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Bacteria and Candida albicans are prominent gut microbiota, and the translocation of
these organisms into blood circulation might induce mixed-organism biofilms, which
warrants the exploration of mixed- versus single-organism biofilms in vitro and in vivo. In
single-organism biofilms, Acinetobacter baumannii and Pseudomonas aeruginosa (PA)
produced the least and the most prominent biofilms, respectively. C. albicans with P.
aeruginosa (PA+CA) induced the highest biofilms among mixed-organism groups as
determined by crystal violet straining. The sessile form of PA+CA induced higher
macrophage responses than sessile PA, which supports enhanced immune activation
toward mixed-organism biofilms. In addition, Candida incubated in pre-formed
Pseudomonas biofilms (PA>CA) produced even higher biofilms than PA+CA
(simultaneous incubation of both organisms) as determined by fluorescent staining on
biofilm matrix (AF647 color). Despite the initially lower bacteria during preparation,
bacterial burdens by culture in mixed-organism biofilms (PA+CA and PA>CA) were not
different from biofilms of PA alone, supporting Candida-enhanced Pseudomonas growth.
Moreover, proteomic analysis in PA>CA biofilms demonstrated high AlgU and mucA with
low mucB when compared with PA alone or PA+CA, implying an alginate-related mucoid
phenotype in PA>CA biofilms. Furthermore, mice with PA>CA biofilms demonstrated
higher bacteremia with more severe sepsis compared with mice with PA+CA biofilms.
This is possibly due to the different structures. Interestingly, L-cysteine, a biofilm matrix
inhibitor, attenuated mixed-organism biofilms both in vitro and in mice. In conclusion,
Candida enhanced Pseudomonas alginate–related biofilm production, and Candida
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presentation in pre-formed Pseudomonas biofilms might alter biofilm structures that affect
clinical manifestations but was attenuated by L-cysteine.
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INTRODUCTION

Biofilms are a community of microorganisms that grow on both
nonliving and biotic surfaces to survive in harsh environments
by producing multilayers of high-abundance extracellular matrix
(ECM) consisting of proteins, polysaccharides, and nucleic acids
(Flemming et al., 2007; de Kievit, 2009; Ghafoor et al., 2011;
Flemming et al., 2016). Biofilms consist of 85% (by volume)
matrix materials and 15% microbial cells (Flemming et al., 2007;
Rasamiravaka et al., 2015). Surface-adherent (sessile) bacteria in
biofilms become more antibiotic resistant than the free living
(planktonic) form and result in recurrent infections (Darouiche
et al., 2002; Aslam and Darouiche, 2011). Biofilms also possibly
form nidus at the surface for the attachment of other pathogens
that lead to biofilms of multiple bacteria or multiorganisms
(Yang et al., 2011). The communication in mixed-organism
biofilms is referred to as “quorum sensing” (Hossain et al.,
2020) and might induce different biofilm properties than
single-organism biofilms (Yang et al., 2011). Although
catheter-related colonization of Gram-positive bacteria from
skin microbiota (Streptococcus spp. and Staphylococcus spp.) is
common, biofilms in the inner lumen of the catheter consist of
both Gram-positive and -negative bacteria (Murga et al., 2001).

Both Gram-negative bacteria and C. albicans are the most and
the second most predominant intestinal human microbiota,
respectively, in which the natural interactions between these
organisms is possible (Amornphimoltham et al., 2019). Because i)
the translocation of gut microbiota (e.g., Enterococcus spp., Gram-
negative bacteria, and Candida albicans) into blood circulation
during sepsis (Alexandraki and Palacio, 2010; Amornphimoltham
et al., 2019) and catheter-related candidiasis (Almirante et al., 2005;
Tumbarello et al., 2012) are common, ii) mixed systemic infection
between bacteria and Candida spp. is more severe than the
infection by each organism separately (Bouza et al., 2013a; Bouza
et al., 2013b; Dhamgaye et al., 2016), and iii) biofilms could be
formed during bacteremia and fungemia (Shin et al., 2002; Li et al.,
2018; Zheng et al., 2018); mixed-organism biofilms from bacteria
and Candida spp. during sepsis are possible. Indeed, there is
interaction between Candida albicans and Gram-negative
bacteria, such as Escherichia coli (in peritonitis), Pseudomonas
aeruginosa (in cystic fibrosis and ventilation-associated
pneumonia), and Acinetobacter baumannii (in ventilation-
associated pneumonia) (Dhamgaye et al., 2016). In addition, the
observation of enhanced biofilm production has been mentioned
with preliminary crystal violet staining (El-Azizi et al., 2004; Mear
et al., 2013). Gut leakage–induced Candida translocation during
sepsis (Leelahavanichkul et al., 2016; Amornphimoltham et al.,
2019) might induce biofilms of bacterial-fungal collaboration,
which result in persistent, recurrent, or severe infection (Chen
and Wen, 2011; Wu et al., 2015).
gy | www.frontiersin.org 2
Because i) antibiotic resistance caused by biofilm is a current
serious medical problem (Shahrour et al., 2019), ii) biofilm
eradication (bacterial and fungi) is difficult, and iii) antimicrobial
treatment without biofilm-removal results in recurrent or
persistent infection (Gunn et al., 2016); interventions or drugs
for biofilm prevention/eradication are necessary (O’Toole et al.,
2015). Here, we explore the interaction between gut-derived
bacteria and C. albicans in vitro and in a catheter-subcutaneous
implantation mouse model with the exploration in macrophage
responses and the anti-biofilm evaluation.
MATERIALS AND METHODS

