence were shown in the diagram. See text and Table 3 for detail. B Trans-regulatory factors are also targeted by small
molecule inhibitors as treatment strategies through the splicing mechanism. Small molecule inhibitors targeting trans-regulatory factors and
splicecosome are shown in the diagram. See text and Table 3 for detail. C Some special splicing variants related to carcinogenesis are effect
targets for inhibitor and colorectal treatment. Inhibitors targeting oncogenic variants or signaling are shown in the diagram. See text and

Table 3 for detail.

unique sequence on the mRNA [107]. Intravenous and subcuta-
neous injection were supposed to be the high-efficiency delivery
strategies at the present period. Some modifications of the SSOs
like 2-O-methyl (2-OMe) and 2-O-methoxy-ethyl (2-MOE) help to
maintain the concentration by avoiding degradation by nuclease
in blood [108]. These modifications help SSOs to avoid lysosomal
degradation and enter the cytoplasm or nucleus to execute their
pharmacological functions. For instance, PMO of Dex8 VDR_helps
to remain stable in CACO2 cell cytoplasm [109]. SSOs uptake,
which required binding to surface proteins, increased a lot in
target cells if packaged with lipid nanoparticle delivery system
[110].

Generally, SSOs can be specifically designed into: (1) those
targeting direct splicing sites, including 5'SS, 3'SS or branch site
thus blocking their usage, (2) those targeting cis-regulation
elements of splicing by intervening recognition of splicing factor,
such as splicing enhancer sequences or splicing silencer
sequences [109, 111]. In colon cancer cells, two SSOs targeting
BCL-2-associated transcription factor 1 (BCLAF1) pre-mRNA have
been demonstrated to effectively inhibit cell growth through
splicing regulation. High-expression SRSF10 in tumor cells
regulates the inclusion of exon5a of BCLAF1 and increases the
generation of pro-growth full-length variants with exon 5a
inclusion. The two SSOs, targeting 3'SS at the boundary of
intron4 and exon5a of BCLAF1, can suppress tumor cell
proliferation by reducing full-length variants under the regula-
tion of SRSF10 [61]. A previous study revealed that SSO targeting
3’SS of intron 2 of DVL2 enhances intron 2 retention variant in
DVL2, which inhibits CRC cell proliferation in vitro [46].
Furthermore, SSOs targeting VEGFR or SMN2 splicing site
inhibited tumor growth by reducing oncogenic variants in CRC
(See Fig. 4A and Table 3).

However, systemic use of SSOs for the treatment of solid tumors
remains a challenge due to limited drug distribution, similar to the
use of SSOs to treat muscular diseases [112]. Thus, SSOs may be an
effective treatment agent without off-target effects and high
specificity if the aforementioned challenges are addressed. RNA-
based therapeutics offer the potential to virtually target molecules
especially those lacking catalytic activities that could be inhibited,
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or molecules that are not responsive to targeted antibody
approaches [113].

Therapeutic approaches of small molecule inhibitors

Small molecule drugs that exhibit potent anticancer activity have
been developed by targeting splicing factors to modulate their
activities or products that promote tumor growth by splicing.
Nevertheless, small molecule drugs could potentially inhibit
splicing but they lack specificity when compared with SSOs
therapy. Small molecule inhibitors targeting AS are listed in Fig.
4B, C and Table 3.

Targeting of core spliccosome complex and regulatory proteins.
Application of indacaterol, which is an inhibitor that targets the
functional RRM2 domain of SRSF6, can inhibit SRSF6 and binding
to exon23 of tight junction protein 1 (ZO-1) in splicing regulation,
which effectively reduces CRC progression [59]. SF3B1 is a crucial
spliccosome component that participates in the splicing and
synthesis of mature mRNA. FR901464 is a small molecule inhibitor
that binds to SF3B1 and can destabilize the recruitment of snRNP
U2 to SF3B1, which ultimately decreases cell proliferation and
tumor growth [114]. Moreover, certain molecules that target
splicing regulation factors exhibit anti-cancer activity in CRC. For
example, 10058-F4 (MYC inhibitor) suppresses the expression of
epithelial splicing regulatory protein 2 (ESRP2) and SM08502 (CLKs
inhibitor) decreases phosphorylation of SRSFs [115, 116].

Targeting of splicing variants or translation products or downstream
targets. Some drugs have been developed to specifically target
splicing variants or their translation isoforms to inhibit tumor
progression, like Prodigiosin (targeting ANp73) [117], Nilotinib
(targeting ZAK) [118], SB21673 (targeting ITGA6A) [115], etc. (Refer
to Table 3 for detail).

The BTK gene can be developed as a multi-target agent because
of its complex splicing mechanisms. P65BTK is an oncogenic
isoform and is dependent on splicing by p-hnRNPK, which is
phosphorylated by signal-regulated protein kinases-1/2 (ERK1/2)
and RAS. Not only lbrutinib and AVL-292 (inhibitors of P65BTK),
but also the FTI-277 (inhibitors of p-hnRNPK, targeting RAS) and
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and the inhibitor blocks PHF5A acetylation.