Animals and Animal Models
Animal care and use protocol was approved by the Institutional
Animal Care and Use Committee of the Faculty of Medicine,
Chulalongkorn University, Bangkok, Thailand, based on the
National Institutes of Health (NIH), USA. Male, 8-week-old
C57BL/6 mice from Nomura Siam International (Pathumwan,
Bangkok, Thailand) were purchased.
Organism Preparation
Due to the limitation on biofilm production of organisms from
laboratory strains, gut-derived bacteria and Candida albicans
were isolated from blood samples of patients from the King
Chulalongkorn Memorial Hospital (Bangkok, Thailand) and the
same strain of organisms was used in all of the experiments. The
sample accession process was approved by the ethical
institutional review board, Faculty of Medicine, Chulalongkorn
University according to the Declaration of Helsinki with written
informed consent.
Biofilm Induction and Anti-Biofilms In Vitro
To obtain the organisms in the early stationary phase that is
suitable for biofilm production (Ricicova et al., 2010), bacteria
and C. albicans were grown in Tryptic soy broth (TSB) (Oxoid
Ltd., Basingstoke, Hampshire, England) and Sabouraud dextrose
broth (SDB) (Oxoid), respectively, for 24 h at 37°C. Then, the
samples were washed, resuspended in phosphate buffered saline
(PBS; pH 7.4), and adjusted to the turbidity of 0.5 McFarland
standard (approximately 1 × 108 CFU/mL) in TSB. Then, the
organisms were incubated at 37°C on 96-well plates (200 µL of
TSB/well) for crystal violet staining and on microscope cover
glasses (22x22 mm) (MenzelTM; Thermo Fisher Scientific,
Waltham, MA, USA) or 25 mm segments of polyurethane
catheter (NIPRO, Ayutthaya, Thailand) in 6-well plates (5 mL
of TSB/well) for fluorescent staining. In the P. aeruginosa plus C.
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albicans group (P. aeruginosa + C. albicans), 0.5 mL of bacteria
and C. albicans at 0.5 McFarland were combined into 1 mL for
mixed-organism biofilm preparation, and 1 mL 0.5 McFarland
was used for the preparation of single-organism biofilms (Figure
1A). Because C. albicans might be present on the previously
formed bacterial biofilms, C. albicans administration after 24 h of
P. aeruginosa incubation was performed (P. aeruginosa > C.
albicans). The potential anti-biofilms L-cysteine (Sigma-Aldrich,
St. Louis, MO, USA) (Olofsson et al., 2003; El-Baky et al., 2014)
and b-defensin 3 (Peptide institute, Inc., Ibaraki-Shi, Osaka,
Japan) (Batoni et al., 2016) in different concentrations were
preliminary tested for bactericidal effect incubation with the
organisms in TSB (Oxiod) for bacterial burdens at 24 h by
optic density 600 (OD 600) with spectrophotometry (absorbance
reader; BioTek,Winooski, VT, USA). In addition, the anti-biofilms
property of both molecules was tested by 96-well plate biofilms
with crystal violet staining. Moreover, L-cysteine at 50 mM was
incubated with the organisms for the determination of biofilms on
cover glasses, catheters in incubator, and catheters in mice.
Biofilm Induction and Anti-Biofilms In Vivo
To determine in vivo biofilms, a mouse model of catheter
subcutaneous-implantation following a previous publication was
performed (Buret et al., 1991). In brief, 25-mm catheters (NIPRO)
were incubated with organisms for 3 h at 37°C before washing with
PBS and subcutaneously implanted onto the mouse flank on both
sides under isoflurane anesthesis. In the P. aeruginosa > C. albicans
group, P. aeruginosa were incubated with catheters for 1.5 h at 37°C
before C. albicans administration and then further incubated for
another 1.5 h before washing and inserting into mice. In the
anti-biofilm test, L-cysteine (Sigma-Aldrich) at 50 mM was
incubated together with the organisms before subcutaneous
insertion in mice. At 48 h after catheter insertion, mice were
sacrificed with sample collection (blood and catheters) by cardiac
puncture under isoflurane anesthesia. For survival analysis, mice
were observed for 96 h after the insertion. Renal injury (serum
creatinine) and liver damage (serum alanine transaminase) were
determined by QuantiChrom Creatinine Assay (DICT-500)
(Bioassay, Hayward, CA, USA) and EnzyChrom Alanine
Transaminase assay (EALT-100, BioAssay), respectively. Serum
cytokines were determined by enzyme-linked immunosorbent
assay (ELISA) (Invitrogen).
Biofilm Visualization and Organism
Burdens From Biofilms
In 96-well plates, crystal violet color was used for preliminary
quantity estimation of biofilm ECM. Briefly, the supernatant in
96-well plates was discarded, stained with 0.1% crystal violet (200
µL) (Sigma-Aldrich) in water for 15 min, washed with water, and
solubilized with 30% acetic acid (200 µL) (Sigma-Aldrich) in
water before measurement with the absorbance reader (BioTek)
with absorbance at 590 nm. For cover glasses and catheters after
48 h incubation, the samples were washed twice with PBS, fixed
with 10% formaldehyde for 15 min, and stained for i) ECM by
concanavalin AF647 (Invitrogen; Carlsbad, California, USA) at
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
50 mg/mL, ii) bacterial DNA with SYTO9 (Invitrogen) at 3.34 mM,
and iii) fungi by calcofluor white (Sigma-Aldrich) at 1 mg/mL for
30 min in the dark before visualization by LSM 800 Airyscan
confocal laser scanning microscope (CLSM; Carl Zeiss, Jena,
Germany) and Plan-Apochromat (Celldiscoverer7 LSM900
Airyscan2) for cover glass and catheter biofilms, respectively.
Fluorescent intensity was then analyzed by ZEN imaging
software (Carl Zeiss). To determine the organism burdens from
biofilms, the biofilms were dissolved in normal saline (1 mL) and
thoroughly vortexed for 5 min and then processed as follows:
i) directly incubated in TSB (Oxioid) for bactericidal burdens
evaluated by the absorbance reader (BioTek) with optical density
600 (OD 600) at 24 h at 37°C incubation or ii) directly plated on
tryptic soy agar (TSA) or Sabouraud dextrose agar (SDA) (Oxoid)
in serial dilutions for bacterial and fungal burdens, respectively,
fromthe sampleswith amixtureof bacteria and fungi before colony
enumeration at 48 h at 37°C incubation. Of note, characteristics of
colonies from bacteria and fungi were distinguishable on culture
agar plates.
Macrophage Cell-Line Experiments
RAW264.7, a mouse macrophage cell line, was used because
immune activation toward organisms in a free-living form
(planktonic cells) versus in biofilms (sessile form) might be
different. As such, the sessile-form organisms were prepared in a
cover-glass system and planktonic forms by culture in TSB. Then,
both samples were heat inactivated at 65°C for 30 min before
sonication with a high-intensity ultrasonic processor (VC/VCX
130, 500, 750) at 25% amplitude and centrifugation at 10,000 rpm
for 5 min to separate the supernatant. Then, macrophages at 5x105

cells/well were incubated with the supernatant for 24 h before the
evaluation of cytokines by ELISA (Invitrogen) and macrophage
polarization by polymerase chain reaction (PCR). Total RNA from
macrophages was prepared by RNA easy mini-kit (Qiagen) and
high-capacity reverse transcription assay (Applied Biosystems,
Warrington, UK) on the Applied Biosystems 7500 Real-165 Time
PCR System (Applied Biosystems) using the SYBR® Green PCR
Master Mix (Applied Biosystems). The relative quantitation
normalized to b-actin (an endogenous housekeeping gene) by
comparative threshold (delta-delta Ct) method (2-DDCt) was
demonstrated. The list of primers for PCR is presented in
Supplementary Table 1.
Determination of Bacterial Genes
Bacterial genes that associated with ECM were determined by
PCR as previously published (Toyofuku et al., 2012). Briefly, the
biofilms from cover glasses were scraped into 1 mL of TRIzol
reagent (Invitrogen) and then purified RNA was treated with
DNase I (Thermo Fisher Scientific). Single-stranded cDNA was
synthesized from total RNA by random hexamer primers using
reverse transcriptase (RevertAid First Strand cDNA, Thermo
Fisher Scientific) and PCR performed as previously described.
The relative quantitation normalized to the housekeeping 16S
rRNA gene with the comparative cycle threshold against the
expression in the P. aeruginosa group was demonstrated.
November 2020 | Volume 10 | Article 594336
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Proteomic Analysis
Proteinswere precipitatedwith cold acetone from the equal volume
of each condition, and the pellet was redissolved with urea (8M) in
50 mM Tris‐HCl (pH = 8) to determine protein concentration by
BCA protein assay (Thermo Fisher Scientific). Then, the soluble
proteins were mixed with dithiothreitol (DTT), alkylated by
iodoacetamide (IAA), digested with trypsin, added trifluoroacetic
acid (TFA) to stop the digestion reaction, and dried by a SpeedVac
centrifuge (Thermo Fisher Scientific). Subsequently, peptides were
analyzed by the EASY-nLC1000 system coupled to a Q-Exactive
Orbitrap Plus mass spectrometry (Thermo Fisher Scientific) at a
flow rate of 300 nL/min with 5%–40% acetonitrile in 0.1% formic
acid (FA) for 70 min followed by a linear gradient from 40%–95%
acetonitrile in 0.1% FA for 20 min. Liquid chromatography mass
spectrometer (LC-MS) analysis was performed using a 10 data-
dependent acquisitionmethodwith anMS scan range of 350–1,400
m/z accumulated at a resolution of 70,000 full width at half
maximum (FWHM) followed by a resolution of 17,500 FWHM.
The normalized collision energy of higher energy collisional
dissociation (HCD) was controlled at 32%. Precursor ions with
unassigned charge state of +1 or those of greater than +8 were
excluded, and the dynamic exclusion time was set to 30 s. Data
acquisitions were monitored by Xcalibur 4.4 software (Thermo
Fisher Scientific). Peptide spectrums were identified by SEQUEST-
HT search engine against a mouse UniProt FASTA database.
Searching parameters were i) digestion enzyme: trypsin, ii)
maximum allowance for missed cleavages: 2, iii) maximum of
modifications: 4, iv) fixed modifications: carbamidomethylation
of cysteine (57.02146 Da), and v) variable modifications: oxidation
ofmethionine (15.99491Da). Biological process analysis of the host
proteins was carried out using the PANTHER (http://www.
pantherdb.org/) software program. Mass spectrometry proteomic
data were determined and submitted to the ProteomeXchange
consortium via the PRIDE (http://www.proteomexchange.org),
and are available under the data set identifier PXD020949.
Statistical Analysis
Mean ± standard error (SE) was used for data presentation, and
the differences between groups were examined for statistical
significance by one-way analysis of variance (ANOVA) followed
by Tukey’s analysis or Student’s t-test for comparisons of multiple
groups or 2 groups, respectively. Survival analysis was performed
by Log-rank test. All statistical analyses were performed with SPSS
11.5 software (SPSS, IL, USA) and GraphPad Prism version 8.0
software (La Jolla, CA, USA). A p-value of < 0.05 was considered
statistically significant.
RESULTS