[114]

Preclinical

The inhibitor binds with and inhibits SF3B1 and
destabilizes the recruitment of snRNP U2 and

spliceosome assembly to decreases cell

proliferation and tumor growth.

FR901464 competitively binds to SF3B1

FR901464(Small molecular

inhibitor)

(80, 81]

Preclinical

The inhibitor promotes cell apoptosis by the

Inhibitor of SF3B1 assembly

SF3B1

Pladienolide B

alternative use of two 5’ SS regions in exon 2 and

increases BCL-xs isoform.

[138]

Phase 1 clinical trial

The inhibitor reduced remodeling U2 snRNP to

SF3B1 Inhibitor of SF3B1 assembly

E7107

expose the branch point-binding region and then

inhibits tumor growth.

[59]

Preclinical
Cell level

The inhibitor can reduce RRM2 binding to ZO-1
exon23 and suppress CRC tumourigenicity.

Binding to RRM2 domain of SRSF6

Z0

Indacaterol (SRSF6 inhibitor)

Mice level

SSO Splice-Switching Oligonucleotides, 3'SS 3’ splice site, 5 SS 5’ splice site.

Cl-1040 (inhibitors of p-hnRNPK, targeting MEK1/2), can suppress
tumor progression [119]. The multi-target agents could provide
novel strategies that address drug resistance and enhance
therapeutic effects.

Notably, certain inhibitors targeting downstream of specific
splicing products can also be used as potential treatment
strategies. Thioredoxin-like protein 2 variant 2 (TxI-2b), a specific
isoform upregulated in CRC by splicing, activates NF-kB signaling
and induces NF-kB-regulated gene products, but other isoforms
do not perform such functions. Treatment with Bay 11-7082 (NF-
KB inhibitor) enhances the sensitivity of tumor cells against
vincristine and induces apoptosis in vitro, which shows the
potential of combining treatment in drug-resistance CRC [120].

Others therapeutic targets

Specific aberrant RNA sequences or structures (such as hairpins or
G-quadruplexes) can block recruitment of splicing factors to
splicing sequences, which could serve as novel therapeutic
targets for CRC. Two G4s are detected at 118 bp upstream and
261 bp downstream of the acceptor sites of the exons 4 and 7 of
CD133, respectively. As an exogenous mimic of G sequence,
RHPS4 targets G-quadruplexes (G4s) leading to a marked
reduction of CD133 mature transcripts that is counterbalanced
by an increase in splicing variants corresponding to enhanced
intron retention, which ultimately inhibits tumor progression
[121].

CONCLUSION

RNA splicing is a molecular event that occurs after the
posttranscriptional gene expression processes in invertebrates.
Aberrant splicing is associated with the development of diseases,
such as cancer. Advances in nucleic acid sequencing and
computational biology increase our understanding of the
relationship between colorectal cancer and AS [64, 122]. The
emergence of single-cell sequencing technology makes it
possible to screen out one or several splice variants in tumor
cells that are not present in heterogeneous tumor tissues [123]. In
addition, it is emerging from previous studies that non-coding
RNA splicing has important pathological implications. For
example, circular RNAs are by-products of back-splicing of pre-
mRNA and regulate biological processes by acting either as
sponges of microRNAs (miRNAs) or RNA-binding proteins.
Research on the roles of circRNA in CRC is still in its infancy
stage and hence further studies are advocated to expose the
potential of using circRNA as biomarkers and therapeutic targets
[124].

In this review, we summarized findings from research on the
role of AS in CRC in the past 5 years and reveal their clinical value.
Inaccurate sequences on cis-elements and changes in the trans-
regulation factors result in aberrant AS or new splicing events.
This affects malignant hallmarks such as proliferation, apoptosis,
invasion, migration, and drug resistance. AS signature profiles or
patterns can be used as disease biomarkers. Some specific
splicing variants are associated with tumor grade and prognosis
of patients, and can be applied in clinical practice. For instance,
KRAS-A and VEGFA 165b variant are superior predictors of overall
survival whereas CD44v6, CEACAM1-Short isoform, and A133p53(3
variant are poor predictors of overall survival among patients with
CRC [59, 85, 88, 90, 97, 98, 104-106]. SSOs and small molecular
drugs that target various aspects of splicing progress or products
can suppress tumor progression, some of which have been
investigated in phase | clinical trials, such as E7107 and SM08502.

However, the function of AS in the progression of CRC is still
poorly understood, at least compared to prostatic cancer or
breast cancer. Even so, they offer hope with exposing novel
mechanism of low toxicity and new opportunity for the use of
SSOs in precision medicine with less off-target effect. Although

Cell Death and Disease (2021)12:752



SSOs confer some benefits in patients with Duchenne muscular
dystrophy (DMD) [125], its role in CRC patients has not been
sufficiently explored [126]. It is worth mentioning that the high
polarity and charged characteristics of oligonucleotide drugs
make them obvious differences between small chemical mole-
cules and monoclonal antibody drugs in terms of drug delivery
system, pharmacokinetic properties, and efficacy [110]. Although
significant progress has been made, the tumor-specific splicing
alterations are not fully characterized and further efforts are
needed to comprehensively reveal the regulation splicing of AS
events.
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