Candida Enhances Pseudomonas Biofilms
and Increases Macrophage Responses
Candida albicans enhanced biofilm production of P. aeruginosa
through the induction of alginate-related proteins and was
attenuated by L-cysteine, which has been proposed as an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
interesting anti-biofilm in clinical situations. Crystal violet–
stained biofilms were higher in P. aeruginosa plus C. albicans
(PA+CA) as early as 48 h post-incubation (Figure 1B). Without
Candida, P. aeruginosa (PA) produced more biofilms than other
bacteria, and most bacteria, except A. baumannii and E. coli,
produced more biofilms than C. albicans (CA) (Figure 1B).
Despite the lower initial bacterial burdens, biofilms of mixed
bacteria Candida, except K. pneumoniae, were similar to or
higher than biofilms from bacteria alone (Figure 1C), implying
an additive effect of fungi on biofilm production. Confocal
electron microscope examination of PA+CA biofilms on cover
glasses demonstrated the highest ECM (Figures 2A, B) and
thickness (z-stack imaging) (Figure 3A) with a similar intensity
of bacterial nucleic acid (Figure 2A) and bacterial culture
(Figure 3B) when compared with biofilms from bacteria alone.
However, fungal burdens in PA+CA were lower than CA alone
(Figure 3C), which implies an impact of lower fungal burdens in
PA+CA preparation (Figure 1A) or antifungal molecules of
Pseudomonas (Kerr et al., 1999). For a closer representative of
the clinical situation, biofilms were induced in catheters using
incubator or subcutaneous implantation. PA+CA induced the
highest ECM (Figures 4A, B), which is similar to the cover glass
biofilms (Figure 2). Of note, there was a trend of higher PA
burdens in PA+CA compared with PA alone (Figures 4A, B)
despite the initially lower number of bacteria.

The responses against PA+CA biofilms were tested because the
additive effect of Candida on bacterial immune responses was
demonstrated in several models (Panpetch et al., 2017; Panpetch
et al., 2019). With the planktonic (free-living) form of organisms
(Figure 5, black columns), PA+CA induced the highest cytokine
responses (TNF-a, IL-6, and IL-10) with the highest expression of
genes for pro-inflammatory M1 macrophage polarization (iNOS,
IL-1b, and TNF-a) and low expression of genes for anti-
inflammatory M2 polarization (Arg-1, FIZZ-1, TGF-b) (Figures
5A–I). Planktonic PA induced higher cytokines and expression of
M1 polarization genes with similar expression of M2 polarization
genes when compared with planktonic CA (Figures 5A–I). In
sessile (biofilm) form (Figure 5, white columns), PA+CA still
induced the highest cytokines and gene expression of M1
polarization but in lower levels than the planktonic form (Figures
5A–F), which supports compromised antibacterial mechanisms of
biofilms (Thurlow et al., 2011; Yamada and Kielian, 2019).

Candida on the Pre-Formed Pseudomonas
Biofilms Enhances Biofilm Thickness
Through Matrix-Protein Induction, a
Proteomic Analysis
Because gut leakage–induced candidemia could be presented
during bacterial sepsis (Amornphimoltham et al., 2019) and
catheter-related bacterial sepsis is common (Phua et al., 2019;
Reitzel et al., 2019), interaction between Candida and bacterial
biofilm is possible. Then, C. albicans were added on Pseudomonas
biofilms (P. aeruginosa > C. albicans; PA>CA) in comparison with
biofilms that were formed with the initial mixture of organisms
(PA+CA) (Figure 6A). Accordingly, PA>CA and PA+CA
demonstrated higher biofilm formation compared with PA alone
November 2020 | Volume 10 | Article 594336
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by crystal violet staining (96-well plates) (Figure 6B). Of note,
fungal biofilms of CA alone were much less when compared with
other groups in 96-well plate staining (Figure 6B), and the fungal
biofilms were non-detectable in catheters (data not shown).
Biofilms by fluorescent intensity of ECM (AF467) (cover glasses
and catheters) were not different in bacterial burdens (SYTO9
stains and culture) (Figures 6C–E and 7) despite the lower initial
organisms in the preparation of PA>CA and PA+CA versus PA
biofilms (Figure 6A). Of note, Candida burdens in PA>CA were
higher than PA+CA biofilms by culture (Figure 6F) but not by
fluorescent staining (Figures 6C, D). This is perhaps due to the
higher nutrients in the culture system. Nevertheless, these imply
the possible differences between biofilm structures of PA>CA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
versus PA+CA that lead to the proteomic analysis that focuses
on Pseudomonas ECM proteins.

Biofilms were demonstrated in all groups; 591 proteins from
proteomic analysis that presented in all groups that are presented
in the Venn diagram (Supplementary Data 1) were classified by
protein biological process based on the PANTHER classification
system (http://www.pantherdb.org) into the following: i)
proteins in PA+CA and PA>CA that were higher than PA
alone (37 proteins, including RNA polymerase sigma H factor;
AlgU), ii) proteins in PA+CA that were higher than PA>CA
(19 proteins without ECM proteins), iii) proteins in PA>CA
that were higher than PA+CA (81 proteins, including sigma
factor AlgU negative regulatory protein; mucA), and iv) proteins
A B

C

FIGURE 1 | Diagram of the experimental design demonstrated lower bacteria in the biofilm preparation of mixed bacteria and Candida (bacteria + C. albicans) when compared
with single-organism biofilms (A), crystal violet–stained biofilm in 96-well plates from single- and mixed-organisms in the time course evaluation (B), and in the biofilms at 48 h
post-incubation with representative pictures of crystal violet stained 96-well plates and the color with acetic acid elution (C) are demonstrated. Mean ± SE was used for data
presentation, and the differences between groups were examined for statistical significance by one-way ANOVA followed by Tukey’s analysis for comparisons of multiple groups
or 2 groups (B, C). A p-value of < 0.05 was considered statistically significant. (Independent triplicate experiments were performed.) (*p<0.05; #p<0.05).
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in PA+CA and PA>CA that were lower than PA (450 proteins,
including negative regulator of the sigma factor AlgU; mucB)
(Supplementary data 1). Most of bacterial proteins in PA+CA or
PA>CA were lower than PA alone (Supplementary data 1)
because of the lower initial bacteria in preparation of mixed-
organism biofilms (Figure 6A). Indeed, high ECM initiators
AlgU and mucA and low ECM inhibitor mucB (Schurr et al.,
1996) in PA>CA compared with PA alone or PA+CA (Figure
8A) might be responsible for the prominent ECM in the PA>CA
group. Of note, cleavage mucA is necessary for alginate
production (Damron et al., 2009; Li et al., 2019). Likewise, the
intercept proteins with Candida biofilms (CA) (Supplementary
data 2) were divided into i) proteins in PA+CA and PA>CA that
were higher than PA alone (4 proteins, including ADH2; alcohol
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
dehydrogenase 2), ii) proteins in PA+CA that were higher than
PA>CA (19 proteins without ECM proteins), and iii) proteins in
PA+CA and PA>CA that were lower than PA (18 proteins
without ECM proteins) (Supplementary data 2). Higher
ADH2, an ECM restriction protein (Mukherjee et al., 2006), in
PA+CA (Figure 8B) might be responsible for the lower ECM
when compared with the PA>CA group (Figures 6B–D).

Anti-Biofilms That Interfere With ECM
Proteins In Vitro and In Vivo Evaluations
Because i) biofilm ECM of Pseudomonas with Candida were
more prominent than biofilms of Pseudomonas alone despite the
lower bacteria in the preparation process (Figures 2–4, 6, and 7)
and ii) proteins that accelerate ECM were demonstrated in the
A

B

FIGURE 2 | Intensity of fluorescent stains from 48 h biofilm on cover glasses of P. aeruginosa alone, Candida alone, and P. aeruginosa + C. albicans (P. aeruginosa +
C. albicans) for ECM by AF647 (red color fluorescence), bacterial nucleic acid by SYTO9 (green color fluorescence), and fungal cell wall by calcofluor white (CW2MR; blue
color fluorescence) (A) with the representative fluorescent images (B) are demonstrated. There was different depth on biofilms in images of the P. aeruginosa + C. albicans
group because of the prominent biofilm thickness. Mean ± SE was used for data presentation, and the differences between groups were examined by one-way ANOVA
followed by Tukey’s analysis for comparisons of multiple groups or 2 groups (A). A p-value of < 0.05 was considered statistically significant. (Independent triplicate experiments
were performed.) (*p<0.05; #p<0.05).
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PA>CA group by the proteomic analysis (Figures 8A, B), anti-
biofilms with ECM interference are of strong interest.
Accordingly, L-cysteine, which is an ECM-reducing agent, and
b-defensin 3, an anti-biofilm with bactericidal activity, reduced
both planktonic PA and PA biofilms. However, only L-cysteine
attenuated biofilms of PA+CA and PA>CA (Figures 9A–C). In
addition, L-cysteine reduced gene expression of ECM promoters,
including mucA, cysB, and lasR but not psl (Figures 10A–E). To
test the catheter biofilms in vivo, catheters with biofilms were
prepared before subcutaneous implantation in mice (Figure
11A). Mice with biofilm catheters from PA>CA or PA+CA
demonstrated more severe sepsis as determined by mortality,
renal injury, liver damage, bacteremia, and serum cytokines
(Figures 11B–F) with the higher burdens of Pseudomonas but
not fungi in catheter biofilms (Figure 11G). Of note, bacterial
burdens in cover glass and catheter biofilms (in incubator) were
not different among PA, PA+CA, and PA>CA (Figure 6E) while
bacterial burdens from catheter biofilms (in mice) of PA+CA and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
PA>CA were higher than PA alone (Figure 11G). This is
possibly due to the higher organism nutrients in mice
compared with the in vitro system.

Bacteremia in PA>CA was most severe among all groups
(Figure 11E), implying the easier detachment of bacteria from
the biofilms compared with biofilms of PA alone. Because
PA>CA demonstrated the most severe sepsis, biofilm catheters
with or without L-cysteine were implanted into this model. As
such, L-cysteine attenuated catheter-induced sepsis in the
PA>CA group as determined by the previously mentioned
sepsis parameters (Figures 11H–N) and reduced burdens of
both bacteria and fungi in catheter biofilms (Figures 11O, P),
suggesting an impact of bactericidal and fungicidal properties. In
addition, the possible structural difference between PA+CA
versus PA>CA biofilms was demonstrated with z-stack lateral
view images of 24 h cover glass biofilms. As such, bacteria (green
color of SYTO9) were on top of fungi (blue color of CW2MR) in
PA+CA biofilms and vice versa on PA>CA with the prominent
A

B C

FIGURE 3 | Biofilm thickness from 48 h biofilm on cover glasses of P. aeruginosa alone, Candida alone, and P. aeruginosa + C. albicans (P. aeruginosa + C.
albicans) as evaluated by z-stack analysis of fluorescent images (A) and the burdens of organisms by culture for bacteria (TSA) and for fungi (SDA) (B, C) are
demonstrated. Mean ± SE was used for data presentation, and the differences between groups were examined by one-way ANOVA followed by Tukey’s analysis for
comparisons of multiple groups or 2 groups, (A–C). A p-value of < 0.05 was considered statistically significant. (Independent triplicate experiments were performed.)
November 2020 | Volume 10 | Article 594336

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Phuengmaung et al. P. aeruginosa With C. albicans Enhances Biofilm Thickness
thickness in PA>CA biofilms (Figures 12A, B). The connections
of blue color of fungi from the upper to the lower part of biofilms
(Figure 12A, arrows) were possibly penetrating Candida germ-
tube onto biofilms that induced bacterial exit-portals and caused
easier bacterial dissemination in mice.
DISCUSSION

Although the enhanced Pseudomonas ECM production by the
Candida presentation with the initial mixtures of both organisms
are demonstrated (DeVault et al., 1990; Chen et al., 2014), the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Candida presentation in the pre-formed Pseudomonas biofilms
has not been studied. Indeed, adding Candida into pre-formed
Pseudomonas bioflms induced a higher biofilm matrix partly
through enhancedmucA expression with easier bacteremia when
compared with mixed-organism biofilms from simultaneous
incubation. In addition, L-cysteine, an anti-biofilm with a
matrix inhibitor, attenuated mixed-organism biofilms both in
vitro and in vivo.

Bacteremia or candidemia from gut-derived organisms is
common (Amornphimoltham et al., 2019) and possibly
increases risk of mixed-organism biofilms (Gominet et al.,
2017). Although Candida produced less biofilm in most of the
selected bacteria, perhaps due to the virulence (Hirota et al.,
A

B

FIGURE 4 | Diagram of the experimental design demonstrated the lower bacteria during biofilm preparation of P. aeruginosa and C. albicans (P. aeruginosa +
C. albicans) compared with P. aeruginosa alone with the score of fluorescent intensity for ECM (AF647), bacterial nucleic acid (SYTO9), and fungal cell wall
(CW2MR) together with representative fluorescent images (right side) with eye visualization biofilms (below) of the catheter biofilms after 48 h in an incubator
(A) and in mice (B) are demonstrated. Mean ± SE was used for data presentation, and the differences between groups were examined by Student’s t-test for
comparisons of multiple groups or 2 groups (A, B). A p-value of < 0.05 was considered statistically significant. (Independent triplicate experiments were
performed for A and n = 5/group for B.)
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2017), Candida-enhanced biofilms of most bacteria, especially P.
aeruginosa (PA), supported the cross-talk between these species
(Fourie et al., 2016). In the intensive care unit, P. aeruginosa
overgrowth in intestines (Okuda et al., 2010; Amornphimoltham
et al., 2019), antibiotic-increased intestinal C. albicans (CA)
(Panpetch et al., 2019), and mixed bacterial-fungal biofilms
during sepsis (Pierce, 2005; McAlester et al., 2008) are
mentioned. Here, PA+CA biofilms demonstrated prominent
burdens of bacteria but not fungi compared with single-
organism biofilms despite the lower organisms at preparation,
which implies Candida-enhanced bacterial growth. Although
immune responses against sessile organisms were lower than the
planktonic forms (Yamada and Kielian, 2019), PA+CA in sessile
forms induced more inflammatory effect than the sessile form of
single organisms, supporting the sysnergistic responses against
bacteria with fungi (Panpetch et al., 2017; Panpetch et al., 2019).

Candida on pre-formed Pseudomonas biofilms (PA>CA)
induced a higher biofilm matrix than the simultaneous
organism incubation (PA+CA) with similar bacterial burdens
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
among PA, PA+CA, and PA>CA. The enhanced Pseudomonas
growth in mixed-organism biofilms might, in part, be due to b-
glucan, a major fungal cell wall component, as b-glucan mixed in
culture media enhanced bacterial growth (Hiengrach et al., 2020)
and oral b-glucan administration increased pathogenic bacteria
in gut (Charlet et al., 2018). Likewise, mannans on Candida outer
surface mediate b-glucosyltransferase binding, improving
glucan-matrix production and enhancing bacterial–fungal
association (Rodrigues et al., 2020). Although fungal burdens
in PA>CA biofilms were higher than PA+CA biofilms, the
impact of Candida on matrix production of mixed-organism
biofilm was not dominant as Candida burdens of mixed-
organism biofilms was lower than CA biofilms (Figure 3C).
This was possibly due to the Pseudomonas antifungal effect (Kerr
et al., 1999; Fourie et al., 2016).

Pseudomonas biofilms consist of at least 3 extracellular
polymers, including i) polysaccharide synthesis locus (psl) for
the cell attachment; ii) pel, a cationic exopolysaccharide for
pellicle forming at the liquid interface; and iii) alginate for the
A B

D E F

G IH

C

FIGURE 5 | Characteristics of RAW264.7 cells (macrophages) after 6 h incubation of P. aeruginosa, C. albicans, or P. aeruginosa with C. albicans (combined) in
sessile (biofilm) and planktonic form (free-living) as determined by supernatant cytokines (TNF-a, IL-6, IL-10) (A–C), gene expression of macrophage polarization of
M1 (iNOS, IL-1b, TNF-a) and M2 (Arg-1, FIZZ-1, TGF-b) (D–I) are demonstrated. Mean ± SE was used for data presentation, and the differences between groups
were examined by one-way ANOVA followed by Tukey’s analysis for comparisons of multiple groups or 2 groups (A–I). A p-value of < 0.05 was considered
statistically significant. (Independent triplicate experiments were performed.) (*p<0.05; #p<0.05).
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mucoid phenotype that retains water (and nutrients) and provides
resistance against antibiotics and host immunity (Lee and Yoon,
2017). Proteomic analysis in PA>CA demonstrated higher AlgU
with lower mucB when compared with PA and higher mucA than
PA+CA. As such, alteration of AlgU,mucA, andmucB implied the
modification on alginate in the PA>CA group. Despite the possible
lesser Candida impact on mixed-organism biofilms, ADH2, a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
biofilm-inhibitory enzyme (Mukherjee et al., 2006), in PA+CA
was higher than PA>CA, which could possibly be associated with
the lower biofilm matrix in PA+CA. Prominent ECM, but not
organism burdens, should be a major component of mixed-
organism biofilms; therefore, several genes for ECM synthesis
were explored. As such, mucA and psl in PA>CA biofilms were
higher than PA+CA and PA alone, and onlymucA in PA+CA was
A

B

D

E F

C

FIGURE 6 | Diagram of the experimental design demonstrated lower bacteria in the biofilm preparation of simultaneous incubation of P. aeruginosa and Candida (P.
aeruginosa + C. albicans) or the Candida addition in 24 h biofilm-formed bacteria (P. aeruginosa > C. albicans) in comparison with P. aeruginosa biofilms (A), crystal
violet–stained biofilm in 96-well plates with representative pictures (B), fluorescent intensity of ECM by AF647 (red), bacterial nucleic acid by SYTO9 (green), and
fungal cell wall by calcofluor white (CW2MR; blue) induced on cover glass biofilms and catheters (in incubator) (C, D) and organism burdens from biofilms using TSA
for bacteria (E) and SDA for fungi (F) are demonstrated. Mean ± SE was used for data presentation, and the differences between groups were examined by one-way
ANOVA followed by Tukey’s analysis for comparisons of multiple groups or 2 groups, respectively (B–F). A p-value of < 0.05 was considered statistically significant.
(Independent triplicate experiments were performed.) (*p<0.05; #p<0.05).
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FIGURE 7 | Representative fluorescent images of biofilms induced on cover glasses and catheters (in incubator) (A, B) stained for ECM by AF647 (red), bacterial
nucleic acid by SYTO9 (green), and fungal cell wall by calcofluor white (CW2MR; blue) are demonstrated.
A B

FIGURE 8 | Proteomic analysis of biofilms from P. aeruginosa alone (PA) and PA with Candida by simultaneous incubation of Candida together with bacteria
(P. aeruginosa + C. albicans; PA+CA) or the Candida addition in 24 h biofilm-formed bacteria (P. aeruginosa > C. albicans; PA>CA) as determined by the peak
intensity of proteins in the ECM production process (AlgU, RNA polymerase sigma H factor; mucA, sigma factor AlgU negative regulatory protein; and mucB,
negative regulator of the sigma factor AlgU) (A) and those of biofilms from Candida albicans alone (CA) and CA simultaneously incubated together with P. aeruginosa
(P. aeruginosa + C. albicans; PA+CA) or the Candida addition in 24 h biofilm-formed bacteria (P. aeruginosa > C. albicans; PA>CA) as determined by the peak
intensity of proteins in the ECM production process (ADH2, alcohol dehydrogenase) (B). Mean ± SE was used for data presentation, and the differences between
groups were examined by one-way ANOVA followed by Tukey’s analysis (A, B). A p-value of < 0.05 was considered statistically significant. (Independent duplicate
experiments were performed.)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org November 2020 | Volume 10 | Article 59433611

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Phuengmaung et al. P. aeruginosa With C. albicans Enhances Biofilm Thickness
higher thanPAalone (Figure10), implying the importanceofmucA
(anti-sigma factor) in mucoid biofilms of mixed organisms.
Although mucA (an anti-sigma factor) binds to AlgU and inhibits
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
its activity, cleavage-mucA provides an important step in matching
with AlgU prior to AlgU release for alginate transcription (Figure
10A) (Damron et al., 2009; Li et al., 2019), and mucA mutation
induces alginate overproduction (Moradali et al., 2017). Perhaps
ethanol produced byCandida interferes withmucAgene expression
as ethanol induces several molecules from P. aeruginosa, including
mucA, exopolysaccharide (pel and psl), and antifungal phenazine
[5-methyl phenazine-1-carboxylic acid (5MPCA)] (Chen et al.,
2014; Tashiro et al., 2014). In addition, several other stimuli, such
as NaCl and harsh environments, alter mucA and enhance biofilm
formation (Harty et al., 2019). Hence, Candida presentation is an
exacerbation factorofPseudomonasbiofilms, possibly throughstress
induction on bacteria. More studies on this topic are of interest.

Bacteremia and sepsis severity in mice with mixed-organism
biofilms in catheters were more prominent than in mice with PA
biofilms despite the initially lower bacteria at preparation (Figure
11A). In mixed-organism biofilms, bacterial burdens but not fungi
were higher than PA biofilms in vivo (Figure 11G), and fungal
burdens but not bacteria were higher than PA biofilms in vitro
(Figures 6E, F). This demonstrated a proliferation ability of P.
aeruginosa after Candida stimulation in an environment with less
limitation on nutrients than the in vivo situation, which implies a
possible complication of candidemia during Pseudomonas sepsis.
On the other hand, synergy ofCandida onPseudomonas onbiofilm
productioncouldbedemonstratedboth invivoand in vitro. Because
Candida induces Pseudomonas biofilm production, anti-biofilms
with direct effect on biofilms are interesting. Here, N-acetyl-L-
cysteine (L-cysteine), a thiol-containing cysteine derivative that
disrupts disulfide bonds and cysteine utilization (Olofsson et al.,
2003; Flemming et al., 2007), reduced ECM production in mixed-
organism biofilms. In addition, bactericidal and fungicidal activity
of L-cysteine (Olofsson et al., 2003; El-Baky et al., 2014) might also
be responsible for reduced organism burdens inside catheters and
attenuated septicemia. On the other hand, b-defensin 3, a
bactericidal anti-biofilm, could not attenuate mixed-organism
biofilms despite similar bactericidal activity with L-cysteine
(Maisetta et al., 2006). Additionally, Candida enhanced alginate
formation of Pseudomonas. Candida presentation in pre-formed
Pseudomonas biofilms induced the thicker biofilms with an easier
bacterial dissemination and could be possibly due to a defect on the
biofilm surface during Candida germ-tube penetration (Figure
12C). Then, candidemia in patients with catheter-induced sepsis
from Pseudomonas should be more clinically concerned, and L-
cysteine is an interesting strategy against mixed-organism biofilms.
However, ourmodelofbiofilmproductionwas inducedunder static
conditions. The utilization of a flow-cell system (Kerckhoven et al.,
2016) should provide a more realistic condition. Further studies
are interesting.

In conclusion,C. albicans on pre-formedPseudomonas biofilms
enhanced Pseudomonas ECM production through increased
alginate producing genes, AlgU and mucA, and induced the easier
biofilm disintegration that caused organismal dissemination.
However, L-cysteine inhibited ECM production of the mixed-
organism biofilms that might be useful for biofilm prevention and
attenuation of catheter-related sepsis.
A

B

C

FIGURE 9 | Effect of the different concentrations of L-cysteine and b-defensin
3 on bacterial burdens in TSB culture of planktonic P. aeruginosa after 24 h
incubation (A) and crystal violet–stained biofilms on 96-well plates after 48 h
incubation (B, C) are demonstrated. Mean ± SE was used for data
presentation. The differences between groups were examined by Student’s t-
test (A) and by one-way ANOVA followed by Tukey’s analysis (B, C). The
differences between the individual time points versus the baselines were
examined by repeated-measures ANOVA analysis (A–C). A p-value of < 0.05
was considered statistically significant. (Independent triplicate experiments
were performed.)
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FIGURE 10 | Diagram of some important genes that regulate ECM protein formation (A) demonstrates i) Pseudomonas produces 3-oxo-HSL and several
proteins to initiate biofilms (yellow highlights are selected genes to explore in this study) and secretes pyocyanin and C12-HSL to inhibit Candida growth (Kerr
et al., 1999), ii) Candida produces Tyrosol and Farnasol for fungal biofilms (Pierce, 2005; McAlester et al., 2008), iii) bacterial attachment on Candida
pseudohyphae on mixed-organism biofilms (Fourie et al., 2016), and iv) biofilm inhibition by mucB in planktonic bacteria (left side) and alginate synthesis by AlgU
in sessile bacteria (right side) (Schurr et al., 1996). Additionally, expression of some genes from biofilms of P. aeruginosa alone (PA) and PA with Candida by
initially simultaneous incubation (P. aeruginosa + C. albicans) or the Candida addition at 24 h biofilm-formed bacteria (P. aeruginosa > C. albicans) with or
without L-cysteine (anti-biofilm) (B–E) are demonstrated. Mean ± SE was used for data presentation, and the differences between groups were examined by
one-way ANOVA followed by Tukey’s analysis for comparisons of multiple groups or 2 groups (B–E). A p-value of < 0.05 was considered statistically significant.
(Independent triplicate experiments were performed.) (*p<0.05; ***p<0.001).
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FIGURE 11 | Diagram of the preparation of catheter biofilms of P. aeruginosa alone (PA) and with Candida by simultaneous incubation of Candida together with
bacteria (P. aeruginosa + C. albicans) or the Candida addition in 1.5 h biofilm-formed bacteria (P. aeruginosa > C. albicans) before 48 h of subcutaneous
implantation in mice (A) are indicated. Characteristics of the catheter insertion mouse model as determined by survival analysis (B), kidney and liver injury (serum
creatinine and alanine transaminase) (C, D), bacteremia (E), serum cytokines (F), and organism burdens of catheter biofilms (G) are demonstrated. Additionally,
characteristics of mice with P. aeruginosa > C. albicans biofilm catheters with or without L-cysteine incubation as evaluated by these parameters (H–P) are
demonstrated. The survival analysis (B, H) and the differences between groups were examined by Log-rank test and one-way ANOVA followed by Tukey’s analysis,
respectively (C–G, I–P). A p-value of < 0.05 was considered statistically significant. (n = 12/group for survival analysis and n = 6–8/group for other parameters.)
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FIGURE 12 | Representative fluorescent z-stack lateral-view images of bacterial nucleic acid by SYTO9 (green) and fungal cell wall by calcofluor white (CW2MR;
blue) from biofilms of single (P. aeruginosa or C. albicans) and mixed organisms that initially incubated together and incubated for 24 h (P. aeruginosa + C. albicans)
or the Candida addition at 12 h biofilm-formed bacteria (P. aeruginosa > C. albicans) and further incubated for another 12 h on cover glasses (A) is demonstrated
(arrows indicate the possible Candida germ tubes that grow from the top into the bottom of biofilms). In addition, thickness of the biofilms (B) and the working
hypothesis (left side, catheter during the preparation; right side, the proposed situations in catheter biofilms in vivo) show the enhanced bacterial dissemination in
P. aeruginosa > C. albicans biofilms from Candida germ-tube elongation (C) are demonstrated. Mean ± SE was used for data presentation, and the differences
between groups were examined by one-way ANOVA followed by Tukey’s analysis for comparisons of multiple groups or 2 groups (B). A p-value of < 0.05 was
considered statistically significant. (Independent triplicate experiments were performed for A, B.)
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